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ABSTRACT:  

The authors review how cancer cells may cooperate in metastasis by means 

of microenvironmental changes. The main mechanisms underlying this cooperation 

are clustered migration of cancer cells, extracellular matrix degradation, paracrine 

loops of released signaling factors and/or induction of adhesion molecules on stromal 

cells. Another critical factor could be temporal cooperation: successive waves of 

cancer cells may induce progressive conditioning of the microenvironment. The 

“class action” of cancer cells against the microenvironment involves successive steps 

of the metastatic process: invasion of the primary tumor microenvironment, collective 

migration through the extracellular matrix, blood vessel disruption, vascular or 

lymphatic tumor emboli, establishment of a premetastatic niche by secreted factors 

and endothelial precursor recruitment, induction of cell adhesion molecule expression 

in endothelial cells, extravasation, micrometastasis dormancy and establishment of a 

new growth in distant sites. As a result, after completion of the metastatic process, 

the series of microenvironmental changes from the primary tumor to the metastatic 

site may promote colonization of metastases by nonmetastatic cancer cells of the 

primary tumor. 



I. Introduction 

The metastatic process is a cellular marathon which combines both random 

and non-random selections of cancer cells. Random selection roughly corresponds to 

the mechanistic and “passive” aspects of the metastatic process (access to blood 

vessels, blood flow pressure, passive trapping of cancer cells in capillaries, etc.) [1], 

whereas non-random selection is mostly based on the molecular determinants 

displayed (or not displayed) by cancer cells [2]. These molecular determinants (e.g. 

E-Cadherin expression, Nm23 suppression, etc.) are required to proceed through the 

highly selective, and putatively “active” steps of the metastatic process, such as 

escape from anoikis, homing in a preferential host organ, extravasation and start of a 

new growth in secondary sites [3,4]. According to the metastatic switch paradigm, 

their expression is restricted to a small subpopulation of cells which pre-exists within 

a parental neoplasm [5]. In this model, the lack of any of the required molecular 

determinants would prevent tumor cells from developing into metastases [6]. 

Globally, the success rate of the metastatic process is very low, less than 0.1% for 

each circulating cancer cell, justifying the term “metastatic inefficiency”  [7]. However, 

cancer cells which fail to metastasize may facilitate the establishment of metastasis 

by other cells. A community effect (or “class action”) of cancer cells may be 

responsible for favorable conditioning of the host microenvironment, facilitating the 

final establishment of metastases. 

 

II. General mechanisms of cancer cell cooperation 

The main mechanisms used by cancer cells to cooperate have been largely 

described, although their cooperative potential has not been elucidated. Direct 

signaling via adhesion molecules between cancer cells and surrounding non-

neoplastic cells have been described [8-9], but most of their interactions are 

mediated by secreted chemokines, together with other secreted proteins (e.g. 

proteases) [10]. The action of secreted factors on the microenvironment may also 

facilitate the survival and progression of other tumor subclones. It has been 

postulated that two adjacent tumor cells may overcome certain host defences and 

protect each other by means of diffusible products [11]. Another mechanism is the 

formation of cancer cell clusters: “autologous” intercellular junctions may cluster 

heterogeneous subclones in tumor emboli or in invasion through a basement 

membrane or endothelium [12-13]. The time dimension must also be taken into 



account: due to the genetic instability of the primary tumor, the tumor 

microenvironment is exposed to successive tumor subclones that may exhibit 

different phenotypes [14]. Once a potential metastatic subclone has undergone a 

metastatic switch, it may take advantage of the prior conditioning of the 

microenvironment induced by other cancer cells. 

This review details the three main steps of the hematogenous metastatic 

process at which a community effect, or “class action”, can occur: invasion and 

migration through the extracellular matrix, pre-metastatic niche conditioning, final 

growth of macrometastasis and the late colonization process of metastases. 

 

III. Invasion and migration through the extracellular matrix 

During the metastatic process, invasion of the extracellular matrix (ECM) and 

migration of cancer cells occur during primary tumor growth and after arrest of cancer 

cells in the endothelium of the host organ [15]. Invasion and migration properties are 

closely coordinated, and both require morphologic changes of the cancer cell: 

formation of pseudopodia at the leading edge, release and activation of extracellular 

matrix proteases at the invasive front, cell adhesion to proteolysed ECM and cellular 

movement by detachment at the cell rear [16]. The loss of epithelioid polarization and 

acquisition of an invasive phenotype are mostly acquired via epithelial-mesenchymal 

transition (EMT) [17]. However, focused analyses on the invasive front of primary 

tumors revealed two phenomena which allow cooperation between heterogeneous 

cancer cells: the ability of cancer cells to migrate depends on ECM stiffness and their 

ability to degrade ECM components by proteolysis [18-19].  

Experimental and theoretical models have shown that the primary invading 

cancer cells are highly selected in terms of their phenotype and correspond to a few 

tumor clones exhibiting aggressive traits [20]. Their migration through the ECM is 

accompanied by the formation of migration tracks signaled by cell membrane 

material, such as integrins, released by migrating cancer cells during their rear 

detachment [21-22]. The signaling role of this cellular debris and their ability to slow 

matrix remodeling have not been clearly evaluated. However, by creating a tunnel of 

least resistance within the ECM and reshaping the collagen fibers at the border of the 

tunnel, primary migrating cancer cells may create migrating pathways for other 

cancer cells [23]. It has also been reported that collective cell movement represents 

an efficient dissemination strategy. This collective migration of cancer cells exhibits 



an invasive front composed of clustered promigratory, beta-1 integrin-expressing 

cancer cells (described as “guiding” cells) and different cellular phenotypes at the 

rear end of the cell cluster [24-25]. Together with other hypotheses, the collective 

migration of cancer cells may explain why metastases of epithelial cancers still 

display epithelial markers and do not exhibit a mesenchymal phenotype [26]: EMT 

may concern only the first guiding cancer cells. 

The late step of the migratory pathway within the microenvironment of the 

primary tumor is intravasation, i.e release of cancer cells into blood or lymph [27]. 

Some studies have demonstrated the active involvement of specific molecular 

determinants, such as adhesion molecules or chemokines [28-30]n, while others 

have reported the importance of passive, unregulated mechanisms of cancer cell 

release into lymph or blood vessels [1]. In clinical studies reporting the existence of 

circulating cancer cells in disseminated breast cancers, the number of circulating 

cancer cells appeared to be at least partially linked to disease progression [31] after 

an initial biological regulation [32]. These clinical observations are not in favor of a 

tight regulation of the intravasation process throughout tumor growth. To explain how 

circulating cancer cells may be a ”biological staging beyond tumor burden“, we 

propose that early intravasating cancer cells require specific molecular determinants, 

and that subsequent cancer cells may take advantage of an altered endothelium to 

passively extravasate. 

 

IV. Premetastatic niche conditioning 

Circulating cancer cells are released into the blood by nonmetastatic primary 

tumors, as documented by many clinical studies [33]. Many biological studies, 

including those using in vivo videomicroscopy, have shown that the vast majority of 

these circulating cells cannot form metastases or micrometastases [34-36]. This has 

been described by the well known term “metastatic inefficiency” [37]. As these cells 

do not directly form macrometastases, no study has specifically reported the 

microenvironmental changes induced by these “inefficient” cancer cells. Concerning 

modification of the extracellular matrix by early migrating cancer cells, we can 

postulate that the host-organ microenvironment may be conditioned by certain 

circulating cells to promote the establishment of metastasis by other cancer cells 

(Figure 1). 



A simple experiment in a human colorectal model of metastasis reported that 

E Selectin expression by endothelial cells mediated the arrest of cancer cells in the 

liver [38]. After injection of cancer cells into the portal vasculature, E Selectin was 

strongly upregulated in the liver, thereby facilitating the arrest of further incoming 

cancer cells [39]. More recently, E Selectin expression by sinusoidal endothelial cells 

was shown to be only part of the proinflammatory response of the host-organ 

microenvironment to arrested cancer cells: release of TNF-alpha by Kupffer cells, 

and P-Selectin, VCAM-1, and ICAM-1 expression by sinusoidal endothelial cells [40-

41]. This process is one of the first steps leading to the creation of a favorable 

metastatic niche. Other alterations of the endothelial microenvironment can also 

upregulate the metastatic process: expression of integrin adhesion molecules in 

cancer cells and the endothelium, matrix metalloproteinases, and chemotactic factors 

that promote the attachment of tumor cells to the vessel wall and/or transvascular 

penetration [42-43]. Not surprisingly, together with intravascular tumor emboli of the 

primary tumor [44], prometastatic intravascular “homotypic” adhesive interactions 

between circulating cancer cells have also been reported at the site of primary 

attachment to the endothelium [12,45]. These two kinds of cellular cluster may also 

promote cooperation against the host-organ microenvironment. 

In addition to activation of the endothelium and clustering of cancer cells, a 

primary tumor may also trigger the recruitment of bone-marrow derived cells at future 

metastatic sites. It has been reported that the secretion of inflammatory chemokines, 

induced by the primary tumor, attracts both cancer cells and MAC1+ myeloid cells in 

the premetastatic lung [46]. Moreover, VEGFR1+ / VLA-4+ bone marrow-derived 

hematopoietic progenitor cells may form a premetastatic niche in future host organs, 

and their recruitment is mediated by signaling factors secreted by cancer cells [47-

48]. However, it has not been reported whether or not proliferation at the metastatic 

site is restricted to the cancer cells which were initially responsible for the recruitment 

of metastasis-facilitating bone marrow cells. Importantly, in the reported experiments, 

the metastatic pattern (i.e. preferential homing of metastasizing cells) of injected 

tumor cells depended on the conditioned microenvironment, but not on their own 

intrinsic metastatic pattern. In the absence of supplementary experiments, it can be 

hypothesized that chemokine-secreting subclones of the primary tumor are 

responsible for initiation of the premetastatic niche, but that the resulting conditioned 

microenvironment may also be a niche for other tumor subclones. 



 

V. Final growth and colonization of macrometastases  

The early growth and regulation of micrometastatic cancer cells within a host 

organ remain unclear. Many studies have reported that bone marrow 

micrometastases (BM MM) are a strong prognostic factor for metastatic relapse of 

early breast cancers [49-50], in accordance with our results [51]. After successful 

dissemination, isolated cancer cells appear to undergo a dormancy phase which 

could last several years, before some of them grow into macrometastases [52]. 

Strikingly, BM MM have almost completed the metastatic process but still remain 

genetically and phenotypically heterogeneous [53-55]. In the breast cancer adjuvant 

setting, 40 months after completion of treatment, the detection of BM MM and 

circulating cancer cells were not correlated in patients, and only BM MM had a 

significant impact on survival. Although circulating cancer cells had no prognostic 

significance in the overall population, their detection resulted in an especially poor 

prognosis for the few patients who also exhibited BM MM [56]. It can be 

hypothesized that circulating cancer cells might form macrometastases when the 

local microenvironment has been favorably conditioned by other cancer cells (namely 

BM MM), but this hypothesis needs to be further investigated. 

The late growth of metastases, after the start of secondary proliferation by 

metastasizing cancer cells, has been studied in our laboratory. Although the 

underlying molecular determinants have not been determined, we demonstrated 

colonization of metastases by nonmetastatic circulating cancer cells [57]. These 

types of tumor subpopulation interactions in metastasis were also indirectly reported 

in a murine model [58]. We concluded that the late part of the metastatic process 

creates a favorable microenvironment for the arrest and growth of other tumor 

subclones. This cooperative process could also explain why primary tumors and 

macrometastases may exhibit a similar molecular profile after clonal initiation of 

metastases [59-60]. 

 

VI. Conclusion 

We have reviewed the main steps of the metastatic process in which 

cooperation of cancer cells progressively creates a conditioned microenvironment, 

and its potential mechanisms. The cooperation between cancer cells may have been 

underestimated by the use of highly selected cell lines injected intravenously to mice. 



It is almost impossible at the present time, for technical reasons and due to genetic 

instability, to distinguish all of the genetically and phenotypically different subclones 

in a primary tumor and to follow them in the course of the metastatic process. 

However, this class action type of process might also exist in many other hallmarks 

of cancer, such as angiogenesis or immunity escape. If confirmed by further 

experiments, this cooperation may change our understanding of the metastatic 

process. 
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Figure 1: Premetastatic niche conditioning 

Possible cooperations between successive waves of homogeneous or 

heterogeneous circulating cancer cells. 

 


