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Abstract 

Focal nodular hyperplasia (FNH) and hepatocellular adenomas (HCA) are benign 
tumors that occur in otherwise normal liver parenchyma. FNH is considered to be the result of 
a hyperplastic response to increased blood flow secondary to vascular malformations. Most 
FNH are polyclonal and to date, the molecular pathway and mechanisms that are altered in 
FNH have yet to be elucidated. In contrast, HCA are consistently monoclonal tumors, which 
have been divided up into 3 subtypes of tumors depending on the molecular alteration 
detected in the tumors: HNF1α inactivation, ß-catenin activation and/or an acute 
inflammatory response in the tumor. These molecular features are closely related to clinical 
and pathological characteristics, and one of the most critical correlations is the higher risk of 
malignant transformation for ß-catenin activated HCA cases. Moreover, various risk factors, 
such as oral contraception and obesity, are associated with HCA occurrence and may 
collaborate with constitutional genetic predisposition related to HNF1α or CYP1B1 germline 
mutations. Altogether, the recent identification of different molecular pathways that 
contribute to the tumor development has significantly increased our knowledge of benign 
hepatocellular tumorigenesis. These findings may modify our clinical practice, particularly in 
the diagnosis and follow-up of HCA patients. 

 

H
A

L author m
anuscript    inserm

-00187575, version 1



Rebouissou et al  3 

Focal nodular hyperplasia and hepatocellular adenomas are benign liver tumors that 
may be sometimes difficult to diagnose. The recent identification of various molecular 
pathways altered in these tumors has significantly increased our knowledge of benign 
hepatocellular tumorigenesis. Moreover, analysis of the genotype-phenotype correlation in 
hepatocellular adenoma also enabled the identification of a patho-molecular classification of 
these tumors. Novel markers specific to these subtypes have been developed, implicating a 
potential for use in clinical practice. In this review, we will focus on the recent progress in 
understanding of the molecular mechanisms in these two hepatocellular tumors.  

 

1 - Focal Nodular Hyperplasia (FNH) 

1.1 - Clinical and pathological characteristics of FNH 

Focal nodular hyperplasia (FNH), first described by Edmondson, are the second most 
frequent benign liver tumors after hemangioma (1). FNH more frequently develops in women 
(M/F=1/8) between 20 to 50 years old (2). An increased risk linked to oral contraceptive use 
is still under debate; however, some studies suggest that use of contraceptive pills may 
increase the size of the nodules (3-5). In 1985, Wanless and collaborators proposed that FNH 
is an hyperplastic response of the hepatic parenchyma to a preexisting local arterial spider-like 
malformation, likely with a developmentally abnormal origin (6). FNH is also related to well-
known vascular diseases, such as the hereditary hemorrhagic telangiectasia (Rendu–Osler–
Weber disease) or the congenital absence of the portal vein (7-9).  

FNH usually occurs in normal liver and is multinodular, composed of normal 
hepatocytes arranged in 1-2 cell-thick plates. Bile ductules are usually found at the interface 
between hepatocytes and fibrous regions (10, 11). Increased arterial flow is thought to 
hyperperfuse the local parenchyma, leading to secondary hepatocellular hyperplasia. FNH is 
therefore considered the result of a hyperplastic response to increased blood flow (6, 12-14), 
and, accordingly, FNH usually does not bleed or undergo malignant transformation, justifying 
therapeutic abstention. 

1.2 - Molecular features associated with FNH 

Only few data describing molecular disorders observed in FNH have been described in 
the literature. Clonal analysis using the HUMARA test demonstrated the reactive polyclonal 
nature of liver cells in FNH in 50 to 100% of the cases, depending on the series (15-19) 
(Table 1). Other studies analyzing chromosome gains and losses by comparative genomic 
hybridization, allelotyping, or karyotype identified chromosome alterations, indicating a 
clonal origin of the FNH nodules in 14 to 50% of the cases (19-23) (Table 1). However, 
genetic analysis of FNH failed to identify somatic gene mutations in ß-catenin gene 
(CTNNB1), TP53, APC or HNF1α (19, 24, 25). Recent studies showed that the mRNA 
expression levels of the angiopoietin genes (ANGPT1 and ANGPT2) involved in vessel 
maturation are altered, with the ANGPT1/ANGPT2 ratio increased in all FNH samples 
analyzed (18, 19). Apart from the dystrophic vessels, the phenotypic characteristics of 
parenchymal vessels in FNH confirms that the lesion retains the overall organization of the 
normal liver tissue (26). The deposition of vitronectin in the central fibrous scar is likely a 
result of local hemodynamic disturbance, further strengthening the role of vascular 
abnormalities as a main determinant of FNH (26). Recently, we identified an activation of the 
ß-catenin pathway in FNH without ß-catenin or Axin1 mutation (unpublished results). ß-
catenin pathway activation was restricted to enlarged periveinous areas in FNH, which may 
explain the slight polyclonal over-proliferation of hepatocytes at the origin of the lesion. 
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Table 1. Summary of FNH Molecular Analyses 

Published Studies Number of analyzed 
cases Monoclonal lesions (%) 

Gaffey 1996* 8 6 (75) 

Paradis 1997* 13 0  

Chen TC 2001* 1 1 

Bioulac-Sage 2005*,** 18 7 (38) 

Zhang SH 2004* 1 0  

Chen YJ** 2002 6 3 (50) 

Raidl M 2004* 3 1 (33) 

Kellner U 2003* 7 1 (14) 

Nakayama S, 2006 1 0  

Heimann P 1995*** 1 1 

Overall studies 59 20 (34) 

*HUMARA test, **gain or loss of chromosome by CGH or allelotype, ***karyotype 

 

2 - Hepatocellular adenoma (HCA) 

2.1 - Clinical and pathological characteristics of HCA 

In occidental countries, hepatocellular adenomas (HCA) are rare tumors that usually 
develop in women who use oral contraceptives. The relationship between oral contraception 
and HCA occurrence has been suggested by Baum and collaborators in 1973 (27) and was 
subsequently confirmed in several case-control studies (28-32). HCA occurrence may also be 
related to androgenic-anabolic steroids use (33-37), glycogenosis type I and III (38-43). HCA 
is a benign proliferation of hepatocytes in an otherwise normal liver. The HCA nodule, rarely 
encapsulated, varies from 0.5 to 15 cm in diameter with arterial vascularization. Proliferating 
hepatocytes usually resemble normal cells that may be steatotic or show glycogen storage. 
The tumor is also characterized by the lack of frequent mitosis, portal tract and cholangiolar 
proliferation (11, 44). HCA nodules are generally solitary, but two or three nodules 
occasionally develop simultaneously. The development of more than 10 HCA nodules is rare 
and has been specifically defined as adenomatosis by Flejou and collaborators in 1985. In this 
context, HCA development was described to be less significantly related to oral contraception 
and with women (45); however, adenomatosis is also described more frequently in women 
(46, 47), and is also frequently associated with diabetes, sometimes in a familial context (46, 
48).  

During its natural evolution, HCA may remain stable, increase in size, or regress (49-
52). Regression is more frequently described in HCA related to androgenic-anabolic steroids 
and glycogenosis after hormone withdrawal, or after an appropriate alimentary regiment (53-
56). HCA occasionally bleeds and this risk increases with the nodule’s size (27, 57, 58). 
Malignant transformation in hepatocellular carcinoma is considered to be extremely rare but 
has been consistently described (59-63). The risk of malignant transformation seems to be 
more critical in HCA related to androgenic-anabolic steroid exposure or glycogenosis type I 
(36, 37, 64, 65). 
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2.2 - Molecular features associated with HCA 

HCA are monoclonal tumors (18, 19, 66). However, in contrast with hepatocellular 
carcinomas that show a large number of recurrent chromosome and genetic alterations (see 
(67) for review), prior to 2002 only a few chromosome losses and gains were identified in 
HCA (68-71). In 2002, several recurrent mutations were identified in the TCF1 gene encoding 
hepatocyte nuclear factor 1α (HNF1α), CTNNB1 encoding ß-catenin, and APC (adenomatosis 
polyposis coli). Methylation of p14(ARF) and p16(INK4a) have also been found in 
approximately 20% of HCA cases (72).  

 

a- HNF1α inactivation 

The TCF1 gene is located at chromosome 12q24.2 (73), and encodes the hepatocyte 
nuclear factor 1α (HNF1α), a 681 amino-acid homeodomain transcription factor that is 
involved in hepatocyte differentiation (74). HNF1α controls the expression of liver-specific 
genes, such as ß-fibrinogen, α1-antitrypsin and albumin (74). HNF1α is also expressed in 
several polarized epithelia, and inactivation of the protein in mice revealed its important role 
in renal, pancreatic and liver function (75-78). In mice, loss of HNF1α activity was associated 
with the development of fatty liver, hepatomegaly, hepatocyte dysplasia and proliferation (75, 
76, 79). Moreover, the mouse model also revealed a critical role for HNF1α in 
cholesterol/HDL and bile acid metabolism (77). We identified HNF1α as a human tumor 
suppressor gene involved in liver tumorigenesis, as we found biallelic inactivating mutations 
of this gene in ∼35-50% of HCA as well as a few cases of well-differentiated hepatocellular 
carcinomas that developed in the absence of cirrhosis (80-82). The mutations were predicted 
to inactivate the protein as they included mainly nonsense and frame-shift mutations within 
the N-terminal portion of the protein, or mutations leading to amino-acid substitutions within 
the homeodomain (80-82). Mutations of HNF1α or HNF1ß have also been identified in rare 
cases of colon, renal, breast and endometrial cancers (83-86). 

In two comprehensive analyses of genotype-phenotype correlations in large series of 
HCA, we showed that HNF1α mutations define a homogeneous group of tumors 
phenotypically characterized by the recurrent presence of marked steatosis without 
inflammation or cytological abnormalities (81, 82). Furthermore, we identified a repression of 
gluconeogenesis coordinated with an activation of glycolysis, citrate shuttle and fatty acid 
synthesis, which predicted elevated rates of lipogenesis in HCA tumors harboring mutations 
in HNF1α (87). In these tumors, lipid composition was dramatically modified and, 
surprisingly, lipogenesis activation did not operate through SREBP-1 and ChREBP, both of 
which instead were repressed. We also found a silencing of L-FABP, which encodes liver 
fatty acid binding protein 1, suggesting that impaired fatty acid trafficking may also 
contribute to the fatty phenotype. We showed that absence of L-FABP staining in HCA was 
specific to HNF1α inactivation among the different benign liver tumor subtypes (82, 87). 
Together this indicates that steatosis, frequently observed in HCA, may contribute to 
tumorigenesis, and this occurs through a constant and specific mechanism in the HNF1α 
inactivated tumor subtype. 

 

b- ß-catenin activation 

Chen and collaborators sought to analyze potential alterations of candidate critical genes 
in HCA (24). They focused on the Wnt/ß-catenin pathway, as activating mutations of ß-
catenin are found in 20 to 34% of hepatocellular carcinomas, suggesting that ß-catenin is the 
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most frequently activated oncogene in HCC (67, 88, 89). Furthermore, this pathway plays a 
key role in liver physiological phenomena, such as lineage specification, differentiation, stem 
cell renewal, epithelial-mesenchymal transition, zonation, proliferation, cell adhesion and 
liver regeneration (90-97). Chen et al. identified a ß-catenin activating mutation in 3 of a 
series of 10 tested HCA cases. Simultaneously, a ß-catenin activating mutation was also 
identified in an HCA occurring in a female child (98). Nuclear accumulation of ß-catenin was 
also identified in 46% of 18 analyzed HCA cases by Torbenson and al, but none were 
activating mutated (99). Other genes in the Wnt pathways, however, such as adenomatous 
polyposis coli (APC) or the Axin family genes, did not show any mutations in sporadic 
adenomas (24, 99).  

In our two series of approximately 160 different genotyped HCAs, we identified an 
activating ß-catenin mutation in 15 to 19% of the cases (81, 82). In 67% of these cases, the 
mutations consist of a large in-frame deletion of exon 3 that excludes the amino acids 
normally phosphorylated by GSK3ß. In contrast to the other subtype of HCA, ß-catenin 
activated adenomas were frequently found in males (38%), characterized by cytological 
abnormalities and an acinar pattern, and were frequently associated with malignant 
transformation (81, 82). We did not find any HCA cases with both �-catenin mutations and 
biallelic inactivation of HNF1α, suggesting that these two tumorigenic pathways are mutually 
exclusive. Recently, we showed that ß-catenin activated HCA may be robustly diagnosed 
using immunochemistry by assessing the over-expression of ß-catenin and glutamine 
synthetase, a target of ß-catenin, (11). This finding is important in a routine practice to 
identify HCA at highest risk of malignant transformation, while remembering that such a 
transformation also occurs in other molecular subtypes of HCA but at a lower frequency. 

 

c- other molecular alterations 

In 2005, Lehmann and collaborators analyzed the methylation levels of nine genes in a 
series of HCA, FNH, HCC, adjacent and unrelated normal liver tissues (100). This analysis 
revealed that hepatocellular adenomas display a methylation profile much more similar to 
normal liver tissues and focal nodular hyperplasias than to hepatocellular carcinomas. 
Moreover, the lack of significant difference between methylation profiles observed in FNH 
when compared to HCA suggest that aberrant methylation may not play a major role in 
adenoma pathogenesis in contrast to HCC. Vander Borght and collaborators evaluated the 
expression and localization of hepatic transporters in HCA, different types of FNH and well- 
to moderately differentiated HCC in non-cirrhotic liver and compared them with normal liver 
(101). They observed diffuse over-expression of MRP3 and down-regulation of OATP2/8 in 
HCA, while FNHs had a completely different expression profile explaining their cholestatic 
features. In HCCs, canalicular transporters were largely absent, probably as a consequence of 
dedifferentiation. Whereas transporter dysregulations can easily explain specific features, 
their role in benign tumor pathogenesis remained to be elucidated.  

In our genotype-phenotype correlation study of HCA, we defined a subgroup of lesions 
characterized by the presence of inflammatory infiltrates (81). Representing 35% of HCA 
cases, these nodules exhibited additional features such as sinusoidal dilatation, dystrophic 
vessels and ductular reaction, and included most of the previously described so-called 
“telangiectatic focal nodular hyperplasia” cases (19). In these tumors, we detected elevated 
expression of members of the acute phase inflammatory response (serum amyloid protein, 
SAA, and C-reactive protein, CRP) at both the mRNA and protein levels (82). Interestingly, 
our immunohistochemical analysis showed that SAA was sharply over-expressed in the tumor 
lesion without particular reinforcement in proximity of the inflammatory infiltrates, which 
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remained negative, as well as Kupffer cells and other sinusoidal cells in the HCA that did not 
over-express SAA. These results suggested that the inflammatory pathway was intrinsically 
deregulated in tumor hepatocytes, and inflammatory infiltrates could be a secondary effect. 
According to this hypothesis, we identified a typical case of inflammatory HCA with clinical 
manifestation of an inflammatory syndrome and SAA expression in the tumor; after complete 
resection of the nodule, the inflammatory syndrome disappeared, indicating that peripheral 
inflammatory proteins were effectively secreted by the tumor (102). We also found that 
inflammatory HCAs more frequently developed in patients presenting a high body mass index 
and excessive alcohol consumption (82). These results suggest that alcohol intake and obesity 
could have a direct role in the initiation of tumorigenesis of inflammatory HCA. Additional 
molecular studies are required to identify the molecular defect at the origin of these tumors 
and to better understand the relationship with ß-catenin activation, as SAA over-expression 
and ß-catenin activation are not mutually exclusive and coexist in a subset of cases. The main 
molecular findings in HCA are represented in Figure 1. 

 

2.3- Genetic predisposition to HCA development. 

Heterozygous germline mutations in the gene encoding HNF1α are responsible for an 
autosomal dominant form of non-insulin-dependent diabetes mellitus, or maturity onset 
diabetes of the young type 3 (MODY3, OMIM#600496), in which subjects usually develop 
hyperglycemia before 25 years of age (103). In our series of 85 HCA cases exhibiting biallelic 
HNF1α inactivation, one allele was germline mutated in 8 cases and these patients developed 
adenomatosis. Familial analyses performed in 4 independent germline adenomatosis showed 
that all 11 relatives who developed adenomatosis displayed a germline HNF1α mutation (104, 
105), and most of the patients who developed adenomatosis also had diabetes. Clearly, in 
these families, HNF1α germline mutations are predisposing to both diabetes and liver 
adenomatosis, and such an association between familial adenomas and diabetes was first 
described by Foster and collaborators in 1978 (48). However, in our French families, 16 
individuals with a germline HNF1α mutation did not develop any liver tumors. These 
observations suggested that germline HNF1α mutations predisposed to liver adenomatosis 
with an incomplete penetrance, and raised the possibility for modifier genes. In contrast, 
among the patients with somatic HNF1α inactivation, we identified 4 women who developed 
multiple HNF1α-mutated adenomas simultaneously. These cases could be due to a genetic 
predisposition to develop HNF1α mutated adenomas, possibly associated with estrogen 
metabolism and in the absence of HNF1α germline mutation.  

Recently, as described by Chen (106), we identified 7 HCA cases with a monoallelic 
HNF1α mutation without inactivation of the second allele or modification of the HNF1α 
targeted gene expression (unpublished data). Six of these cases corresponded to a novel 
HNF1α germline missense mutation in the carboxy-terminal part of the protein, mutations 
never before detected in HCA. Moreover, 3 of these cases were mutated for ß-catenin. We 
thus hypothesize that in rare cases, HNF1α germline missense mutations could participate in 
genetic predisposition towards and subsequent development of HCA via a carcinogenic 
pathway other than the complete HNF1α inactivation. 

In order to identify a genetic predisposition in women with HCA with somatic 
mutations in HNF1α or to identify a gene modifying the penetrance of adenomatosis in 
germline HNF1α mutated patients, we searched for alterations in candidate genes involved in 
estrogen metabolism (CYP1A1, CYP1A2, CYP1B1, CYP3A4, CYP3A5, COMT, UGT2B7, 
NQO1, GSTM1, GSTP1, and GSTT1). We identified CYP1B1 germline heterozygous 
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mutations in 14% of the women presenting HNF1α mutated HCA (107), and all mutations 
resulted in decreased enzymatic activity. Thus, CYP1B1 germline inactivating mutations 
appear to predispose women to the development of sporadic HNF1α mutated HCA. In 
addition, mutation of CYP1B1 modifies the penetrance of the liver adenomatosis phenotype 
in HNF1α germline mutated patients, as we found that all relatives in a large family 
presenting an adenomatosis were also germline mutated in both the HNF1α and CYP1B1 
genes (107). 

HCA is also detected as a rare extracolonic tumor developed in patients presenting 
familial adenomatous polyposis coli (FAP, OMIM #175100 (108, 109)). In colorectal tumors 
associated with FAP, biallelic inactivation of the APC gene is consistently detected, and 
inactivation of the APC gene in tumors leads to ß-catenin accumulation, thus the activation of 
the Wnt/wingless pathway. Biallelic inactivation of the APC gene was recently described in 
two HCA cases that developed in FAP patients (25, 110). We also reported the case of a FAP 
woman presenting a hepatocellular adenoma after oestroprogestative oral contraception use. 
In this steatotic adenoma, we identified an inactivating biallelic mutation of HNF1α without 
inactivation of the second APC allele or an activation of the ß-catenin target genes. These 
results suggest that benign hepatocellular tumorigenesis may be dependent or independent of 
the Wnt/ß-catenin pathway in patients with FAP. Finally, we genotyped three cases of HCA 
related to glycogenosis type 1a, and two nodules were inflammatory since one was ß-catenin 
activated showing various possible alterations of carcinogenesis pathways related to the 
germline deficiency of glucose-6-phosphatase (G6Pase) catalytic activity. 

 

Conclusion 

Focal nodular hyperplasia are hyperplastic responses to a hemodynamic disturbance 
related to vascular abnormalities. Molecular pathways altered in these tumors are poorly 
understood. In contrast, in hepatocellular adenomas, at least 3 different molecular pathways 
(HNF1α inactivation, ß-catenin and inflammatory activation) are known to be altered (Figure 
1). These molecular findings have enabled the division of HCA into homogenous subtypes of 
tumors closely related to specific predisposition, clinical and pathological features. 
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Fig. 1. Schematic representation of the different molecular pathways altered in HCA. The 
main risk factors and known genetic predispositions are indicated on the left; the principal 
clinical and pathological features of the HCA subtypes defined by their molecular pathways 
altered are indicated on the right. Arrows indicate the significant relationships; 
mut.=mutation. 
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