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Abstract - In this paper, an enhanced local mean-field model that is suitable for simulating the electroencephalogram 

(EEG) in different depth of anesthesia is presented. The main building elements of the model (e.g. excitatory and inhibitory 

populations) are taken from Steyn-Ross et al (M. L. Steyn-Ross et al., Phys Rev E Stat Nonlin Soft Matter Phys 64, 011917 

(2001), D. A. Steyn-Ross et al., Phys Rev E Stat Nonlin Soft Matter Phys 64, 011918 (2001)) and Bojak & Liley (I. Bojak, 

and D. T. Liley, Phys Rev E Stat Nonlin Soft Matter Phys 71, 041902 (2005)) mean-field models and a new slow ionic 

mechanism is included in the main model. 

Generally, in mean-field models, some sigmoid-shape functions determine firing rates of neural populations according to 

their mean membrane potentials. In the enhanced model, the sigmoid function corresponding to excitatory population is 

redefined to be also a function of the slow ionic mechanism. This modification adapts the firing rate of neural populations to 

slow ionic activities of the brain. When an anesthetic drug is administered, the slow mechanism may induce neural cells to 

alternate between two levels of activity referred to as up and down states. Basically, the frequency of up-down switching is in 

the delta band (0-4 Hz) and this is the main reason behind high amplitude, low frequency fluctuations of EEG signals in 

anesthesia. 

Our analyses show that the enhanced model may have different working states driven by anesthetic drug concentration. 

The model is settled in the up state in waking period, it may switch to up and down states in moderate anesthesia while in 

deep anesthesia it remains in the down state. 
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1 INTRODUCTION 

In the last decade, many efforts have been done to build monitors dedicated to the estimation of the depth of 

anesthesia using EEG recording [1]. However, until now there is no universal monitor able to provide reliable 

results in all cases (i.e. drugs, patient dependencies, etc). Better understanding of underlying neuronal 

mechanisms of the EEG may improve the performance of monitoring methods. Therefore, a physiological-based 

model that explains the evolution of the EEG signal in different depth of anesthesia may bring new insights into 

the monitoring of the depth of anesthesia. Mean-Field (MF) models [2, 3] are good candidates for this purpose. 

They have neurophysiological and neuroanatomical foundations and are based on the concept of neural 

population which handles thousands of similar neurons in a single structure. They are able to reproduce EEG-

like signals with a low computation cost by solving a set of coupled differential equations. 

One of the best MF models which can reproduces various EEG rhythms is the Liley model [4, 5]. Steyn-Ross et 

al [6-8] and Bojak et al [9] have employed the Liley model in different ways to describe how and why the 

dominant rhythm of the EEG changes from beta and alpha rhythms to delta rhythm by administration of 

anesthetic drugs. They differently express certain parameters of the Liley model as functions of anesthetic drug 

concentration and reproduce EEG signals in various drug concentrations. Although these models describe the 

reason why anesthesia slows down EEG rhythms, they have some limitations that must be addressed gradually 

by better understanding of brain functioning under anesthesia.  

It has been shown that there is a good compatibility between fluctuations of high amplitude delta waves and 

internal states of cortical cells [10, 11]. During anesthesia, neural cells alternate almost synchronously between 

firing and rest modes that are referred to as up and down states respectively. Because of synchronization of 

neurons, neural populations have two different firing modes. This means that populations switch to up and down 

states during anesthesia. In previous MF models, it is assumed that neural populations always fluctuate about 

single equilibrium points. 

The main purpose of this study is to show how MF models may be enhanced by including a slow modulating 

mechanism that is responsible of switching the state of the model to up and down. Many mechanisms have been 

presented as responsible mechanisms for generating the up and down states [12-14]; however it is still unclear 

which mechanisms play most important roles, and how they can be represented using the mean-field paradigm. 

Since we are mostly interested in introducing the general concepts of up and down states and their switching in 

neural populations, an enhanced MF model that integrates a generic form of a slow modulating mechanism is 
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proposed. This mechanism acts as a representative for various types of slow ionic currents either generated in 

cortical or subcortical regions. 

In the next section, a brief state of the art of MF models in anesthesia is reported. Section 3 introduces the 

proposed enhanced model. Section 4 mainly discusses methods for analyzing the enhanced model. Finally, 

behaviors of the enhanced MF model in various anesthetic drug concentrations are presented in sections 5. 

2 BASICS OF EEG MODELING IN ANESTHESIA 

To our knowledge, researches conducted by Steyn-Ross et al were the first attempts to explain, using an MF 

model, why gradual increase of anesthetic concentration produces a sudden transition between awareness and 

unconsciousness [6-8]. In their model, anesthetic agents prolong the decay time of GABAA receptors. 

Equilibrium solutions of the coupled differential equations in various drug concentrations make an S-bend with 

one unstable and two stable branches. According to Steyn-Ross et al, when anesthetic concentration is gradually 

increased or decreased, the equilibrium solution of the model suddenly jumps from one stable branch to another 

and this can cause sudden transition between awareness and unconsciousness. Since phase transitions make a 

hysteresis path, emergence and induction phases of anesthesia take place in different drug concentrations. 

Steyn-Ross et al indicate that their model may simulate the biphasic response. Biphasic response is a kind of 

transient activation-depression of the EEG signal that occurs in induction and recovery phases of anesthesia [15]. 

Later, Bojak & Liley [9] modify the Steyn-Ross et al model. They develop better formulations to describe 

inhibitory and excitatory post synaptic potentials (IPSP/EPSP) in different anesthetic drug concentrations. Bojak 

& Liley also argue that anesthetic drugs reduce the firing rate of spontaneous action potentials in a relatively 

smooth dose-dependent manner and as a result, mean membrane potentials of inhibitory and excitatory 

populations do not change abruptly by increasing or decreasing anesthetic drug concentration. According to this 

statement, Bojak & Liley generate a large set of spectra and compare them to empirical EEG recordings using 

some classical features such as SEF90 (Spectral Edge Frequency defined as the frequency below which 90% of 

the power in the electroencephalogram resides). The biphasic response of the Bojak & Liley model is produced 

differently compared to that of the Steyn-Ross et al model. It takes place in the same drug concentration in 

induction and recovery phases (i.e. non-hysteresis path). 

Our proposed enhanced MF model is mainly established on Steyn-Ross et al [6] and Bojak & Liley models [9]. 

A slow ionic mechanism is also incorporated in the model that let us to have a better justification of some 

neurophysiological phenomena. For example, this enhanced model may describe the reason for appearance of 

two different modes of neural firing rates and high amplitude delta waves observing in moderate to deep depth of 
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anesthesia. 

Experimental observations show that anesthetic agents basically reduce the brain activity in a pulsating manner. 

Intra and extra cellular recordings during administration of many kinds of anesthetic drugs show that neurons are 

bi-stable and have short periods of firing separated by silence phases. During firing phases the firing rate is more 

or less equal to the firing rate of neurons in waking periods [16, 17]. Neural cells alternate between the firing 

phase (up state) and the silence phase (down state) almost synchronously. The result of this synchronous 

switching can be seen as high-energy slow waves. Figures 3 and 4 in [18] and figures 1 and 4 in [19] indicate 

that neural cells firings onsets correlate well with EEG slow waves. These waves are easily transferred in the 

brain media [20] and are recorded on the brain surface with high amplitudes. The enhanced MF model tries to 

take into account the above remarks by integrating a modulating slow mechanism to its basic foundation taken 

from the previous MF models.  

In Appendix I, we have briefly introduced the basic eight differential equations of the enhanced model. They 

have been formed mainly by a combination of differential equations of the two previously mentioned well-

known MF models. Figure 1 illustrates a schematic diagram of the enhanced model and its excitatory and 

inhibitory populations. The populations interact with each other by GABAA and AMPA receptors. According to 

the position of the indicated switch in Figure 1, the model may be set either to basic or enhanced mode. In the 

enhanced mode, the static firing rate function corresponding to the excitatory population is substituted with a 

slow dynamic firing rate mechanism (see section 3.3). This increases the number of coupled differential 

equations to nine. 

 

Figure 1 around here. 

 

3 ENHANCING MF MODELS IN ANESTHESIA 

This section describes the physiological as well as the mathematical foundations of the enhanced model. 

Section  3.1 introduces the relation between up and down states in single neurons and neural populations. Slow 

modulating mechanisms that cause neural populations to switch to up and down states are discussed in 

section  3.2. Finally, the enhanced model equipped by a typical slow modulating mechanism is presented in 

section  3.3.  
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3.1 SINGLE NEURONS INDUCE UP/DOWN SATES IN CORTICAL NETWORKS 

Experiments of Destexhe et al and Steriade et al indicate that the mean histogram of neural cells membrane 

potentials has two distinct peaks during anesthesia or non rapid eye movement (REM) sleep. One of them is 

centered in resting potential (e.g. –70 mV) and the other one in a higher potential (e.g. –57 mV) [11, 21, 22]. 

Existence of these two peaks on the histogram is an indication of two different states in neural cells. 

Based on Fujisawa experiments [23], neural cells may have different patterns of firing, each one referred to as an 

internal state of neural cells. Fujisawa indicates that single neurons possess some internal firing states which are 

coherent in adjacent neurons. He declares that an internal state of single cells in a network represent the state of 

the network. 

Destexhe et al and Steriade et al indicate that single neurons are in two different states (up and down) and 

Fujisawa shows that single neurons induce phase transitions of cortical networks with multiple internal states. 

Inferring from these works, the neural populations have also two states of electrical activities in anesthesia or 

non-REM sleep and it is one of the multiple internal states of neural populations. Comparisons of the pattern of 

neural firings in waking and anesthesia periods show that neurons change their internal states from continuous 

firing to phasic firing (bursts or spikes separated by silence phases) [10, 11]. Since phasic firing is almost 

synchronous in neural cells, the frequency of bursts or spikes appearances in single neurons determines the 

frequency of local field potentials. 

The Liley MF model [5] has the capability of generating up and down states. For instance, the upper S-bend 

equilibrium branch of the Steyn-Ross et al model [6] can be related to up state because on the upper branch, 

populations have constantly high synaptic conductance and firing rates [21]. On the other hand, the lower S-bend 

equilibrium branch can be related to the down state. Establishing such relationships can justify the difference 

between synaptic conductance in the up and down states. It also describes the reason for recording of high 

amplitude EEG delta rhythm on brain surface during anesthesia. It seems likely that previous MF models 

encounter an inherent limitation in generating the slow and delta waves because they only consider either up or 

down state of neural populations in various anesthetic drug concentrations. 

3.2 NEEDS TO INSERT SLOW IONIC MECHANISMS IN MF MODELS 

As mentioned before, neurons have two different firing states in anesthesia. Synaptic receptors and ion-channels 

have different responses during each of these two firing states; therefore it is not only because of synaptic 

receptors that neural populations demonstrate two different firing states. A co-working between synapses and 

ionic mechanisms is responsible of generating up and down states. Neural firing patterns under different 
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anesthetic drugs are quite different [24] and it is mainly because of unique influences that each anesthetic drug 

has on synaptic [25-27] or ionic [28-31] mechanisms. As a result, simulating the effects of different anesthetic 

drugs on EEG signals is possible if ionic currents are also considered in MF models. 

Different ionic mechanisms have been hypothesized for the slow switching of neural activities to up and down 

states. Compte et al [12] assert that existence of slow Na+-dependent K+ channels (IKNa) on pyramidal cells 

(excitatory population) is mainly responsible for pulling down the state of neurons. Massimini and Amzica [13] 

state that during up state the gradual reduction of extra cellular Ca2+ concentration in response to high activity of 

synapses, or opening a kind of specific Ca2+ channel can produce a global dysfacilitation in cortical network that 

lead it to down state. Bazhenov et al [14] suggest that progressive depression of excitatory interconnections and 

activation of Ca2+-dependent K+ currents eventually terminate neural firing. Compte et al and Bazhenov et al 

have the same opinion in transitions of neural populations from down to up state. They declare that random 

summations of miniature EPSPs in some neocortex pyramidal cells are responsible for the switching from down 

to up state. They assert summations of miniature EPSPs activate persistent Na+ currents (INa(p)) and generate 

action potentials. Massimini et al suggest when neurons become hyperpolarized, extra cellular Ca2+ 

concentration is increased linearly and dysfacilitation is removed from the network until neurons resume their 

firing in up state. 

According to Timofeev et al experiments, the slow oscillation is cortical in origin. In a decorticated brain or in a 

desynchronized cortex, this activity cannot be observed on thalamus and striatum [32, 33], whereas it can be 

recorded on a deafferented cortex [34]. All aforementioned cortical ionic mechanisms have been introduced as 

possibly responsible mechanisms for generating the slow oscillation in the brain. However, it should be 

remembered that other kinds of slow mechanisms may also interfere with ionic mechanisms in the cortex. For 

example, intrinsic properties of thalamocortical cells (i.e. Ih and It ionic currents) generate a stereotype delta 

oscillations [35]. However it should be noticed that they cannot be reflected at the macroscopic level of the EEG 

unless thalamic neurons are synchronized by slow oscillations originated from cortical regions [36]. It is also not 

so clear yet whether EEG delta oscillations are basically come from thalamocortical stereotype oscillations or 

from waves generated in the cortex. 

Instead of engaging with various kinds of slow ionic mechanisms in cortical and subcortical regions, in this 

paper we propose to formulate their overall characteristics and effects by a generic slow ionic mechanism. This 

mechanism mainly originates from intrinsic ionic currents of neural cells and it can be represented by a single or 

coupled slow gating variables. Gating variables should activate/inactivate an inward/outward current in down 
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state or activate/inactivate an outward/inward current in up state. 

It should be emphasized that it is not possible to insert neuronal-level equations of slow gating variables directly 

in MF models. In fact, gating variables are intrinsic properties of single neurons. For example, an ionic current 

which is activated in a high voltage by a burst of action potential, would not be activated if it is included in a MF 

model as it is employed in a single neuron. Their counterparts need to be defined in the context of MF models. 

3.3 MODELING SLOW IONIC MECHANISMS IN MF MODELS 

We can roughly formulate the activation or inactivation of slow ionic mechanisms or facilitation and 

dysfacilitation of neurons in a MF model by a slow variable s . Here, we assume that the variable s  slowly 

follows ( )es h∞ (an instantly voltage-dependent variable) according to equation (1). ( )es h∞  is the activity of the 

slow mechanism when the membrane potential is kept constant. The slow mechanism is activated in low 

potentials so ( )es h∞  is represented by a descending sigmoid function. 

( ) ( ),s
d s t s s t
dt

τ ∞= −  (1) 

max /{1 exp( ( ))}, 0s e s ss s g h gθ∞ ∞= + − − <  (2) 

sτ is the time constant, maxs∞  is the maximum value of the sigmoid function, sθ  is the inflection point of the 

sigmoid function and sg  is the slope at the inflection point. 

Equations (1) and (2) show how the membrane potential can influence the activity of the slow mechanism. On 

the other hand, the slow mechanism is able to modulate the firing rate of neural populations. In the enhanced 

model, the modulating effect of the slow mechanism is applied on excitatory population. Modulating the 

excitatory firing rate has indirect effects on other parameters of the model such as excitatory and inhibitory 

membrane potentials. Increase of s  in up or down state increases the firing rate of neural populations. In the 

down state, an increase of s  is equivalent to the removal of dysfacilitation and increase of miniature EPSPs. In 

the up state, a decrease of s  is equivalent to a gradual decrease of firing rate and membrane potential. Equation 

(3) shows how the excitatory firing rate is modulated by s . In this equation, the previously defined excitatory 

firing rate in (A4) was renamed ( )prev
e eS h . 

mod
1 2 1 2( ) ( ) ( ) ( ) ( ( ) ( ))prev

e e e e eS h F s S h F s S F s F s⎡ ⎤= + +⎣ ⎦  (3) 

where, 
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1 1( ) (1 ) /{1 exp( ( ))}F FF s a B g s bθ= − + − − +  (4) 

2 2( ) /{1 exp( ( ))}F FF s aB g s bθ= + − +  (5) 

Equation (3) gathers two different terms of firing rates: ( )prev
e eS h  and a constant modulating firing rate 

value mod
eS . The normalized combination of these two terms determines the overall firing rate of the excitatory 

population. Weighting functions 1( )F s  and 2 ( )F s  are anti-symmetric sigmoid functions. B  is a free parameter 

that determines the gain of the modulating term mod
eS  by changing the balance between 1( )F s  and 2 ( )F s . Fθ  

and Fg  determine the inflection point and slope of the sigmoid functions respectively. Fg  is a negative value 

so 1( )F s  and 2 ( )F s are descending and ascending functions respectively. 1b  and 2b  are two constant values 

such that set 1(0)F and 2(0)F  to one and zero respectively. Fθ  determines the convexity of 1( )F s  and 2 ( )F s  

functions over the interval [0, maxs∞ ]. Since 1( )F s  and 2 ( )F s  are fixed to one and zero respectively at zero, Fθ  

and Fg  may influence the values of these two functions at maxs∞ . Parameter a  compensates this effect and 

force 1( )F s  and 2 ( )F s  to have the same value at maxs∞  for a given B  regardless the values of Fθ  and Fg . We 

have chosen 0.1, 3.5F Fgθ = = −  as our references for normalization of these functions. If Fθ and Fg  be equal 

to 0.1 and -3.5 respectively, a  would be equal to one. In brief, a , 1b  and 2b  are obtained as follows: 

( ) ( ) ( )
( ) ( ) ( )

max max

max max

1 exp( ( ) 1 exp( ) 1 exp( 3.5 ) exp(3.5 0.1)

1 exp(3.5(0.1 ) 1 exp(0.1 3.5) 1 exp( ) exp( )

F F F F

F F F

g s g s
a

s g s g

θ θ

θ

∞ ∞

∞ ∞

+ − + − − − ×
=

+ − + × − −
 (6) 

1 1 (1 ) /{1 exp( )}F Fb a B g θ= − − +  (7) 

2 /{1 exp( )}F Fb aB g θ= − + −  (8) 

Figure 2 illustrates 1( )F s  and 2 ( )F s  for some different values of Fθ and Fg . For each coupled Fθ and Fg  

values, 1b , 2b  and a are tuned so that boundaries of 1( )F s  and 2 ( )F s  do not change for a same given gain of 

modulating mechanism B . 

To study influences of s , Fθ  and B  on excitatory firing rate, some samples of these variables (e.g. {0, 0.33, 

0.66, 1}, {0.1, 0.9} and {0.16, 0.04} respectively) are selected and their corresponding excitatory firing rates are 

sketched in Figure 3. Increasing the s  value raises the excitatory firing rate. Activation of the slow mechanism 

s  has more influence on the increase of firing rate in low potentials. This is mainly due to generation of spikes 

or bursts in low membrane potentials when slow modulating mechanisms are activated. Comparison of left and 
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right graphs in Figure 3 show that B  magnifies the influence of s  on firing rate. B  does not change excitatory 

firing rate values corresponding to 0s = . By comparing the graphs in top and bottom it can be understood that 

Fθ may change the ascending patterns of sigmoid functions. However, it does not change the boundary values of 

the excitatory firing rates. In another word, it does not change excitatory firing rate values corresponding to 

0s =  and maxs s∞= as it was shown in Figure 2. 

 

Figure 2 and Figure 3 around here. 

 

Anesthetic concentration affects amplitudes and decay times of EPSPs and IPSPs as well as the activity of the 

slow mechanism. For instance, it has been shown that anesthetic drugs in very high concentrations may reduce 

inward currents [30, 31]. In order to take into account such phenomenon we can reduce the maximum activity of 

the slow mechanism by reducing B  or sθ  values when anesthetic concentration is increased.  

4 MODEL SOLUTIONS 

A general way to examine the behavior of the variables of the model ( , , , , ,k jk ek jk ekh I s IΦ Φ , { , }j k e i= ) is to 

obtain the numerical solution of the coupled differential equations. If the variables exhibit stable behaviors, 

generally a good compatibility exists between power spectrums calculated by numerical and analytical methods. 

Otherwise, when the variables do not converge to equilibrium points, it is not possible to use analytical methods 

to evaluate their behaviors. Although in such case numerical solution is employed to examine the behavior of the 

variables, investigations of equilibrium solutions, isoclines and their corresponding vector field may give 

insights into the behavior of the variables before deriving the numerical solution. 

This section is divided into two parts. In the first part, numerical solution of the enhanced model is described. 

Equilibrium solutions of the model, isoclines and their corresponding vector field are mainly described in the 

second part.  

4.1 NUMERICAL SOLUTION OF THE MODEL   

The nine coupled differential equations of the model consist of three first-order and six second-order equations 

(four of them are stochastic differential equations). Second-order differential equations can be substituted by 

pairs of first-order differential equations. The general form of the resulted first-order differential equations and 

their corresponding first-order difference equations are: 

H
A

L author m
anuscript    inserm

-00187207, version 2



 

 

 

10

( ) ( ( ), ( )) ( ),e i
d x t F h t h t A t
dt

ξ= +  (9) 

( )[ 1] [ ] ( [ ], [ ]) [ ]e ix n x n F h n h n t A t nξ+ = + Δ + Δ  (10) 

where n  is the discrete time, [ ]nξ  is a zero mean uniform white noise with 4
12  variance (see (A6)) and tΔ  is 

the time increment value (step size) in Euler method, and it was set to 1 ms in our simulations. We could not see 

any significant changes in numerical results when we used smaller time steps such as 0.1 ms or 0.01 ms.  

Basically, the main purpose of performing the numerical simulation of model is to find the time evolution of 

( )eh t and ( )s t  (better to say [ ]eh n and [ ]s n ) for different anesthetic drug concentrations. In order to do so, drug 

effects are first applied to IPSP and EPSP parameters (or any other desired parameter such as the slow 

mechanism) according to equations (A7) and (A8). In the next step, the numerical values of the variables of the 

model are calculated by Euler one-step scheme for 51.2 seconds. In Euler method, the initial values of the 

variables are set to their equilibrium values. The simulated signals are down-sampled to 400 Hz in order to be 

comparable with our real EEG recordings on children [37]. 

Table 1 lists the numerical values and definitions for the equation parameters and constants. These numerical 

values are used throughout this paper, except where stated otherwise. 

 

Table 1 around here. 

 

4.2 EQUILIBRIUM SOLUTION, ISOCLINES AND VECTOR FIELD 

Equilibrium solution of the model provides much information about the functioning mode of the model. For 

example, the equilibrium value of ( )eh t  may provide some information about the balance between excitatory 

and inhibitory populations, and the status of the patient such as waking, light or deep anesthesia.  

As mentioned before, isoclines may be helpful when the variables of the model do not converge to equilibrium 

points. To obtain p isoclines in a p-dimensional (pD) hyper-plane, p variables are first selected from the entire m 

variables of the model, then the equilibrium solution of each variable is calculated while maintaining others to 

different constant values. The trajectory of the p variables can be sketched in a pD space, but predicting the new 

position of the trajectory requires obtaining an mD vector field. Directions and lengths of the vectors in this field 

determine the dynamics of the trajectory. If p = m, the vector field can be sketched in the pD space. 

By some simplifying assumptions it is possible to reduce the value of m. For example, we can assume that all 
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variables are fast enough compared to eh , ih  and s to have a simplified model that only consists of three 

dynamic variables. Since we are mainly interested to evaluate the role of slow variable s on the EEG signal, we 

derive / 0edh dt =  and / 0ds dt =  isoclines (called , es h − isoclines) in section  4.2.1. The corresponding vector 

field of , es h − isoclines is a 3D vector field that cannot be sketched in a plane. In section  4.2.2, we propose a 

method that reduces the 3D vector field to a planar vector field. It should be remembered that the 3D simplified 

model is only used to obtain the planar vector field. Numerically simulated signals and their corresponding 

trajectories (in section  5) are derived from the full model.  

4.2.1 ISOCLINES OF THE SLOW MECHANISM AND EXCITATORY MEMBRANE POTENTIAL  

One of the best ways to study the influence of slow variable s  on the model behavior in different anesthetic 

concentration is to sketch , es h − isoclines and trajectory of ( )s t  and ( )eh t  signals in a same plane. If /ds dt  is 

set to zero in (1) and eh  is calculated as a function of s , the result will be / 0ds dt = isocline (simply called 

s − isocline). On the other hand, declaring s  as a function of eh  when / 0edh dt =  in (A1) results eh − isocline. 

It should be remembered since we only obtain two isoclines of the simplified model,  ih  must be set to its 

equilibrium value in (A1). In this case, a simple method to calculate eh − isocline is to vary s  between zero and 

maxs∞  with a definite step size (e.g. 0.05) and compute the equilibrium values of eh  and ih  in parallel (they are 

referred to as eh•  and ih• ). 

Figure 4 shows two typical superimposed , es h − isoclines. Intersections of these two isoclines determine the 

equilibrium solutions of the differential equations ( / / 0eds dt dh dt= = ). Any other point on the isoclines plane 

may have positive or negative values of /ds dt  and /edh dt . These values can be represented by a vector field. 

Length and direction of any given member vector of this vector field show how, s  and eh  vary if the state of the 

model is located on the origin of that vector.  

 

Figure 4 around here. 

 

4.2.2 OBTAINING PLANAR VECTOR FIELD ON ISOCLINES PLANE 

In Figure 4, in addition to , es h −  isoclines (dashed line and solid line with hexagram marks) we have also shown 
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nine member vectors of a planar vector field in ( 0.4, e e es h h h•= = + Δ ), where { 1,0,1}ehΔ = − mV and eh• ’s are 

red hexagram marks on eh − isocline. Ordinates and abscissas of the vectors are proportional to /ds dt and 

/edh dt  respectively. /ds dt  is simply calculated from (1), but obtaining /edh dt from (A1) requires more 

considerations. A glance into equation (A1) reveals that in addition to eh , ih  also influences the value of 

/edh dt . As a result, since ih  is a dynamic variable in the simplified model, a 3D vector field 

( /edh dt , /idh dt , /ds dt ) is associated  to the model.  

To find a planar vector field that can be used instead of the 3D vector field, variable ih  should be replaced by a 

static value. In order to do so, we examined different planar vectors in different points around eh − isocline (i.e. 

( s , e eh h• + Δ )). In each given point, planar vectors were different in their abscissas (i.e. /edh dt ) because of the 

various ih  values that were used in (A1). These values were confined to i ih h• + Δ values, where 

{ 1.4, 1.2,..., 0.2,0}ihΔ = ± ± ± . We observed visually that lengths and directions of vectors for which 

/( )i e ih D h h D• •Δ − + , D = 5 mV, fit well trajectories. As a result, these planar vectors are good candidates to 

be used instead of 3D vectors. Although these vectors are obtained roughly by this method, it is possible to track 

simulated signals by a planar vector field ( /edh dt , /ds dt ). This approximation can be used as a useful method 

for tuning the model parameters and balancing the excitatory and inhibitory factors. It is important to remember 

that , es h − isoclines and their corresponding planar vector field cannot describe the whole dynamics of the 

model. For example, other variables may start limit cycles that are unpredictable by , es h − isoclines; therefore, a 

numerical solution may still be necessary to confirm results provided by isoclines. 

5 BEHAVIOR OF ENHANCED MF MODEL IN VARIOUS DRUG CONCENTRATIONS 

In this section, we study the evolution of the EEG signal during various anesthetic concentrations. We perform 

several numerical simulations in different drug concentrations (from low to high) and describe characteristics 

and morphologies of the simulated EEG signals. In order to compare the reproduced EEG signals with empirical 

data, we bring some real EEG signals recorded on children undergoing surgery with Desflurane agent (see [37] 

to see the protocol of EEG recording). In Desflurane anesthesia, 1 MAC is equivalent to applying 8.3 vol% of 

this gas to children [38]. This value corresponds to c  0.73 mM aqueous concentrations of Desflurane in saline 

[39, 40].  

Waking and sedation 
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In the enhanced model, , es h − isoclines obtained in waking situation are very similar to those derived for a very 

low anesthetic drug concentration. Figure 5(a) shows a 10-second ( , )es h  trajectory superimposed on 

, es h − isoclines in c  = 0.2 mM. Figure 6(a) illustrates that part of the ( )eh t  which forms the depicted trajectory 

in Figure 5(a). The power spectrum of ( )eh t  is shown in Figure 7(a) (solid line). In Figure 5(a), coordinates of 

the intersection point of the two isoclines indicate the equilibrium values of ( )s t  and ( )eh t  signals. The 

intersection point is located somewhere in the up state area. Head to head directions of the vectors about this 

equilibrium point indicate that it is a stable equilibrium point. The histogram of ( )eh t  in Figure 8(a) also shows 

that the equilibrium point is stable because eh  fluctuations are centered about a fixed point in the up state area. 

These fluctuations are actually the result of asynchronous firing mode in neural cells. In such case, the balance 

between excitatory and inhibitory populations is the most important factor in determining the characteristics of 

inhibitory and excitatory membrane potentials and firing rates [41]. This balance is mainly determined by (i) 

subcortical noises that are modeled by white uniform noises ( jkp ), (ii) characteristics of IPSPs and EPSPs, (iii) 

connectivity properties of the two populations. In fact, these factors determine a particular model operating state 

(equilibrium solution) and thus the characteristics of eh  fluctuations. It is straightforward to derive the 

eigenspectrum (power spectrum) of eh  by taking Fourier transform of the linearized form of the coupled 

differential equations about their equilibrium values. Figure 7(a) illustrates the analytically calculated 

eigenspectrum of eh  (dashed line) when drug concentration is 0.2 mM. For comparison, a typical real EEG 

signal is illustrated in Figure 9(a). This signal is recorded on a child a few seconds before administration of 

Desflurane agent. The power spectrum of the illustrated EEG signal in Figure 9(a) is shown in Figure 10(a). It 

should be mentioned that the patient is awake, a little agitated and eyes-open. This situation causes that the 

energy of alpha band be lower compared with the energy of alpha band in eyes-closed condition. 

 

Figure 5 around here. 

 

Besides focusing on intersections of isoclines and equilibrium solutions of s and eh , assessing the behavior of 

the model when s  takes different constant values is of interest especially in cases when the trajectory runs away 

from the attracting area of a stable equilibrium point or when an equilibrium point is unstable. Since eh  

converges to its equilibrium value faster than s , on a short time period, s can be assumed constant and the 
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behavior of the trajectory can be mainly thus studied by means of eh − isocline. It is important to remember that 

for any point on eh − isocline, /edh dt  is equal zero and following the fast convergence of a trajectory to 

eh − isocline, /edh dt  value also converges to zero rapidly. Consequently, in an instability mode, trajectories are 

mainly located in the vicinity of eh − isocline, and we generally need to obtain only few members of the planar 

vector field in the vicinity of eh − isocline and not over the entire isoclines plane. 

In Figure 5(a), eh − isocline shows that those equilibrium solutions corresponding to 0.25 1s< <  make a single 

branch in the up state area, while those corresponding to 0.25s <  make three branches in down, middle and up 

state areas. Equilibrium points located in the middle branch are unstable. This is known from the opposite 

directions of planar vectors in the vicinity of these equilibrium points. The probability of finding a trajectory in 

the vicinity of these points is low. The up state equilibrium points have the highest probability of occurrence 

compared with the two other types of equilibrium points. If ( )eh t is initialized to a value grater than –64 mV and 

then it is perturbed by, for example, an inhibitory subcortical activity, there is a high probability that ( )eh t  

approaches again the up state area. In contrary, vectors about the down state equilibrium points indicate that 

there are not enough attraction forces toward these points and even if ( )eh t  approaches this area, it does not stay 

for a long time in this state and will switch back again to the up state via a saddle point. 

Moderate anesthetic drug concentration (about 1 MAC) 

When anesthetic concentration is increased to a higher value (e.g. c = 0.75 mM) and the balance between 

excitatory and inhibitory populations shifts a little toward more inhibition, the power spectrum of ( )eh t  shifts to 

lower frequencies. Compared to Figure 5(a), in Figure 5(b) the right branch of eh − isocline has moved a little to 

more negative potentials and the inverse U-turn has moved to up and right sides. Since s  positively modulates 

the excitatory firing rate in equation (3), movement of the inverse U-turn toward more positive s  values 

indicates that the balance has moved to inhibition. As a result, for example when s  is equal to 0.4 mM three 

equilibrium points exist on eh − isocline depicted on Figure 5(b), while for the same s  value, only one 

equilibrium point can be found on eh − isocline reported on Figure 5(a). When the distance between right and 

middle branches of eh − isocline is reduced, ( )eh t  is distributed over a wider region along the up state area so 

the probability of the trajectory for being in the neighborhood of the middle branch is increased. This can cause 

the trajectory to move along or cross the barrier of the unstable branch to reach the down state area. This is the 

beginning phase of slow wave episodes on EEG signal. At first, most of trajectory cycles encounter the attraction 
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of the up state area and the repulsion of the middle branch so they move back to the up state area. Those who 

reach the down state area appear semi-periodic high amplitude negative pulses on ( )eh t  illustrated in Figure 

6(b). Appearance of such negative pulses extends the histogram of the eh  signal toward negative potentials (see 

Figure 8(b)), but since most of the time eh  activities are related to the up state, the histogram still contains a 

single peak located in the up state area. Negative pulses of ( )eh t  increase the overall power especially in the 

slow delta band (0-2 Hz). Figure 7(b) illustrates a typical power spectrum of ( )eh t  when drug concentration is 

0.75 mM.  

 

Figure 6 - Figure 7 - Figure 8 around here. 

 

Figure 9(b) shows a typical real EEG signal recorded at 1 MAC Desflurane. A combination of high amplitude, 

low frequency negative peaks and low amplitude, high frequency activities is seen on the real EEG signal like 

what can be observed on simulated signal in Figure 6(b). However, it should be mentioned that amplitudes of 

negative slow waves on real signals may vary accidentally in successive EEG epochs. This variation may 

increase the standard deviation of EEG energy. It seems that interactions of different modulating mechanisms 

and their overall effects on the brain activity and so synchronization of neural cells in a local field may be 

influenced by past non-full-periodic activities of slow negative pulses. However, this is a subject that we do not 

deal with in this study.  

Increasing the anesthetic concentration a bit more (e.g. c  = 0.9 mM), makes it possible for trajectories to jump 

over the barrier of the unstable area and change the state of the model from up to down easier than before. Figure 

5(c) shows 10 seconds of ( , )es h trajectory when c  is equal 0.9 mM (see also Figure 6(c), Figure 7(c) and Figure 

8(c) that show the time course, power spectrum and histogram of ( )eh t  respectively). In transition from up to 

down state, the value of s  increases gradually following the rapid change of s∞  value. Increase of s  continues 

until the trajectory approaches a saddle point (tip of the inverse U-turn). This point is the critical point where 

sufficient modulating factors have been accumulated in the excitatory neural population; therefore the trajectory 

switches back to the up state. When the switching is taken place, s  is then gradually decreased until another 

transition from up to down state happens. 

As illustrated in Figure 6(c), the transition rate between the two states has increased compared to the case where 

c =0.75 mM. The histogram of ( )eh t  has now two distinct peaks that are related to down and up states 
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respectively (Figure 8(c)). But as it is shown in Figure 5(c), the trajectory is still mainly located in the up state 

area and as a consequence, the amplitude of the second peak of the histogram is higher than the first one. 

 

Figure 9 and Figure 10 around here. 

 

Figure 9(c) illustrates a real EEG signal recorded in a drug concentration that is a bit higher than 1 MAC [37]. It 

should be mentioned that Compared to Figure 9(b), the number of negative peaks is increased and the EEG 

background activity is replaced by a lower frequency higher amplitude activity. 

High anesthetic drug concentration (about 2 MAC) 

We have determined the equilibrium solution of eh  and studied their linear stability when anesthetic drug 

concentration is varied between 0 and 1.8 mM. Figure 11 displays the results where stars and circles correspond 

to stable and unstable solutions respectively. For a wide range of anesthetic drug concentration, simulated EEG 

signals have almost the same morphologies. Therefore, we select a candidate concentration value within this 

range to examine the behavior of the model. Figure 5(d) represents , es h − isoclines corresponding to 

c  = 1.5 mM. The intersection of the two isoclines occurs in the middle branch of eh − isocline. Linear stability 

analysis shows that the model has a unique equilibrium point which is unstable.  

 

Figure 11 around here. 

 

The time course and power spectrum of the numerically simulated eh  signal in Figure 6(d) and Figure 7(d) show 

that the rate of negative peaks in ( )eh t  is more or less similar to what we had for c  = 0.9 mM and it is higher 

than what we had for c  = 0.75 mM. Figure 6(d) also shows that the switching between up and down states is 

more regular.  This can also be testified by means of the histogram of eh  fluctuations which depicts two 

dominant peaks.  

Figure 9(d) illustrates a real EEG signal at 2 MAC [37]. Visually inspection of this figure shows that our model 

is still able to generate signals miming real EEG recordings. The power spectrum of the EEG signal, basically, 

consists of a semi-periodic 2.3 Hz activity. Due to this semi-periodic activity, the power of fast delta band (e.g. 

2-4 Hz) may even become greater than the power of slow delta band (e.g. 0-2 Hz) at 2 MAC [42]. Similar 

behavior is expressed by simulated data (see Figure 7(d)). 
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Burst-Suppression 

EEG suppression is the last phenomenon to be observed in very deep anesthesia. About 30 percent of EEG 

signals in Tirel et al experiment [37], exhibit suppressed activity at 2 MAC Desflurane anesthesia. Sometimes 

EEG suppressions alternate with bursting activities. This phenomenon is the so-called burst-suppression pattern. 

Bursts result from short-time discharges of single cells action potentials. Although the enhanced model was not 

optimized for simulating burst-suppression patterns, it is able to qualitatively reproduce EEG dynamics showing 

bursting activities and the transition toward full suppression.  

A burst is generated when neural cells jump temporarily from down to up state. The enhanced model can 

reproduce such activity if , es h − isoclines intersect in the down state area in the vicinity of the unstable middle 

branch of eh − isocline. For example, if we keep all parameters of the model constant but reduce the modulation 

strength of the slow mechanism slightly (e.g. 0.14, 60sB θ= = − ), burst-suppression is generated. Figure 12 

shows the two isoclines of the model when drug concentration is 1.8 mM. The intersection of the two isoclines is 

very close to the saddle point of the eh − isocline so ( , )es h trajectory that is generally located in the vicinity of 

the down state equilibrium point, may sometimes switch to the up state for short periods. Figure 13 shows ( )eh t  

corresponding to the illustrated trajectory in Figure 12. The histogram of eh  which only consists of a single peak 

in the down state area is depicted in Figure 14. 

By decreasing the drug concentration, eh − isocline moves toward negative direction of s − axis so the 

equilibrium point becomes closer to the middle branch of eh − isocline (unstable area). Consequently, ( , )es h  

trajectory may escape from the down state area easier than before. This increases the number of bursts on the 

EEG signal which is in agreement with Bruhn’s experiments [43, 44]. On the other hand, increasing the drug 

concentration or blocking the slow modulating mechanisms reduces the possibility of burst generation. In such 

case the model may remain in suppressed mode if subcortical inputs do not activate the model by triggering 

events. 

 

Figure 12, Figure 13 and Figure 14 around here. 

 

6 DISCUSSIONS AND CONCLUSIONS  

Modeling is unavoidably based on simplifications of real systems. In our viewpoint, the simpler the model that 
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can explain a particular phenomenon, the more fundamental is its scope. The proposed MF model encompasses 

the two most important neural populations in the neocortex (pyramidal and interneurons) and a slow mechanism 

that modulates the firing rate of pyramidal population. It is an easy to understand model by which we can study 

the role of inhibitory and excitatory factors as well as the slow modulating mechanism of excitatory firing rate in 

various anesthetic concentrations. 

Since internal states of a neural network and single neurons are closely related to each other, a population of 

neural cells may exhibit bursts of activities (like single neurons) even if it has been settled in down state. 

Without including any modulating parameter in the model, a static form of the sigmoid relationship between the 

mean membrane potential and firing rate does not justify the generation of bursts in very low potentials. We 

redefined the sigmoid relationship and included the influence of a typical slow modulating mechanism. Out of 

various types of modulating parameters that may modulate the mean firing rate of a neural population, we only 

considered a generic slow voltage-dependent ionic current. It should be remembered that there are many kinds of 

modulating mechanisms in the brain and each mechanism may have its own characteristics (e.g. different time 

constants) and may exhibit different behaviors in different anesthetic drug concentrations. In this model, the 

overall effects of all types of slow mechanisms have been gathered in a voltage-dependent mechanism leading to 

a new functioning mode (i.e. up and down states) which better explain the occurrence of high amplitude slow 

waves in EEG. However, in order to further improve the model, MF characteristics of the most important 

modulating mechanisms in cortical and subcortical areas should be identified and incorporated. 

Compared to previous MF models, the working modes of the enhanced model are closer to some 

neurophysiological observations. For example, experimental results show that in an overall view, neural cells 

activities may be classified to continuous, phasic or silence. The single point equilibrium solution of the model in 

each drug concentration (Figure 11) is in accordance with this classification. If this single point equilibrium 

solution is stable, it represents either a high firing-rate continuous activity (up state) or silence (down state). If 

the equilibrium solution is unstable or very close to unstable region, it corresponds to switching of neural 

activities between the two states. 

Nonsmoothly variation of stable equilibrium solutions [7, 8] is not in agreement with a smooth reduction of 

neural firing rates with anesthetic drug concentration [26]. A single stable branch in various drug concentrations 

[9] does not justify the two different firing states of neural populations (e.g. in slow waves or burst-suppression). 

On the contrary, equilibrium solutions of the enhanced model vary smoothly in a dose-dependant manner from 

up to down state. This model considers the two firing states of neural populations so it can reproduce some 
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internal states of neural populations [23] such as continuous activities in up state, transient jumps from up to 

down state, regular switching between up and down states, burst-suppression and suppression. In general, the 

maximum firing rate value of a neural population does not change noticeably before and after applying an 

anesthetic agent [26]. The mean firing rate value of a neural population is mainly reduced by the occurrence of 

silence phase between firing phases [16]. Firing patterns of neural populations of the enhanced model (see Figure 

15) are in agreement with these remarks, while in previous MF models, mean and maximum firing rates values 

are jointly reduced by increasing anesthetic concentration. 

 

Figure 15 around here. 

 

In the enhanced model, the sudden transition between awareness and unconsciousness may be interpreted by 

sudden transition between internal states of neural populations induced by similar behaviors in single neurons 

[23]. According to different activity modes represented in section 5, it is probable that awareness-

unconsciousness are two disjoint mental states because firing patterns of neural populations are changed 

suddenly from continuous mode to phasic mode as if the information processing mode of the brain is changed 

suddenly by administrating an anesthetic agent. Such a result needs to be confirmed by experimental data 

showing the evolution of neural membrane potentials and firing rates during awareness-unconsciousness 

transition.  

 The enhanced model has also some limitations. A single homogeneous neocortical module is introduced without 

considering other parts of brain such as thalamus and hippocampus; therefore, it is not forced to reproduce some 

typical EEG activities such as spindles and alpha rhythm that are generated in these parts of the brain. It has been 

suggested that spindles are generated in the thalamus [45] and corticothalamic inputs control the patterns of 

activities in thalamus and thalamocortical networks [46, 47]. Recent studies show that a distributed alpha 

network which consists of thalamus, cortex and hippocampus is engaged in alpha oscillations. A communication 

exists between neocortex and hippocampus during alpha oscillations [48] and hippocampus can react to sensory 

stimuli with a 10 Hz enhancement [49]. 

In future studies, a model aimed at generating slow and delta rhythms as well as spindles and alpha rhythm will 

be built by integrating underlying synaptic and ionic mechanisms located in cortical and subcortical regions. It 

would be useful also to expand the enhanced model to a nonhomogenous one. 

It should be emphasized that in a stable situation, the amplitude of simulated EEG signal ( eh ) is mainly 
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determined by variance of input noises and characteristics of the transfer function of the model, but in an 

unstable situation (limit-cycle), it is mainly determined by the potential difference between left and right 

branches of eh − isocline (i.e. up and down states). However, because of individual dissimilarities in the 

structures of different single neural cells, they may switch to up and down state not in a fully synchronized 

manner. According to our EEG recordings on children (Figure 9) and Constant et al experiments [50] it can be 

inferred that the amplitude ratio is almost equal to 10 before and after administration of anesthetics. The 

amplitude ratio of reproduced EEG signals (Figure 6) is comparable with the empirical amplitude ratio in 

children, but it is higher than the amplitude ratio in adults [51]. It has been stated that this amplitude ratio is 

decreased by age and maturation of neural cells [50, 51]. Such increase in amplitude ratio is also observed in 

reproduced K-complexes in Wilson et al model [52]. The amplitude ratio of K-complexes to background EEG 

activities in this model is slightly higher than the one in empirical data [19]. It seems that maturation of neural 

cells or equivalently specialization of neural cells to do more specific tasks in the brain induces less similarity 

between them. As a result, synchronization between adjacent neural cells in a local field is higher for children 

than for adults. 

One of the basic assumptions in designing population equations is that neural cells are identical and have similar 

properties in a volume of one macrocolumn. Prominent examples are columns in the somatosensory and visual 

cortex and pools of motor neurons. Dissimilarities in structure and function of neural cells in a local field 

degrade the above assumption; so it seems that maturation of neural cells and their potency of synchronization 

are still required to be considered somehow (for example, by dividing inhibitory and excitatory populations into 

some subpopulations and randomizing their parameters) in MF models. This may fill the gap which exists 

between full-synchronous and asynchronous activities.  

At last, we want to mention that biphasic is a transient dynamic response of the brain which is basically 

originated from fast variations of brain inputs (e.g. drug concentration) during the time. It is shown that changing 

the speed of the administration of an anesthetic drug changes the characteristics of biphasic response and the 

concentration in which the maximum of the biphasic response appears [15]. In general, at a given drug 

concentration, EEG amplitudes are not identical in steady-state and transient conditions. Behavior of our 

enhanced MF model is discussed in steady-state condition so a simulated EEG signal in this condition should be 

compared with a real EEG signal recorded in steady-state condition not in transient condition. 
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APPENDIX I 

This appendix briefly describes the basic equations of the enhanced MF model that were derived from the 

pioneering works of Steyn-Ross et al [6-8] and Bojak & Liley [9]. Since these equations are now well-covered in 

many other journals, we do not define them in so much detail. For definitions of the parameters of the model see 

table 1.   

Equation (A1) depicts the two main differential equations of the model that express mean membrane potentials 

of inhibitory and excitatory populations ( , )e ih h .  

( )
( ) ( ) ( ) ( ) { , }restk

k k k ek k ek e ik k ik i
dh t

h h h I h h I h k e i
dt

τ ψ ψ= − + + =  (A1) 

( ) rev rev rest
jk k j k j kh h h h hψ ⎡ ⎤= − −⎣ ⎦  (A2) 

j  and k  may represent either excitatory ( e ) or inhibitory ( i ). jkψ  is a scaling factor and indicates the potency 

of synapses between j  and k -type populations. jkI  represents voltaic influences of synapses and is represented 

in (A3) by convolving the firing rate of k  population and j -type post synaptic potential (PSP) function. The 

bracketed term in right hand side of (A3) represents the firing rate of k -type population which is composed of 

three sources: locally in the same macrocolumn ( jS ), distant from other macrocolumns ( jkΦ ) and subcortical 

inputs ( jkp ). 

( , )( ) [ ( ) ] , { , }j j j j
j j jk jk j j jk jk j j

d d I t N S h p G e j k e i
dt dt

γ δ γ γβγ γ γ⎛ ⎞ ⎛ ⎞+ + = + Φ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A3) 

PSPs are represented by biexponential functions. jG , jγ  and jγ  determine maximum values, rising and falling 

time constants of the biexponential functions. These parameters are varied by anesthetic drug concentrations. 

Instead of directly applying the influence of anesthetic drugs on jγ  and jγ , it is more convenient to define two 

alternative parameters ( jδ  and jζ ) and then modify them by drug concentration [9]. jδ  is the time lag of PSP 

maximum peak and jζ  is the decay time of PSP function. 

jS  determines the mean firing rate of j -type population from mean membrane potential. A sigmoid function is 
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employed to represent this relationship [53]. 

max( ) /{1 exp[ ( )]}j j j j j jS h S g h θ= + − −  (A4) 

where max
jS  denotes the maximum firing rate; jθ  and jg  respectively determine the inflection point and its 

slope in the sigmoid function. 

Distant generated firing rates ( jkΦ ) are only confined to excitatory originated because the long-distance 

coupling from inhibitory populations is unlikely ( 0ikΦ = ). ekΦ  is determined by applying a spatial-temporal 

filter on ( )e eS h . Since the brain has been assumed to be a homogeneous media no spatial variable is seen in (A5). 

2
2 2( ) ( )ek ek ek ek e e

d v t v N S h
dt

α⎛ ⎞+ Λ Φ = Λ⎜ ⎟
⎝ ⎠

 (A5) 

For simplicity, each subcortical noise is modeled by equation (A6). However, it should be mentioned that there 

are also other formulations for representations of subcortical noises [9, 54] that may be employed in more 

specialized studies according to their specific purposes. In equation (A6), jkp  is a constant value and represents 

the incoming mean firing rate of the  j -type subcortical population to k -type cortical population. ( )jk tξ  is a 

zero mean uniform white noise that extends between -1 and +1, so the variance of jkp is equal to 2 2 / 3jkpα . α  is 

a scaling factor that controls the variance of the noises and can be used to prevent the generation of negative 

value noises in numerical simulations. 

( ) ( )jk jk jk jkp t p p tα ξ= +  (A6) 

Administration of anesthetic drugs changes the shape of PSPs. Based on real experimental data it is possible to 

relate amplitude and time constant of IPSP or EPSP to different anesthetic drug concentration. We used the 

following Hill equations (for more discussion see Ref. [9, 55]) to express variations of maximum amplitudes and 

decay times of IPSPs and EPSPs in different concentration of a generic anesthetic drug:  

0( ) { , }
j j

j j

N N
j j MAC

j MAC j N N
j MAC

K M c
G c G j i e

K c
+

= =
+

 (A7) 

0 0( ) , ( )
i i

i i

n n
i i MAC

i MAC i e MAC en n
i MAC

k m cc c
k c

ζ ζ ζ ζ+= =
+

 (A8) 

where MACc  is the alveolar drug concentration in MAC (1 MAC is the minimum alveolar concentration of an 

anesthetic agent at 1 atmosphere pressure at which 50% of patients still move in response to a noxious stimulus). 
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, , , , , , ,i i i e e e i iK M N K M N k m  and in are free parameters of Hill equations that have been assigned with 

1.25, 0.37, 2.3, 2.5, 0.5, 1, 0.975, 4.4 and 2.8 respectively for our generic anesthetic drug. 0
jG  and 0

jζ  are 

maximum amplitude and decay time of j –type PSP at zero drug concentration. 

In this paper we use 1 MAC = 8.3 vol% for Desflurane. This is appropriate for young children [38] and 

corresponds to 0.73Aqc  mM aqueous concentration of Desflurane in saline [39, 40] considering that saline/gas 

partition coefficient is equal 0.225 for Desflurane [56]. 

To express equations (A7) and (A8) as functions of aqueous concentration of Desflurane ( Aqc ) or vol% ( volc ), it 

is only necessary to replace jK  and ik  with jKμ  and ikμ  where μ  is equal to 0.73 and 8.3 for Aqc  and volc  

respectively. In this study, we express the concentration of Desflurane ( c ) by its aqueous concentration Aqc . 
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(Color online) Figure 1 : Schematic diagram of the enhanced model. The enhanced model considers the 

brain as a homogenous media without any kind of specialized subcortical areas. Subcortical activities are 

modeled by four white noises ( , { , }jkp j k e i∈ ) that drive the excitatory (pyramidal) and inhibitory (inter-

neurons) populations in the neocortex. Mean membrane potential of each population ( kh ) is determined 

by inhibitory and excitatory post synaptic potentials ( jkI ) generated by GABAA and AMPA receptors. 

The model in its basic mode (see Appendix I) incorporates two sigmoid functions for determining mean 

firing rates of populations ( kS ) from their mean membrane potentials. In addition to short-range 

influences of neural firing rates on GABAA and AMPA receptors, excitatory firing rate has also long-rage 

influences on pyramidal and inter-neurons by the means of AMPA receptor. In the enhanced mode, the 

static sigmoid function corresponding to the excitatory population is substituted by a slow dynamic 

equation. A more detailed block diagram related to the slow dynamic equation (see section 3.3) and 

excitatory/inhibitory populations (see appendix I) have been illustrated in the bottom of the figure. 
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(Color online) Figure 2 : Influences of Fθ  and Fg  on weighting functions 1( )F s and 2 ( )F s . These two 

functions determine the firing rate of excitatory population based on two competing terms ( )prev
e eS h  and 

mod
eS . Increment of s  raises the firing rate by increasing/decreasing the value of 2 ( )F s / 1( )F s .  

Fθ determines their convexities. If Fθ  be smaller than zero, 1( )F s and 2 ( )F s  are convex and concave 

functions respectively in the range of zero and maxs . Convexities are reversed if Fθ  is greater than maxs . 

In between, these two functions have inflection points that have indicated on 1( )F s  by circles. Fg controls 

slopes of 1( )F s and 2 ( )F s . 
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Figure 3 : Influences of s , Fθ  and B on excitatory firing rate. Increase of s  raises the firing rate value 

especially in low membrane potentials. Increasing the gain of modulating mechanism B  from 0.04 to 0.16 

(compare left and right figures) increases the influence of s  on excitatory firing rate. Fθ  does not change 

the value of excitatory firing rates at boundaries of s  (i.e. at 0 and maxs∞ ) but it can affect ascending shape 

of excitatory firing rates corresponding to max0 s s∞< < (compare top and bottom figures).   
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(Color online) Figure 4 : A typical s −  isocline (dashed line) and eh − isocline (hexagrams) and nine 

candidate planar vectors. Origins of the vectors are located in ( 0.4, )e es h h•= + Δ  where 

{ 1,0, 1}eh mVΔ = − + and eh•  is the equilibrium point of the model in a given s  value (blue hexagrams). 

The intersection point of the two isoclines ( , es h − isoclines) indicates the equilibrium point. Coordinates of 

this point indicate the equilibrium values of eh  and s . Convergent or divergent directions of vectors 

around a given point on eh − isocline determine stability or instability status of that point. 
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(Color online) Figure 5 : , es h − isoclines (dashed line and hexagrams) and 10-seconds ( , )es h  trajectories 

superimposed on them in different depth of anesthesia. Ordinates and abscissas of vectors (solid lines 

marked at vector origins) are proportional to the values of /ds dt  and /edh dt  respectively. (a) When drug 

concentration is low ( c = 0.2 mM), ( )eh t  fluctuates about a stable equilibrium point. (b) When drug 

concentration increases to 0.75 mM, slow waves are appeared on background noisy fluctuations. (c) In 

c = 0.9 mM background noisy fluctuations are substituted with a more rhythmic activity. (d) When 

anesthetic concentration is set to 1.5 mM, the trajectory travels between up and down states regularly. 
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Figure 6 :  Ten seconds of simulated eh  signals in various anesthetic concentrations (0.2, 0.75, 0.9 and 

1.5 mM). These signals correspond to illustrated trajectories in figure 5.  
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Figure 7 : The power spectra of simulated eh  signals in different drug concentrations. Each power 

spectrum is calculated by averaging 20 power spectra of consecutive 2.56 s eh  epochs (i.e. 51.2 sec). (a) In 

very low drug concentration ( c = 0.2 mM), the power spectrum extends to high frequency terms. The 

eigenspectrum (dashed line) corresponding to this drug concentration is a descending function that 

reminiscent the background spectrum of a real EEG signal in waking period. (b) Appearance of slow 

waves ( c = 0.75 mM), increases the energy of the slow delta band in the power spectrum. (c) Increasing the 

rate of slow waves ( c = 0.9 mM) increases the energy of the fast delta band in the power spectrum. (d) 

Regular switching between up and down state ( c = 1.5 mM) narrows the eh  spectrum in fast delta band. 
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Figure 8 : Histograms of simulated eh  signals in different anesthetic drug concentrations. (a) In very low 

drug concentration ( c = 0.2 mM) the histogram contains only one peak centered in the up state area. (b) 

Slow waves extends the histogram to down state ( c = 0.75 mM). (c) The histogram contains two peaks in 

up and down states ( c = 0.9 mM). (d) The amplitude of the peak locating in down state may be equal or 

even higher than the amplitude of the other peak ( c = 1.5 mM). 
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Figure 9 : Real EEG signals recording on children undergoing surgery with Desflurane agent [37]. (a) 

EEG signal before administration of Desflurane. The patient is awake and eyes-open condition. (b) EEG 

signal at 1 MAC anesthesia. The high amplitude negative peaks are easily distinguished from high 

frequency lower amplitude background EEG activities. (c) The EEG at a concentration higher than 

1 MAC. The number of negative peaks is increased in this signal and high frequency low amplitude 

background activities are replaced by lower frequency higher amplitude activities. (d) EEG signal at 2 

MAC. This signal mainly consists of high amplitude rhythmic pulses.  
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Figure 10 : Power spectrums corresponding to the illustrated real EEG signals in Figure 9. 
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Figure 11 : Equilibrium solutions of eh  when anesthetic drug concentration is varied between 0 and 

1.8 mM. Stars are stable and circles are unstable solutions of linear stability analysis. 
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(Color online) Figure 12 : , es h − isoclines and a 20-second ( , )es h trajectory corresponding to burst-

suppression in high anesthetic drug concentration ( 1.8, 0.14, 60sc B θ= = = − ). The intersection of the two 

isoclines is very close to the saddle point of the eh − isocline so ( , )es h trajectory has the possibility of short-

time traveling from down to up state.  
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Figure 13 : Twenty seconds of simulated eh  signal corresponding to the illustrated ( , )es h trajectory in 

Figure 12. This activity is reminiscent of burst-suppression activity in deep anesthesia.  
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Figure 14 : The histogram of the depicted signal in Figure 13. The histogram only has one peak in down 

state area. 
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Figure 15 : Average and extremum values of excitatory firing rate in different drug concentrations. Firing 

rates are calculated based on numerical simulation of the model for 51.2 sec.
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Parameter Symbol Value Parameter Symbol Value 

Mean resting membrane potential ,
rest
e ih  -77, -77 mV Passive membrane decay time constant ,e iτ  45, 30 ms 

Synaptic reversal potential ,
rev
e ih  0, -85 mV Peak amplitude of EPSP/IPSP ,e iG  0.3,0.32 mV 

EPSP/IPSP rate constant ,e iγ  0.5, 0.15 ms-1 
Total number of ,e e e i→ → local 
synaptic connections ,ee eiN β  2400, 2300 

Total number of ,i e i i→ → local 
synaptic connections ,ie iiN β  200, 440 Total number of synaptic connection 

from distant excitatory population ,ee eiN α  2000, 1600 

Spatial drop off rate of long-range 
excitatory connections  Λ  0.4 cm-1 Mean axonal conduction speed v  0.7 cm ms-1 

Maximum firing rate max
,e iS  0.02, 0.02 ms-1 Inflexion-point voltage for firing rate 

sigmoid function ,e iθ  -60, -60 mV 

Firing rate sigmoid slope at inflexion 
point ,e ig  0.3, 0.3 mV-1 Subcortical mean firing rate  ,ek ikp p  0.5, 0.4 ms-1 

weighting factors for fluctuations in 
jkp  spike inputs α  1 Effective time constant of slow ionic 

currents sτ  180 ms 

Slope at the inflexion-point of the 
activity function (sigmoid) of slow 
mechanism 

sg  -0.8 mV-1 Inflexion-point voltage of the activity 
function (sigmoid) of slow mechanism  sθ  -58.8 mV 

Maximum value of the activity 
function (sigmoid) of slow mechanism 

maxs∞  1 Slope at the inflexion-point of the 
modulating sigmoid function Fg  -3.5 

Inflexion-point of the modulating 
sigmoid function Fθ  0.1 Maximum firing rate due to the 

modulating mechanism. 
mod
eS  0.03 ms-1 

Gain of the modulating mechanism B  0.16    

 

Table 1: Symbol definitions and constants values of the enhanced model 
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