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Abstract: 

In this paper, we outline a way to improve computer-assisted neurosurgery using surgical models 

along with patient-specific models built from multimodal images. We propose a methodological 

framework for surgical models that includes the definition of a surgical ontology, the development of 

software for describing surgical procedures based on this ontology, and the analysis of these 

descriptions to generate knowledge about surgical practice. Knowledge generation is illustrated by two 

studies. 159 patients who underwent brain tumor surgery were described from postoperative reports 

using the surgical ontology. First, from a sub-set of 106 surgical cases, we computed a decision tree 

using a prediction approach that gave probability in terms of operating room patient positioning 

percentages and according to tumor location within one or more lobes. Second, from the whole set of 

159 surgical cases, we identified 6 clusters describing families of cases according to pathology-related 

parameters. Results from both studies showed possible prediction of parts of the surgical procedure 

from pathology-related characteristics of the patient. Surgical models enable surgical knowledge to be 

made explicit, facilitating the surgical decision-making process and surgical planning, and improving 

the human-computer interface during surgery. 
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1. Introduction 

Much has been accomplished to date in the construction of numerical patient-specific models from 

multimodal preoperative images for the purpose of image-guided surgery. With image segmentation 

and registration methods, it is possible to define surgical target(s), reference areas, areas to be avoided, 

and trajectories based on these preoperative multimodal images [Jannin 2000]. Preoperative patient-

specific models, used in surgical planning, can be displayed in the operating room (OR) with the 

patient, with the help of augmented reality, and updated via intraoperative imaging (e.g., MRI, 2D/3D 

US, video). It has been shown that these systems allow for better patient outcomes while resulting in 

lower morbidity and mortality. For instance, in neurosurgery, small lesions can be operated earlier, 

even if located in high-risk functional areas [Jannin 2002]. However, some limitations have been 

identified [Lemke 2005, Peters 2006]. There remains an important gap between the surgical reality - 

its complexity and its high interpatient and intersurgeon variability - and the limited understanding of 

surgery currently implemented in Computer-Assisted Surgery (CAS) systems. These systems rely on 

little explicit, formal knowledge of surgery, or none at all. Ergonomical aspects are poorly suited to the 

surgical environment, which is both critical and specific. Dataflows and workflows in the surgical 

process are seldom correctly managed. Finally, systems provide no access to the surgical state of the 

art, or to current practice. These limitations are tied to high costs, process redundancies, and even 

some clinical failures.  

For our purposes, we will clarify some concepts by proposing definitions, as required. A “surgical 

workflow” is defined as the automation of a business process in the surgical management of patients, 

in whole or part, during which documents, information, images or tasks are passed from one 

participant to another for action, according to a set of procedural rules (adapted from 

http://www.wfmc.org). “Surgical models” are related to generic or patient specific surgical procedures 

that surgical workflows aim to automate. As explained in more details in section 2.1, these surgical 

models usually include descriptions of the actual surgical procedure, i.e., activities performed by the 

surgeon and surgical staff as well as systems, such as imaging devices or computers. The surgical 
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models are masters justifying the needs for a workflow management system. Issues regarding generic 

and patient-specific surgical models relate to their definition, computation or estimation. 

There is a strong need for making explicit surgical know-how and associated scenarios in computer 

assisted surgical systems through surgical models. It has been previously discussed with regard to 

surgical simulation [Satava 1996, Taylor 1999], robotics systems [Munchenberg 2000] and minimally 

invasive surgery [MacKenzie 2001]. Until very recently, there have been few concrete initiatives. We 

can divide them into 3 categories based on their objectives: reporting-centered approaches, operative 

approaches, and approaches targeting perioperative workflow optimization. The reporting-centered 

approaches have focused on nomenclature generation and translation [CEN 2001, Price 1998, 

Trombert-Paviot 2000]. The operative approaches focused on optimizing human/device interfaces by 

modeling interactive aspects [Kragic 2003, Mansoux 2005, Trevisan 2003], on studying the surgical 

gesture to directly optimize surgical planning [MacKenzie 2001, Munchenberg 2000], or on studying 

surgeons’ gestures for partial robotic assistance [Botturi 2005, Kragic 2003, Nageotte 2005]. Finally, 

the need for perioperative surgical workflow optimization has recently emerged, especially regarding 

the specifications of the operating room of the future [Dickhaus 2004, Fischer 2005, Lemke 2004, 

Lemke 2005, Sandberg 2004]. In most of these publications, the methodology employed to build 

surgical models was not explicitly described. For operative approaches as well as approaches targeting 

workflow optimization, no ontology was used, making it impossible to use outcomes in other surgical 

specialties or share knowledge between systems and research groups. Finally, few of the approaches 

were implemented, making it difficult to grasp their potential added value and their relevance. Our 

hypothesis is that surgical models are needed for improving computer aided surgery, and that there 

exist invariant surgical models that can be made explicit via careful retrospective analysis of surgical 

data and information. 

In this paper, we introduce a methodological framework for surgical procedures modeling and present 

the results of an initial implementation of this framework in brain surgery. We present the prospective 
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use of surgical models for surgical planning of 19 patients and two studies showing possible prediction 

of parts of the surgical procedure from pathology-related characteristics of the patient. 

2. Materials and methods 

We propose the following methodology for modeling surgical procedures. The design of this 

methodology was derived from knowledge modeling and cognitive systems engineering [Rasmussen 

1994]. It consists of the following steps: 

1. Definition of the modeling objective (i.e., aim of modeling approach); 

2. Definition of the surgical work domain to be modeled (i.e., universe of discourse); 

3. Definition of an ontology for the work domain which involves identification of concepts and 

relationships describing the surgical work domain, choice of a formalism for representing concepts 

and relationships, implementation of the formalized ontology into prototype software, and test of 

the prototype for testing previous steps; 

4. Data Acquisition which consists in describing surgical cases using the formalized ontology; 

5. Visualization and browsing of descriptions; 

6. Analysis by knowledge extraction from these descriptions which involves distinction between 

predicted and predictive parameters, data pre-processing, and data mining; 

7. Evaluation of generated knowledge. 

Steps from 1 to 6 have been implemented in our clinical environment. Steps 1 to 3 were introduced in 

a previous publication [Jannin 2003] within the context of image-guided neurosurgery and are briefly 

presented in this paper. Steps 4 to 6 are introduced for knowledge generation in brain surgery. 

2.1. Definition of modeling objective, work domain, and ontology 
Clear and accurate definition of modeling objectives and work domains is a crucial initial step in 

cognitive systems engineering [Rasmussen 1994] and therefore also in the proposed methodology. The 

surgical process may be tackled from different perspectives according to the surgical timeline: 

perioperative, preoperative, intraoperative, or postoperative perspectives. Each of these aspects may be 

studied at different levels of granularity. Each study may focus on actors (i.e., humans or devices), 
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tasks, systems, states or on the information or knowledge involved. Static or dynamic aspects may also 

be studied. In this paper, the work domain we model is related to the mental image the surgeon has 

about the surgical procedure performed in the OR, for one specific patient. This mental image, which 

includes the main surgical steps and their sequencing, was captured through interviews with surgeons 

and studies of postoperative surgical reports. Our modeling was aimed at making this mental image 

explicit along with part of the knowledge used by surgeons to build it. We restricted our domain of 

interest to surgeries for brain tumors and brain cavernomas. 

Building an ontology is a crucial and required step in modeling a work domain [Chandrasekaran 

1999]. It provides a language for describing objects and relationships within this domain. We built the 

ontology of our work domain, described above, by identifying the main concepts, relationships, and 

cardinalities of our work domain from descriptions of surgical cases by neurosurgeons. We formalized 

these main concepts and relationships in a UML class diagram (Unified Modeling Language) (Fig. 1). 

This work was presented in [Jannin 2003].  

2.2. Implementation of the ontology into surgical planning software 
We implemented the formalized ontology inside a surgical planning software (Fig. 2) allowing the 

number of surgical steps to be defined for each surgical procedure. For each step, the surgeon was able 

to assign the corresponding action and the relevant image entities selected from a list of 3D images 

and surfaces segmented from multimodal preoperative images of the patient. The surgeon assigned a 

role and visualization parameters (e.g., color, transparency value) to each image entity. Each 

procedure was stored in a structured form as an XML (Extensible Markup Language) file. For each 

step, a 3D scene including all 3D image entities and visualization parameters was stored as an XML 

file and as a VTK (Visualization ToolKit) file. A second implementation consisted of web-based 

software developed with the PhP language. Descriptions were stored in a relational database 

(PostGreSQL) and in XML files. Both implementations and use of them allowed validation and 

refinement of our model.  
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2.3. Data acquisition and visualization 
From a global population of 189 patients who underwent brain surgery, we distinguished two groups. 

The first group included 19 surgical cases (15 men, 36.5 years ±12.7; 4 women, 36.5 years ±10.6) with 

lesions located in eloquent areas (8 surgeries for brain tumors and 11 surgeries for brain cavernomas). 

All of them underwent multimodal neuronavigation as described elsewhere [Jannin 2002] and were 

prospectively described using the UML class diagram, with the planning software before surgery. For 

these 19 surgical cases, the planning software was used pre and intra operatively to display the 

different surgical steps along with the corresponding 3D scenes (Fig. 2). The second group included 

170 additional surgical cases with brain tumors (113 men, 48.2 years ±15.7; 57 women, 54.7 years 

±13.7). All of them were retrospectively described by 4 senior neurosurgeons (2 full professors and 2 

associate professors with about 25 and 15 years expertise in surgical practice, respectively) from 

postoperative reports, using the web-based software, and stored both in a SQL database and as XML 

files. From this second group we excluded 11 rare cases, such as left-handed patients (3), patients with 

tumors in both hemispheres (2), patients with trans-sulcal approach (1), patients with two successive 

trans-gyral approaches (2) and patients with more than a single pathological target (3). Finally, these 

159 surgical descriptions consisted in 103 men (49.9 years ±15.5) and 56 women (54.8 years ±13.7). 

Data visualization allowed displaying descriptions of surgical cases based on simple requests using 

criteria based on values of the ontology’s concepts [Raimbault 2005]. Available criteria included name 

of the pathology, its location in a lobe or gyrus, and surgical department. Results of the request were 

displayed as a list of corresponding surgical cases. For each surgical case, the surgeon was able to see 

the description of the whole surgical procedure as a list of surgical steps and related information.  

2.4. Data analysis: Extracting surgical expertise from descriptions 
Data analysis was aimed at explicitly understanding the work domain through its descriptions. We 

oriented the analysis toward the study of invariance between surgical cases. We assumed that there 

was invariance within subsets of surgical cases and that the distinction between these subsets 

depended on patient-related parameters. We attempted to extract this invariance from a surgical 
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database in order to predict aspects of the surgical procedure based on patient-related parameters. The 

methodology we used included the following steps: (a) distinguishing between predicted and 

predictive parameters, (b) data pre-processing, and (c) data mining. This methodology was used for 

two studies. 

Distinguishing between predicted and predictive parameters: Surgical cases included in the second 

group were described using the ontology (i.e. by classes from the model shown in Fig. 1) from post-

operative reports. Each class includes one or more parameters. We distinguished predictive parameters 

from predicted parameters as follows. Predictive parameters belong to classes describing the surgical 

case (Fig. 3a). These classes include patient information, surgery type, and name of the pathology, its 

depth, and its hemisphere, lobe and gyrus of location. This information is known before surgery. 

Predicted parameters belong to classes describing surgical procedure (Fig. 3b). These classes include 

information about the different surgical steps, the corresponding actions, action attributes such as 

patient positioning value and shape of the skin incision, action models, and the anatomical, 

pathological, and functional structures the surgeon considered relevant to performing this specific 

action. The objective of data analysis was to predict the course of surgery (described by the predicted 

parameters) from the description of the surgical case (provided by the predictive parameters). 

Data preprocessing: The 159 surgical descriptions from the second group were translated into the flat 

representations required for data mining approaches. 

Data mining: We first studied the relationship between patient positioning in the OR and the 

anatomical location of tumors in the sub-group of 159 patients. In this study, we used a prediction 

approach involving computation of decision trees using Cart software (Salford Systems, San Diego, 

CA, USA). We randomly divided the sub-group of 159 surgical cases into a learning set of 106 

surgical cases and a testing set of 53 surgical cases. The testing set allowed evaluating prediction error. 

Possible predictive values for tumor location involved the following 4 lobes: temporal (42 surgical 

cases from 159), parietal (24 cases), occipital (5 cases), and frontal (59 cases) lobes. 4 surgical cases 

H
A

L author m
anuscript    inserm

-00185435, version 1



Jannin P, Morandi X. Surgical models for computer-assisted neurosurgery. Neuroimage. 2007 Sep 
1;37(3):783-91 
 

9 

had tumor located in both frontal and parietal lobes, 6 in both frontal and temporal lobes, 2 in both 

parietal and occipital lobes, one in both occipital and temporal lobes, 15 in both parietal and temporal 

lobes, and one in frontal, parietal and temporal lobes. Possible predicted values for patient positioning 

involved the following 3 positions: dorsal (i.e., supine), ventral (i.e., prone), or lateral decubitus. With 

this approach, we computed a decision tree, decision rules, and a confusion matrix for evaluating 

classification errors. 

The second study focused on another methodological approach for data mining. We wanted to identify 

clusters of surgical procedures, assuming that there were relationships between families of patients 

with similar characteristics and families of surgical procedures with similar characteristics. Therefore, 

we classified our sub-group of 159 surgical cases based on the predictive parameters describing 

pathology-related parameters by using a K-means approach, followed by an ascending hierarchical 

clustering. K-means identified number of clusters and gave a dendogram as a result. From the 

dendogram, we decided to distinguish 6 clusters. Ascending hierarchical clustering classified each 

surgical case into one of these 6 clusters. We then manually studied the predicted parameters values 

within each cluster in order to identify invariant parameters in surgical procedures. 

3. Results 

The ontology's main concepts and relationships were identified and formalized in a UML class 

diagram (Fig. 1). The major concepts included in the ontology follow. The surgical procedure is 

broken down into a sequential list of surgical steps. Each step is described by an action (such as 

positioning or incision) with associated attributes (such as patient position or shape of skin incision) 

and includes a list of anatomical, pathological or functional structures which the action affects (such as 

patient’s body for patient positioning or skin for skin incision). Each structure may be represented by 

an image entity extracted from multimodal images of the patient (such as skin segmented from MR 

images). The role of each image entity is specified: target area (such as tumors or malformations), area 

to be avoided (such as high-risk functional areas or vessels), reference area (such as cortical sulci or 
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vessels), or surgical approach. More explanation is available in [Jannin 2003]. 

In the first data analysis study, we computed the decision tree using a prediction approach giving the 

probability of patient positioning as a percentage of the learning set and according to tumor location 

inside one or more lobes (Fig. 4). The classification error was 18% when computed on the learning set 

and 20% when computed on the testing set. Results showed the relationship between tumor location 

inside a lobe and patient positioning in the OR. Classification errors emphasized the need for a finer 

description of both tumor location and patient positioning. 

In the second data analysis study, from the sub-group of 159 surgical cases with brain tumor we 

automatically identified 6 clusters describing families of surgical cases according to pathology-related 

parameters (Table 1). The number of cases per cluster is given in the black rows. Then, for each 

cluster, the first rows give information about values of pathology-related parameters and the grey rows 

give certain parameters related to the surgical procedure and considered relevant for the cluster (i.e., 

with higher percentages than for the whole set). The second column gives the percentage of surgical 

cases from the cluster verifying the corresponding property; the third column gives the percentage of 

surgical cases from the whole set verifying the corresponding property. The results showed a possible 

classification of surgical procedures from pathology-related parameters, and, for each cluster, possible 

predicted values, such as patient positioning, surgical approach and number of surgical steps. For 

example, for cluster 5 consisted of a set of 25 surgical cases with regular benign tumor, analysis shown 

that 22 cases were approached in a different way than transgyral approach.  

4. Discussion 

The major goal of the approach presented was to make aspects of surgical knowledge involved in the 

surgical process explicit. This knowledge usually comes from two different sources: learning from 

experts or learning from one's own surgical experience. Learning from one's own experience provides 

additional information about standard procedures, and especially about surgical procedures with no or 

low accepted consensus and high variability. Acquiring surgical knowledge from daily practice (i.e., 

from surgical cases) reduces risk of subjective opinion, missing important specific surgical cases, and 

H
A

L author m
anuscript    inserm

-00185435, version 1



Jannin P, Morandi X. Surgical models for computer-assisted neurosurgery. Neuroimage. 2007 Sep 
1;37(3):783-91 
 

11 

perfectly addresses the high interpatient variability, since each surgical case is taken into account 

during knowledge generation according to its statistical representativity. On the other hand, gathering 

surgical cases from different surgeons allows the intersurgeon variability to be considered. 

In this paper, the ontology served as a basis for describing surgical cases and ensured description 

accuracy relative to the targeted work domain. Building an ontology is a challenging task. It is difficult 

to ensure that the work domain is fully represented in the ontology, at least relative to the modeling 

objective. Using an upper-level ontology as a basis for defining the generic concepts of our ontology 

could be a means of ensuring consistency with other ontologies built on the same upper-level 

ontology. One limitation of our ontology is that it was built from a limited number of surgical cases 

and with one surgical department involving only 4 neurosurgeons. Consequently, the resulting 

ontology may only reflect local surgical practices. Additionally, different facets of the surgical work 

domain can be studied and modeled. For instance, in [Neumuth 2006, Siddoway 2006], the physical 

actions performed by human operators including surgeons and surgical staff are captured using a 

dedicated ontology. There is a clear need to define a global framework for surgical modeling based on 

upper-level ontologies [Burgert 2006] for creating coherence between models of different facets of 

surgery.  

 

The planning software was used to describe 19 surgical cases before surgery, including all surgical 

steps. No quantitative assessment was performed, but the neurosurgeons found that identifying major 

surgical steps with the relevant images during planning was useful for patient-based surgical rehearsal. 

It helped the surgeons anticipate key surgical steps, certain operative views of the patient and his/her 

images, and key structures to be identified during surgery. The software was also used to display, in 

the OR, the different surgical steps of the procedure as defined during planning, along with the 

corresponding 3D images. Neurosurgeons also found it useful that, during surgery, for the 

performance of each surgical step identified during planning, only the selected relevant images were 

displayed. The impact of both features must be quantitatively evaluated. This surgical model-based 
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approach is a new concept in image-guided surgery, both for surgical planning and intervention. It 

allows better anticipation of surgery by a complete planning stage encompassing all surgical steps. 

Moreover, user interface for Image Guided Surgical systems may be adapted according to the current 

surgical step as defined during planning. For instance, acting as a supervision system, it allows better 

management of 3D multimodal images in augmented reality systems available in the OR, by 

displaying relevant images when required only. 

 

Being able to query the database of surgical cases using patient-specific parameters allowed surgeons 

to access descriptions of surgical procedures performed in similar cases. The corresponding surgical 

steps, events, surgical tools, and preoperative images can be displayed. In an initial version of the 

software, only parameters related to the patient’s pathology were used to browse surgical cases. More 

patient parameters have now been implemented within more complex, combined requests. 

 

Data mining is an interesting approach for surgical knowledge extraction. Results of the first study are 

quite straightforward, but they are automatically generated from an initial hypothesis. Patient 

positioning is of prime importance for safe and efficient conduct in cranial surgery [Hernesniemi 2005, 

Mohsenipour 1994, Perneczky 1999, Shevach 1992]. A comfortable working angle should be ensured 

by careful positioning of the patient’s head and body. Furthermore, the patient should be positioned to 

minimize the effect of gravity, which is one of the major components of brain shift leading to loss of 

spatial registration with preoperative images during neuronavigation procedures [Roberts 1998]. In our 

first study, the choice of the position was mainly dictated according to the tumour location. Some 

results of the second study shown that no transgyral approach was performed for cluster 5. Indeed, 

when dealing with benign cerebral tumors, the approach via the subarachnoid spaces within cerebral 

sulci (transsulcal approach) makes them accessible while minimizing injury to surrounding normal 

brain tissue, as the cortex is thinner in the depth of the sulci [Harkey 1989, Yasargil 1988]. 
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Both studies used different data mining methods and addressed two different issues: predicting 

parameters related to the surgical procedure from those related to the patient and his/her pathology, 

and identifying parameters underpinning the clusters of surgical procedures. Both approaches can be 

applied for studying other aspects of surgery. The limitations of both studies were based on the small 

number of samples (i.e., surgical cases) and neurosurgeons involved in these studies (i.e., surgical 

procedures came from only 4 different neurosurgeons). The limited number of samples can be 

explained by the time required to describe surgical procedures. Descriptions were made by the 

neurosurgeons themselves. This time-consuming task is not compatible with the overall clinical 

workload and needs to be automated. For the first study concerning patient positioning in brain tumor 

surgery, localization of tumor should be evaluated at a gyrus level for providing more statistically 

significant results. A number of at least 25 surgical cases per gyrus should be suitable for such 

analysis. Finally, we did not assess the knowledge generated for this paper, but this step is crucial prior 

to any knowledge diffusion. 

5. Conclusion 

In this paper, we propose a general methodology for surgical modeling. It was used in the context of 

neurosurgery and would have to be adapted to other surgical specialties. We focused on one specific 

aspect of the surgical work domain. As pointed out in this paper, other aspects of surgery are of 

interest and should also be studied. However, for both types of expansion (i.e., into different surgical 

specialties or work domains), the general methodology would remain the same. We showed how 

modeling patient-specific surgical procedures could impact different stages of the surgical process: 

choosing a surgical strategy, for patient-specific surgical rehearsal and planning, during surgery, to 

improve the human/computer interfaces of computer-assisted surgical systems, and finally, to 

formalize surgical knowledge and practice. Being able to access to explicit descriptions of surgical 

procedures through surgical models will also be a valuable tool for simulation software. Additionally, 

surgical models are a basis for surgical workflow optimization which aims at increasing quality of care 

and decreasing costs. It is our hope that this approach will facilitate evidence-based medicine in 
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surgery by continuously updating and improving surgical knowledge based on daily surgical 

experience. Future works in this area include automatic acquisition of patient-specific models, 

development of robust and adapted methods for data mining and surgical prediction, and moreover, 

implementation in CAS systems and wide-scale deployment. 
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Figure legends: 

 

Figure 1: UML class diagram representing the surgical ontology of the surgical work domain under 

study. 
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Figure 2: User interface for the planning software. Description of a surgical step and corresponding 3D 

scene with relevant image entities. 

 

Figure 3: a) In red, predictive parameters corresponding to classes and associated relationships 

describing the surgical case, b) in blue, predicted parameters corresponding to classes and associated 

relationships describing the surgical procedure. 
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Figure 4: Decision tree for patient positioning according to tumor location in one or more cortical 

lobes for a population of 106 patients undergoing brain tumor surgery. DD: Dorsal Decubitus, LD: 

Lateral Decubitus, VD: Ventral Decubitus. 
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Property: 

Parameter = Value 

% of cases from this cluster 

verifying this property 

% of cases from the whole 

set verifying this property 

Cluster 1 - Number of surgical cases: 34 

LobeTemporal = Yes 100 40.88 

LobeParietal = No 100 71.07 

LobeFrontal = No 94.12 55.97 

TargetRef = Malignant tumor 97.06 76.73 

TargetAmplitude = Subcortical 76.47 49.69 

SkinIncisionForm =question-mark shape 47.06 13.21 

Cluster 2 - Number of surgical cases: 37 

LobeParietal = No 100 28.93 

TargetRef = Malignant tumor 94.59 76.73 

LobeFrontal = No 86.49 55.97 

SkinIncisionForm = Horseshoe shape 91.89 41.51 

Cluster 3 - Number of surgical cases: 8 

LobeOccipital = Yes 100 5.03 

LobeFrontal = No 100 55.97 

PatientPosition = Ventral decubitus 75 4.40 

Cluster 4 - Number of surgical cases: 38 

LobeFrontal = Yes 100 44.03 

LobeParietal = No 100 71.07 

LobeTemporal = No 92.11 59.12 

PatientPosition = Dorsal decubitus 100 55.35 

SkinIncisionForm = Arciform 84.21 42.14 

Cluster 5 - Number of surgical cases: 25 
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TargetRef = Benign tumor 100 23.27 

TargetShape = Regular 96 64.15 

TransgyralApproach = None 88 63.52 

NumberOfSteps = 6 84 45.28 

Cluster 6 - Number of surgical cases: 17 

TargetAmplitude = Cortical 100 11.32 

TargetShape = Regular 94.12 64.15 

TransgyralApproach = None 100 63.52 

NumberOfSteps = 6 76.47 45.28 

 
 

Table 1: Classification of 159 surgical cases with brain tumor according to parameters related to 

pathology description. Identification of relevant parameters with corresponding occurrences in each 

cluster. The number of cases per cluster is given in the black rows. For each cluster, the first rows give 

information about values of pathology-related parameters and the grey rows give certain parameters 

related to the surgical procedure and considered relevant for the cluster. The second column gives the 

percentage of surgical cases from the cluster verifying the corresponding property; the third column 

gives the percentage of surgical cases from the whole set verifying the corresponding property. 
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