A Bayesian MAP-EM Algorithm for PET Image Reconstruction Using Wavelet Transform - Inserm - Institut national de la santé et de la recherche médicale
Article Dans Une Revue IEEE Transactions on Nuclear Science Année : 2007

A Bayesian MAP-EM Algorithm for PET Image Reconstruction Using Wavelet Transform

Résumé

In this paper, we present a PET reconstruction method using the wavelet-based maximum a posteriori (MAP) expectation-maximization (EM) algorithm. The proposed method, namely WV-MAP-EM, shows several advantages over conventional methods. It provides an adaptive way for hyperparameter determination. Since the wavelet transform allows the use of fast algorithms, WV-MAP-EM also does not increase the order of computational complexity. The spatial noise behavior (bias/variance and resolution) of the proposed MAP estimator is analyzed. Quantitative comparisons to MAP methods with Markov random field (MRF) prior models point out that our alternative method, wavelet-base method, offers competitive performance in PET image reconstruction.
Fichier principal
Vignette du fichier
tns_final_version_complete.pdf (894.77 Ko) Télécharger le fichier
Loading...

Dates et versions

inserm-00184255 , version 1 (30-10-2007)

Identifiants

Citer

Jian Zhou, Jean-Louis Coatrieux, Alexandre Bousse, Huazhong Shu, Limin M. Luo. A Bayesian MAP-EM Algorithm for PET Image Reconstruction Using Wavelet Transform. IEEE Transactions on Nuclear Science, 2007, 54 (5, Part 1), pp.1660 - 1669. ⟨10.1109/TNS.2007.901200⟩. ⟨inserm-00184255⟩
370 Consultations
3099 Téléchargements

Altmetric

Partager

More