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COMPUTATIONAL MODELING FOR SYSTEMS
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Abstract. Although recent enthousiasm has emerged for Systems Biology, it is of
major importance to identify the roots it has with computational (mathematical)
modeling. In fact, major contributions have been made for decades with the aim to
quantitatively analyze and model the function of living systems in order, ultimately,
to better understand the underlying constituents and collective behaviors and use
them for diagnosis and therapeutic purposes. However, the impressive evolution of
technological resources and methods allows today to revisit these early attempts
and to bring to light new concepts, targets, and expectations. This chapter, after a
tentative definition of the generic elements behind Systems Biology and Physiology,
will provide a review of current efforts devoted to multimodal, multilevel, multires-
olution approaches, all being addressed from the joint observational, modeling and
information processing points of view. The several theoretical frames at our disposal
will also be addressed, in particular the capability to handle multiple modeling for-
malisms. Examples from the literature and the research conducted by the authors
will exemplify these multidisciplinary developments and results. The forthcoming
challenges to be faced will then be outlined.

Key words: Systems biology, Physiology, Multiscale modeling, multiformalism,
simulation.
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1 INTRODUCTION

Historically, the observation, analysis and understanding of biological and phys-
iological processes have been based on experiments performed in vivo or in vitro.
These experiments have mainly been carried out on animals, at a variety of ob-
servation scales (subcellular, cellular, tissue, organ or system levels) giving rise to
an exponentially growing number of data sets (genomics, proteomics, biomedical
signal and image databases, etc.). These large data sets remain specific to a given
scale of observation or experimental framework, and classical statistical tools usu-
ally used for the analysis of these data are increasingly showing their limitations.
The joint analysis of these data, taking into account the strong integration of bio-
logical processes from the gene to the whole organism, represents one of the major
research challenges for the coming years. New analysis frameworks and disciplines
are currently emerging in order to cope for the complexity of this challenge.

Systems Biology is focused on the analysis of intra- and intercellular dynamics,
mainly directed, at this point, by a semi-quantitative, statistically-based bottom-
up approach, willing to cover from genotype to phenotype. The final objective in
systems biology is to integrate the information on biological data sets and analysis
methods into a generic, systemic and predictive approach1. Some of the most visible
developments, such as the E-cell2 and Virtual Cell3 projects, are biophysical and
biochemical in nature, and related to subcellular scales where proteins, substrates
and product solutes, and ions interact to provide quantitative or semi-quantitative
descriptions of cell level functions. Almost none of these projects currently provide
kinetic descriptions linking cellular events to gene signaling and to regulation of
transcription and translation, although the structuring of the protein-protein rela-
tionships is proceeding rapidly by diagramming associations.

The Physiome Projects 4,5, are based on a quantitative biophysical and determin-
istic approach to describe molecular, cellular, organ and overall system behavior in
an attempt to establish a top-down or a ”middle-out” 6 path to meet up with the ge-
nomic and proteomic information and so provide a path that can be understood the
whole way from Gene to Health. Focused efforts on particular Physiome projects,
such as the ”Cardiome” project or those on kidney7,8 and lung modeling, represent
current attempts in this direction. A recent special issue of the Proceedings of the
IEEE has been entirely focused on the current developments of this project9.

These two complementary viewpoints for the comprehension of living systems,
coexist by means of socially related but scientifically independent projects on in-
tegrative systems physiology and biology. They share a number of methodological
frameworks for the observation of living systems (constitution of data workbenches),
creation of appropriate ontologies and for modeling and processing the observed
data, and make them available to a large research community. Although these
methodological frameworks have evolved in an impressive manner during the last
years, many theoretical and technological issues remain to be addressed in order to
achieve a coherent, fully functional approach.

This chapter will firstly point out the main difficulties associated with the quanti-
tative study of biological and physiological systems. A brief description of a pioneer-
ing effort to overcome these difficulties will be presented, followed by a presentation
of a general framework (integrative modeling), currently in development to help
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handle the complexity of living systems. Section 3 will present a contribution to
a particular problem for the development of integrated models, related to the cou-
pling of models defined in different mathematical formalisms. Some applications of
this method, mainly on the analysis of the cardiovascular system function, will be
presented in section 4. Finally, a discussion will outline the forthcoming challenges
to be faced.

2 COMPLEXITY OF BIOLOGICAL AND PHYSIOLOGICAL SYS-

TEMS

Biological and physiological systems appear particularly complex when compared
to man-made ”artificial” systems encountered in traditional engineering fields (au-
tomatics, electronics, industrial processes, etc.). This complexity is associated with
a combination of different aspects: i) the limited knowledge of the underlying mech-
anisms governing biological and physiological systems; ii) the diversity of spatial
and temporal scales involved; iii) the variety of physico-chemical phenomena and
energy domains, iv) the high level of interdependence between different biological
functions, and v) the presence of non-linear processes and non-stationary situations.

For instance, the cardiac activity is initiated by a biochemical process at a sub-
cellular scale that generates the electrical activation of cardiac cells. Modifications of
the intra and extracellular concentrations of calcium during this electrical activation,
trigger the mechanical contraction of cardiac fibers and, then, the contraction of the
whole ventricle. This pump action allows the circulation of blood in the vascular
system, which irrigates the whole of body. All these active processes require energy
to function and thus rely on a proper transport and management of metabolic agents.
Moreover, all this activity is regulated by the Autonomic Nervous System (ANS) in
a constant manner.

In the following sections, the most important aspects related to the complexity
of biological and physiological systems will be breifly described and an emerging
framework designed to tackle this complexity will be presented.

2.1 Diversity of spatiotemporal scales

Processes involved in the function of biological systems span a wide range of spa-
tial and temporal scales. The spatial scales range from the gene (∼ 10−10 m) to the
whole body (∼ 1 m), that is to say one variation of about 1015. Temporal scales also
show a variation of about 1015, going from the dynamics of ion channels in the cell
(∼ 10−6 s) to a whole life (∼ 109 s). In general, the smallest scales are characterized
by more important inter-individual variations than the larger scales. For example,
the human body is constituted of10: more than 35000 different genes; more than
100000 kinds of proteins; more than 300 kinds of cells; 4 kinds of tissues: connective
(cartilage, bones, blood, . . . ), epithelial, muscular, and nervous tissues; 12 differ-
ent systems: cardiovascular, digestive, endocrine, excretory, immune, integumentary
(skin, hair and nails), lymphatic, muscular, nervous, reproductive, respiratory, and
skeletal systems; 1 body.
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2.2 High level of interdependence

Living systems are characterized by the presence of vast networks of interactions
that, by synergy, let emerge new mechanisms which are much more complex than the
simple, independent function of the different elements which constitute them. For
example, functional networks emerge from gene and protein networks and their in-
teractions with the intra- and extracellular spaces. The consequences of a particular
gene modification on the physiology of a cell, or a whole organ, depend on the way
in which this gene is involved on the various layers of integrative networks, from the
sub-cellular scale to the highest scales. Many questions concerning Systems Biology
are related to information processing, transduction pathways, the types of reactions,
the non-linear relations involved, the effects of multiple regulatory loops, etc. This
high level of interdependencies is also evident when trying to provide insight into
the plausible roles of network topologies (chains, lattices, fully-connected graphs),
on the mutual synchronization of cells (uniform or non-uniform pulse-coupled oscil-
lators), traveling waves and non-linear dynamics, etc. All these issues are of concern
for the Physiome and justify an effort to bring them to convergence.

2.3 Diversity of physico-chemical phenomena and energy domains

Another source of complexity is related to the variety of energy domains in-
volved in physiological processes. Indeed, a variety of physico-chemical phenomena
are at the origin of the main physiological functions, such as regulation, growth,
metabolism, electric and mechanical activities, etc. A quantitative analysis of these
functions requires an appropriate formalization of the different energy domains (bio-
chemical, hydraulic, mechanical or electric), and the coupling between these energy
domains (such as the mechano-hydraulic function of the ventricles) must be correctly
represented.

2.4 How to deal with this complexity?

An approach that has proven to be particularly useful since the early attempts
to harness the complexity of living systems is based on mathematical modeling. An
interesting example of this model-based approach is the pioneering work of Guyton,
Coleman and Granger11 for the analysis of the overall regulation of the cardiovascu-
lar system. This model is composed of 18 ”blocks” representing the most relevant
physiological sub-systems involved in cardiovascular regulation (Figure 1). Each of
these blocks is composed of different sub-blocks (354 for the whole model) that rep-
resent one or more mathematical operators or equations defining a particular aspect
of the cardiovascular regulatory function, by using mainly a continuous transfer-
function formalism. More than 150 variables related to cardiovascular function are
simulated and their values are used as input/output data between the different
model blocks.

Although this model represents only a basic description of the cardiovascular
regulatory system, its simulation results have been used to reproduce and analyze the
effect of specific circulatory stresses and pathologies or even to predict behaviors that
were only observed experimentally later on. The success of this model was mainly
due to the fact that it allowed a simultaneous analysis of the main components
of the complete regulatory system and that it facilitated the representation and
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Figure 1: Simplified diagram of the original Guyton 1972 model of the overall regulation of the
cardiovascular system. Each block represents a major physiological organ or function. Lines
between the blocks represent the input/output relations in the model

integration of new physiological knowledge. It was also used to identify in which
parts of the system new knowledge is required, helping to propose new experimental
investigations.

However, the authors already highlighted in their paper two major limitations of
their approach: i) the impossibility of including different levels of anatomical detail
within the same model and ii) the difficulties of handling the variety of temporal
scales of the different components of the system. For example, long-term regulatory
effects of cardiovascular activity (such as the renin-angiotensin-aldosterone system)
present time constants measured in hours or days, while the short-term regulation
(mainly by the baroreflex) present time constants on the order of the second. These
aspects have been partly solved during the past decades with the evolution of com-
puting power and research on modeling methodologies.

In particular, current research in ”integrative modeling” seeks to cope with the
complexity of biological systems by means of a multiscale mathematical modeling
approach12. This approach takes into account, in the same model, different physio-
logical phenomena occurring on various scales, by using a common representation,
defined comprehensively at the most detailed level. Multiscale models of cardiac
function have been proposed in the literature by considering the interactions be-
tween the sub-cellular level, the electrical activity and the mechanical activity of
cardiac cells13,14. These models of global cardiac function have proven useful in a
number of applications. However, their all-inclusive nature makes them difficult to
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use in a concrete clinical application, because they require significant data-processing
resources. For example, a cardiac model representing both ventricles with a reso-
lution of 260,000 nodes and using a relatively simple model of the cardiac action
potential, characterized by 12 parameters, requires more than 12 Gb of RAM for
just the parameters and state variables. Moreover, none of the existing multiscale
models allows a complete consideration of the whole cardiovascular system (includ-
ing its regulation), so choices and compromise have to be made, depending on the
intended application.

2.5 Integrative Modeling

McCulloch and Huber15 proposed a graph representing the application of integra-
tive modeling in physiology, based on three different axes (Figure 2): i) structural
integration, ii) functional integration and iii) data integration. The structural in-
tegration spans from the gene to the whole body, covering different spatio-temporal
scales. The integration of different sources and physiological systems (i.e. electrical
activity, mechanical activity, regulation,...) is represented in the ”functional inte-
gration” axis. Finally, the data integration axis concerns the level of physical or
physiological knowledge included in the model. One end of this axis corresponds to
observational models (black-box models), which are limited to the reproduction of
observations, and the other end corresponds to models integrating the most detailed
physical and physiological knowledge available.

We have completed this representation by projecting into this space a number of
different formalisms used in the literature for modeling the cardiovascular system.
An analysis of this graph shows that there is a relationship between the formalisms
used and the position of the models in this space. For example, the regulation of
cardiovascular activity by the ANS is considered on the ”systems” level and is often
modeled, based on experimental data, by a set of continuous transfer functions (TF).
The electrical activity of the heart can be modeled at different levels of detail, going
from the cell to the whole organ, and is usually represented by means of continuous,
dynamical systems models (i.e. based on Ordinary Differential Equations) or by
discrete models, (i.e. a set of coupled automata). However, both views still suffer
from difficulties that reduce their clinical applicability: the former approach requires
heavy computational resources while the latter does not permit the reproduction of
certain pathologies defined at different scales.

Coupling models based on different formalisms (multi-formalism modeling) ap-
pears as a way to overcome the practical limitations of existing multiscale mod-
els16,17. In this context, one can easily think that a way to take advantage of the
benefits of each approach in a model-based system would be to selectively define
different regions of the modeled organ at different scale levels, depending on its
physiological or pathological state. Such a multiresolution consideration is also le-
gitimated by the practical clinical diagnosis performed by the physician, which aims
at refining progressively the investigated region, going from a global consideration
of healthy parts to a precise analysis of pathological sources. In the following sec-
tion, the problem of multiformalism modeling is posed and an original methodology
allowing the combination of different types of description formalisms will be pre-
sented17,18.

6

H
A

L author m
anuscript    inserm

-00184247, version 1



Population

Gene

Regulation
of cardiac
activity

Growth

Metabolism
Electrical
activity

Mechanical
activity

TF BG

CA

SDE

MM
PN

ODE

PDE

AR

Experimental
data

Physical
principles

Figure 2: 3D space costituted by the three principal axes of integrative modeling proposed by Mc-
Culloch et al. The vertical axis corresponds to structural integration, the diagonal axis represents
data/knowledge integration and the horizontal axis represents functional integration. We have
projected on this space various formalisms used in the modeling of the electrical and mechanical
activities of the heart and the regulation of the cardiovascular activity by the autonomic nervous
system. The formalisms shown in the figure are: AR – Autoregressive models, TF – Transfer
function, BG – Bond Graph, CA – Cellular Automata, SDE – Stochastic Differential equation,
MM – Markov Models, PN – Petri nets, ODE – Ordinary Differential Equations and PDE –
Partial differential equations
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3 TOWARDS AN INTEGRATED MULTIFORMALISM MODELING

APPROACH

Several generic modeling and simulation tools are currently available. Matlab /
Octave / Simulink, Berkeley Madonna, COMSOL and Mathematica are among the
most commonly used. In such generic environments, a model is often composed of
a set of coupled elements and a unique simulator is responsible for the simulation
of this coupled model. Traditional simulators are usually based on a centralized
approach where all the processing is done at the same level and, usually, inside a
unique simulation loop which can solve only one modeling formalism. As a result, the
integration of elements presenting different formalisms remains tricky (even when
possible). Moreover, such tools often present an additional computing overhead
due to their internal representation of each element of the model (e.g. use of an
interpreted language) making them ineffective for the simulation of complex systems.

Multiformalism modeling is an active research field, focused on the proposal of
new architectures for an optimized representation and simulation of hybrid models
(e.g. models constituted of coupled sub-models, defined with different mathematical
formalisms). Two different approaches for multiformalism modeling can be distin-
guished19–21:

• Formalism transformation: This approach seeks to transform all the sub-
models presenting different formalisms into a common ”meta-formalism”, for
which a simulator exists. Perfect analytical transformations exist between
some continuous formalism, such the transformation of Bond-Graphs or con-
tinuous transfer functions to an ODE system; however, these conversions are
not always invertible and may demand an important effort.

• Co-simulation: The general idea behind co-simulation approaches is to pro-
cess each sub-model with a specific simulator, adapted to the formalism in
which it has been developed. The output of the general system is performed
by a ”container” model, which assures an appropriate coupling between the
different state variables. The main difficulty of this approach is precisely to
define the appropriate spatial and temporal coupling relations.

A third approach, combining formalism transformation and co-simulation, has
also been proposed21, but it can clearly be considered as a particular co-simulation
system. An interesting co-simulation approach for multiformalism modeling has
been proposed by Zeigler22. It is based on a distributed architecture with two main
characteristics:

• a tree-like hierarchy with different modeling layers: each leaf is an ”atomic”
model (e.g. a single sub-model) and ”coupled models” represent a gathering
of different kinds of models (atomic or already coupled models);

• a parallel between a model hierarchy and the correspondng simulators: each
atomic model is associated with a simulator adapted to its formalism. For
example, a continuous simulator will be associated with an atomic continuous
model and a discrete simulator would be associated with a discrete atomic
model.
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Various research projects have emerged that aim to make practical implementa-
tions of the initial theoretical aspects presented by Zeigler. These projects are often
based on the use of a common discrete-event system specification (DEVS) formal-
ism for the simulation of hybrid systems and, in particular, for the simulation of
continuous systems using discrete-event simulators. In order to perform the spa-
tial and temporal couplings between sub-models defined with different formalisms,
piecewise linear or polynomial approximations of continuous values23 or a quantiza-
tion of the values obtained from the different sub-models24–26 have been proposed.
A modification of the original Zeigler’s architecture has also been proposed with the
introduction of a unique level in the hierarchy27. QSS and VLE are the most active
projects on the field26,28.

Nevertheless, all of these projects impose the application of a unique DEVS sim-
ulator and often lack a modular object-oriented representation of each sub-model.
We were thus motivated to develop an original object-oriented approach allowing
the use of standard simulators from the literature for each formalism. This is par-
ticularly important when integrating biophysical models from different authors, as
these models are often accompanied by specific simulators. Zeigler’s original archi-
tecture, as proposed in22, and the co-simulation method have been retained for our
development. This approach presents several advantages: i) it is particularly suited
for the creation of generic multiformalism modeling tools, ii) it facilitates the dis-
tributed execution of the coupled simulators in a computer cluster and iii) it eases
the extension of the method to a multiresolution model representation.

As mentioned above, the main difficulty associated with a multiformalism mod-
eling approach based on co-simulation concerns the coupling mechanisms between
components defined with different formalisms. The following section will state the
problem of the definition of an appropriate coupling method and the methodological
choices retained for the development of our system.

3.1 Spatial coupling and temporal synchronization

The combined simulation of atomic models defined by different formalisms im-
poses the definition of specific methods for spatial coupling and temporal synchro-
nization. This problem may be stated as follows: Let model M be defined as:

M(F, I, S, P ) (1)

where F is the description formalism, I is a set of one or more inputs, S are the state
variables and P are the internal model parameters. It is obvious that the choice of
an appropriate simulator for model M depends on the components of the model (I,
S and P ) and, thus, on formalism F . Indeed, the nature of the representations of
the model components depend on F and may be, for example, boolean, quantized,
discrete or continuous.

The co-simulation approach that we have retained is based on a parallel between
a model M and its corresponding simulator. A specific simulator for formalism F

can be represented as:
O = SimF (M(F, I, S, P ), Ps) (2)

where M is the model associated with simulator SimF (and described by the same
formalism F ), Ps are the simulation parameters and O are the outputs of the model,
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M1 M2

O2I1

Figure 3: M2’s output as M1’s input

obtained by simulation. A coupled co-simulation of two models M1 and M2, defined
respectively by formalisms F1 and F2, in which the outputs of M2 are used as inputs
to M1 can thus be represented as follows (figure 3):

O1 = SimF1
(M1(F1, T (O2), S1, P1), Ps,1) (3)

O2 = SimF2
(M2(F2, I2, S2, P2), Ps,2) (4)

One of the most important aspects of co-simulation is thus to define a trans-
formation T permitting to solve relation 3. A definition of such a transformation
considering temporal and spatial aspects is presented in the following sections.

3.1.1 Spatial coupling

Experience shows that the definition of spatial coupling of two models represented
by different formalisms is problem-specific. In particular, it depends on the nature
of the different elements (discrete or continuous) and the way they are linked to-
gether. For instance, in the previous example 3, two models M1 and M2 are coupled
with M2’s output (O2) corresponding to M1’s input (I1). If O2 is discrete while I1

expects continuous values, a simple sample-and-hold method can be used between
two consecutive simulation steps. Linear or higher-order interpolations can also be
considered. If O2 is continuous while I1 expects discrete values, quantization meth-
ods could be used. A concrete example of this point will be presented in the next
section, illustrating the characteristics of the proposed approach.

3.1.2 Temporal synchronisation

The simulation of mono-formalism models implies the evaluation and update of
state variables at a set of predefined time instants. Most of the currently available
generic commercial simulators define the interval between these time-instants (sim-
ulation steps) as fixed or adaptive, but they are the same for the whole simulation
process.

In the case of the co-simulation of a coupled multi-formalism model, each atomic
model is processed by a particular simulator, that may have an independent simu-
lation step. The evolution of each atomic model M can be obtained, for example,
by using the traditional Euler method:

SM(t) = SM(t − 1) + δtM ·
∂Sm

∂t
(t) (5)

where δtM represents the temporal simulation step-size for atomic model M . De-
pending on the numerical method used, this step can either be fixed or adaptive.
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Even if each atomic model evolves with its own simulation step (i.e. with proper
time characteristics and dynamics), a temporal synchronization δts is necessary be-
tween the different coupled models, in order to obtain the global simulation outputs.
Three types of temporal synchronization can be distinguished to deal with the dif-
ferent dynamics of the different elements. They are depicted in figures 4 - 6, where
we consider three coupled atomic models, Mi−1, Mi and Mi+1. These three synchro-
nization methods are:

• Simulation with a fixed time step and synchronisation at each time

step (figure 4): In this approach, the simulation step is δt for all the elements,
independently of their local dynamics. This is the simplest way (which is
indeed the same used in mono-formalism simulators) but it takes no advantage
of using models with slow or fast dynamics.

• Synchronization at a fixed time step and simulation with adaptive

step (figure 5): Here, each atomic model evolves with its own simulation step
(one or more iterations) between two consecutive synchronization time steps.
The objective is to exploit the different dynamics of the atomic models. For in-
stance, a model showing slow dynamics (Mi) presents higher simulation steps
(δti) than a model (Mi+1) with faster dynamics (δti+1). Using this approach
implies to define which value should be used to update coupled elements be-
tween two consecutive synchronization steps. A sample-and-hold method has
been retained. In this method, the coupling between atomic models is updated
through a fixed synchronization step. The definition of this fixed synchroniza-
tion step is done in a similar manner as in traditional fixed-step methods.

• Update and synchronization at the smallest time step required by

any of the atomic models (figure 6): As in other rate-adaptive methods,
this approach requires the calculation of the optimal simulation step for each
atomic model, before performing the update of state variables. In this case,
the smallest step size is used for all the atomic components and for the syn-
chronization. For instance, at time t, each element (Mi−1, Mi or Mi+1) requires
an optimal step such as δti+1 < δti−1 < δti. Simulation, and therefore syn-
chronization, of the elements will consequently be performed according to the
time step δt = δti+1.

It should be noted that the last two methods, with variable simulation steps,
are only possible using a distributed co-simulation architecture. In a centralized
method, the first synchronization method is the only one possible. Finally, the
combination of the two adaptive methods can be considered, especially for systems
whose elements show dynamics with important disparities.

4 SOME EXAMPLES ON CARDIAC PHYSIOLOGY

The proposed approach for multiformalism modeling and simulation has been
evaluated and applied in a number of different biomedical applications29–31. The
evaluation is based on i) the construction of equivalent monoformalism and multifor-
malism models, ii) the simulation of these models with the proposed multiformalism
library using different simulation parameters and iii) a comparison of the simulation
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Figure 4: Fixed-step simulation and synchronisation

Submodel Mi−1

Submodel Mi

Submodel Mi+1
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Figure 5: Synchronisation at fixed step (δts) and adaptive simulation of each submodel
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δts = δti+1

estimated simulation step
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Figure 6: Adaptive synchronisation and simulation
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results from the two approaches and an analysis of the simulation properties, such
as computation time.

In this section, an example of the validation of the proposed multiformalism
approach is presented, by comparing mono and multiformalism models of normal
and pathological cardiac tissues, defined at the cellular level. A second example
shows the integration of discrete and a variety of continuous formalisms in a multi-
resolution model of the circulatory system.

4.1 Monoformalism models of cardiac tissues

The classical implementation of monoformalism models of cardiac tissues can be
realized in two steps. In a first step, continuous atomic models of the electrical
activity of single cardiac cells are created. The second step concerns the definition a
cardiac tissue, with a given 2D or 3D geometry, composed of a set of coupled atomic
models, as defined in the previous step.

A number of electrophysiological models of cardiac cells, based on a Hodgkin
Huxley framework32, has been proposed in the literature33–36. Most of these models
represent different cell types (e.g. from the sinoatrial node, atria, Purkinje fibers,
ventricles) of animal hearts (e.g. rabbit, canine, guinea pig), mainly because these
experimental models are the most accessible. Recent improvements have led to
models of human cells34,37 and to a finer representation of the dynamics of the dif-
ferent ion channels, linking the molecular and cellular levels36. In the literature,
”black-box” morphological cardiac models based on a FitzHugh Nagumo frame-
work38 have also been proposed39 but they present only a limited interest when
dealing with physiopathological parameters. In current large-scale models such as
the CARDIOME project, thousands of cells are coupled in a predefined geometry
to represent one or more cavities of the heart, thus covering the molecular to organ
levels36. Due to this extensive definition, these models require massive computing
resources that limit their direct clinical application.

For this example, we have chosen the Beeler and Reuter (BR) model, that rep-
resents cardiac ventricular cells in the physiological case40. A model of an ischemic
myocyte, adapted from the Beeler Reuter model by Sahakian41 has also been imple-
mented to take into account membrane current modifications of this pathology. The
coupled tissue-level model is thus composed of a set of coupled atomic submodels
(BR or Sahakian models) in a 2D or 3D geometry.

In order to apply the proposed co-simulation approach, a continuous simulator is
associated with each atomic BR model. A ”simulation coordinator” is responsible
for the coupling between all atomic models and the global simulation of the whole
system. Coupling between cells has been defined in order to produce an isotropic
propagation, as depicted if figure 7. In the coupled model, the behavior of state
variable Vi,j, representing the membrane potential of cell Ci,j is given by:

dVi,j

dt
= G(Pi,j) + K · ∇2Vi,j (6)

where G(Pi,j) is a set of equations describing the cellular behaviour (e.g the complete
set of Beeler and Reuter model equations40) and K is a diffusion coefficient between
neighbouring cells42. Due to spatial discretisation, the Laplacian ∇2Vi,j is estimated
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Figure 7: Schematic implementation of the coupling method: the Laplacian (∇2V ) is calcu-
lated at the coupled model level while the obtained value is added to the external inputs (I)
of the correspondind submodel (Ci,j)

t1 = 4 ms t2 = 8 ms t3 = 12 ms t4 = 16 ms
−85 mV

50 mV

Figure 8: Depolarisation front for healthy tissue: left column of cells are stimulated by a plane
stimulus

by:

∇2Vi,j =
1

h2
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j) (7)

where h corresponds to the spatial quantification scale introduced by the application
of finite differences.

In our co-simulation architecture, the Laplacian is calculated at the tissue level
and the obtained value is introduced as an external input current (I in (1)) for the
corresponding atomic model Ci,j (figure 7). Border conditions of the tissue consist
in a null flux and diffusion coefficient K has been set such that the propagation
velocity is physiologically coherent.

4.1.1 Healthy tissue

Using tissue definition as previously described, square simulated tissues of 256 x
256 cardiac cells defined by Beeler and Reuter model (representing approximately
10 x 10 mm) have been implemented. Propagation of the action potential is shown
in figure 8; it corresponds to a planar depolarization front propagating from left to
right.
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Figure 9: Dipolar projection for a healthy tissue over the propagation axe

Figure 9 represents the equivalent dipolar projection over the propagation axe.
Although it cannot be considered as an electrocardiogram (ECG) or an electrogram
(EGM), some ECG’s markers are present: QRS complex during depolarisation or T
wave during repolarization.

The three synchronisation methods proposed in the previous section have been
evaluated. Using fixed step synchronisation and adaptive simulation of atomic sub-
models (figure 5) instead of fixed step simulation and synchronisation (figure 4)
shows a calculation time decreased by a factor of 8.8. Using adaptive synchronisa-
tion (figure 6) shows gains of a factor of 27.3. It is to note that this last method
allows to take into account different dynamics occurring during the action potential
propagation. Figure 10 represents action potentials for the first and the last column
of the tissue with the corresponding synchronisation steps. Steps are small dur-
ing depolarisation, which presents fast dynamics, whereas they are more important
during repolarisation where variations are slower.

4.1.2 Ischemic tissues

The previous definition of healthy tissues can easily be adapted to define other
types of tissues and, in particular, ischemic tissues. In this example, some atomic
models representing the Beeler and Reuter model on the middle of the tissue have
replaced by the model proposed by Sahakian41 that reproduces the dynamics of
ischemic cells. The model structure, the simulator and the coupling methods are
generic and remain applicable.

Different degrees of ischemia (20%, 40%, 60%) have been introduced for the cen-
tral cells. A gradient of potassium concentration ([K+]) from normal to pathologic
levels has been defined so as to produce a gradual difference of resting potential and
avoid spontaneous depolarizations. Figure 11 represents depolarization fronts for
different instants. Analysis of these fronts corresponds to observations made in is-
chemic pathology43: i) quicker depolarization at the border zone; ii) depolarization
block at the center of the ischemic zone; iii) modification of the depolarization front
in the shadow of the ischemia and iv) quicker repolarization of ischemic cells.
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Figure 10: a) Action potentials for the first and last column of cells in a healthy 2D tissue.
b) Evolution of the adaptive simulation/synchronisation step δt for the global simulator.
Note that the smallest δt values are used only during the depolarization of the whole tissue
(indicated with the arrows). Once the first row of cells starts repolarizing, showing slower
dynamics, the value of δt is progresively increased
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Figure 11: Depolarisation fronts for tissues presenting a) 20%, b) 40% and c) 60% of ischemic
cells

Using the same approach as such presented for 2D tissues, 3D tissues can be de-
fined in a straightforward manner, such as in figure 12, which represents the propa-
gation of the depolarization front in a cube of 64 x 64 x 64 cells (2.5 x 2.5 x 2.5 mm),
with a central ischemic region. This approach can be directly used to define a given
anatomical geometry representing both ventricles, or the whole heart. However, al-
though the proposed co-simulation approach presents lower simulation times than
classic, centralized approaches, this exhaustive representation at the cellular level,
based on continuous models still requires significant computational resources. This
point is clearly a limitation of the continuous monoformalism approach. The next
subsection concerns precisely the definition of equivalent multiformalism models that
help to reduce these computational resources.

4.2 Multiformalism models of cardiac tissues

In this section, hybrid tissues, composed of both continuous and discrete atomic
submodels, have been defined. Peripheral cells in the tissue are represented by
cellular automata and central cells by continuous models, such as depicted in fig-
ure 13. The coupled model structure is similar to those previously presented for the
monoformalism case.

A convenient discrete atomic model of the electrical activity of cardiac cells has
been developed in our laboratory44. This model is composed of four physiological
states corresponding to the different phases of an action potential (figure 14): i) idle,
ii) rapid depolarization, iii) absolute refractory period and iv) relative refractory
period. These automata possess two main dynamical properties: refractory period
dependence to the stimulation frequency as well as the response to premature ac-
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t1 t2 t3

Figure 12: Extension of the proposed approach to the 3D case. Example of the propagation of
depolarization front for a 3D tissue presenting an ischemic central region. An acceleration in
the borders of the ischemic region is visible at instant t = 2ms, alteration of the propagation
front behind the ischemic area is observable at instant t = 4ms and repolarisation of ischemic
cells has begun at t = 6ms
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Figure 13: General scheme of multiformalism tissues
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Figure 14: Different states of each myocardial cellular automata. Each state corresponds to
a tissue-level physiological state: idle (resting potential), UDP rapid depolarization, ARP
absolute refractory period and RRP relative refractory period

tivations44. In order to cope with spatial coupling problems, this model presents a
continuous output (O in (1)) defined by a piecewise linear interpolation of a Beeler
and Reuter action potential (figure 15).

In such hybrid tissues, as previously introduced, the main issue lies in the defini-
tion of a spatial coupling method that guaranties action potential propagation and
especially at the interface between models of different formalims. As a reminder,
coupling is performed by a Laplacian seen as an external current, as previously
implemented for continuous models, while it is done by transmission of a flag for
discrete models18. Spatial coupling of such hybrid models concerns precisely the
definition of a link between those two approaches.

In order to cope with this problem, we propose a new multiformalism coupling
method for cardiac electrical activity, based on the definition of a novel coupling
function CoupF.

. Let CF.
i,j be an atomic cell component of a cardiac tissue, defined

by formalism F. (where F. can be continuous Fc or discrete Fd). The generic coupling
behaviour (membrane potential, Vi,j) can be extended from (6) as follows:

Vi,j is given by GF.
(Pi,j) + CoupF.

(K · ▽2V ) (8)

where GF.
is a function of parameters P (either for the discrete or continuos model),

CoupF.
is the coupling method defined and K is the diffusion coefficient as defined

in (6). The coupling method can be defined as follows:

CoupF.
=

{

thres if the cell model is discrete(F. = Fd)
id if the cell model is continuous(F. = Fc)

(9)

where id is the identity function (coupling method as previously introduced for con-
tinuous models) and thres is a threshold function setting external activation for the
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Figure 15: Continuous output of cellular automata obtained by a piecewise linear fitting of a
Beeler and Reuter model

cellular automata if the input is greater than the limit value obtained previously
(3.5 mA). Depolarisation of a Beeler and Reuter model has been studied for differ-
ent values of input current, and it has been shown that there is a minimum value
(3.5 mA) above which depolarisation occurs. This threshold has been retained for
activation of discrete models.

4.2.1 Healthy tissues

Action potential propagation on healthy tissues has been studied for three types
of models:

• the continuous monoformalism model (BR) defined by Beeler and Reuter cells
presented in the previous section (used as reference);

• a monoformalism discrete tissue model (CA) defined by cellular automata;

• a hybrid model (CABR) where peripheral cells are discrete and the 64 x 64
central cells defined by Beeler and Reuter model.

Depolarization fronts for these three different models are presented in figure 16.
The differences between the simulations obtained from these three models are pre-
sented as point to point absolute error between the reference (BR) tissue and the
other tissues (figure 17). This error is mainly due to the morphological differences
between the outputs of discrete and continuous atomic models and the fact that
discrete information is used to propagate the wavefront through cellular automata.
However, in all cases the global physiological behavior at the tissue level (conduction
velocity, propagation properties, etc) is preserved.

Using a hybrid approach instead of a monoformalism one reduces up to 4 times
the computation times. In total, a gain factor of 90 is observed using a hybrid
model with adaptive synchronisation when compared to a continuous tissue with
fixed stepped simulation and synchronisation.
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Figure 16: Depolarisation fronts for healthy tissues: a) monoformalism continuous BR tissue,
b) monoformalism discrete CA tissue and c) hybrid CABR tissue. The global physiological
behavior at the tissue level (conduction velocity, propagation properties, etc) is equivalent for
the three models

t1 = 4 ms t2 = 8 ms t3 = 12 ms t4 = 16 ms

a

b

0 mV

0 mV

45 mV

45 mV

Figure 17: Point to point absolute error for healthy tissues: a) between BR and CA and b)
between BR and CABR. These differences are mainly due to the different morphologies of the
action potentials of discrete and continuous models (see figure 15)
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Figure 18: Depolarisation fronts for ischemic tissues: a) BRIsch tissue, b) CAIsch tissue

t1 = 4 ms t2 = 8 ms t3 = 12 ms t4 = 16 ms
0 mV

45 mV

Figure 19: Differences between depolarisation fronts for ischemic tissues

4.2.2 Ischemic tissues

Ischemic tissues have also been simulated in both continuous (BRIsch) and hybrid
(CAIsch) cases (figure 18). The typical behaviour of ischemic tissues is simulated
in both cases, with abnormal and incomplete depolarisation in the ischemic zone,
quicker depolarisation at the border, depolarisation block at the center, modification
of the depolarisation front in the shadow of the ischemia and quicker repolarisation.

Point-to-point differences are also presented in order to quantify the alteration of
the simulation using the hybrid approach instead of the continuous one (figure 19).
Although differences appear in the shadow of the ischemia, due to differences in
morphologies as well as quantification of the coupling term for discrete submodels,
these results show a sufficiently approached response for a global clinical description.

4.3 Multiformalism and multiresolution model of the cardiovascular sys-

tem

The analysis of the autonomic nervous system (ANS) activity and, particularly, of
the way it modulates the cardiovascular system has been shown to provide effective
markers for risk-stratification and early detection of cardiac pathologies45,46. In
clinical practice, the analysis of the ANS is commonly performed by applying a set
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of tests called autonomic maneuvers. However, the interpretation of these tests can
be very difficult, due to the multidimensionality of the observed phenomena, and
the fact that the complex mechanisms involved in the autonomic regulation of the
cardiovascular system are not fully understood. Physiological models can be of a
particular interest in this context.

In this section, we present a model-based approach for the analysis of the short-
term autonomic regulation of the cardiovascular system. The proposed model takes
into account the following subsystems: i) the cardiac electrical activity ii) the car-
diac mechanical activity (and the electro-mechanic coupling), iii) the circulatory
system and of course iv) the autonomic baroreflex loop, including afferent and ef-
ferent pathways. Although different models have been proposed in the literature for
each of these components, treated independently, only a few models combining all
three components have been proposed. One of the difficulties for the development
of such a model is related to the fact that different energetic domains are involved
in the cardiovascular system function and its regulation. As shown in figure 2, dif-
ferent formalisms can be used to create the model in order to take into account this
variety of energy domains and consider the different sub-systems that constitute the
CVS. In this work, we combine the following formalisms into a global model of the
short-term regulation of the cardiovascular system:

• the Bond Graph formalism, because it facilitates both the integration of dif-
ferent energy domains (e.g. hydraulic and mechanic) and the construction of
a global system of the CVS47;

• continuous ODEs, for the representation of the electrical activity at the cellular
level;

• continuous transfer functions are employed for the representation of the dif-
ferent modules of the autonomic baroreflex;

• discrete cellular automata, to reproduce the cardiac electrical activity at the
tissue-level.

The proposed multiformalim modeling approach has thus been particularly use-
ful for the definition of the model. Moreover, in order to better represent some
pathophysiological mechanisms, different resolutions of the vascular system and the
ventricular models have been proposed in a multi-resolution model. The following
sections will present each of the model components, their integration in a global
model, and simulations for the analysis of Valsava maneuvers and Tilt tests.

4.3.1 Model of the ventricles

The cardiac contraction is at the origin of the transport of blood in the circula-
tory system. At the scale of cardiac cells, the contraction is due to the shortening
and lengthening of sarcomeres, which are the elementary mechanical contractile ele-
ments. This mechanical activity is under the influence of an electrical activity, since
the variation of the calcium concentration during the action potential allows the
development of force in the sarcomere.
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Different models of the ventricular contraction have been presented in the litera-
ture. The most detailed models are often based on a network of connected (finite)
elements that allow a relatively precise description of the structure and function
of the myocardium. As already stated, these models are difficult to use in clinical
practice, mainly due to the computing resources required. Simpler models of the
ventricular contraction have also been presented, representing each ventricle as a sin-
gle adaptive elastance48–50. The main advantage of this approach, which is related
to their low computational costs, is the fact that they can be easily integrated into
a model of the complete CVS. This kind of model has also been shown to provide
a satisfying behaviour in response to physiological variations51 (change of position,
temperature, physical activity. . . ). However, although these models provide good
global descriptions of the contraction, the influence of calcium concentration during
the contraction process and the regulation by the ANS are not taken into account
and, since the ventricle is represented with a single element, intra-ventricular desyn-
chronizations cannot be represented.

In order to overcome these limitations, we have chosen to include a description
of the electro-mechanical process, keeping the simplified representation of the ven-
tricles provided by the elastance model. As a first approximation, the Beeler and
Reuter model40, already presented in this chapter, has been used, as it presents a
basic description of the intracellular calcium dynamics while keeping a low level of
complexity. However, the BR model cannot be directly implemented under the Bond
Graph formalism, due to its non-linearity and the strong interdependence between
the state variables. This model has thus been implemented as a set of ordinary
differential equations and coupled with the Bond-Graph model of the circulation by
means of the proposed multiformalism approach.

The intracardiac calcium concentration variable of the BR model is used as input
to a model of development of mechanical force in the cardiac muscle fibers. The
model proposed by Hunter et al 52 has been chosen because it gives a geometrical
description of the cardiac contraction of the fibers. The stress in the fiber axis is
obtained by adding these passive and active tensions:

Tfiber(l) = Tactive(l) + Tpassive(l) (10)

The active tension is defined as being dependant on the fibre strain (l) and the
calcium concentration [Ca2+], in the following manner:

Tactive(l) = Tref(1 + β0(l − 1)).
([Ca2+])h

([Ca2+])h + Ch
50

(11)

where Tref is the reference tension at l = 1, [Ca2+] represents intracellular cal-
cium concentration dynamics, obtained from an electrophysiological model of car-
diac cells40, C50 is the intracellular calcium concentration at 50% of the isometric
tension, h is the Hill coefficient and β represents the myofilament ”cooperativity”
term. In the Bond Graph representation, this tension has been modeled by two ca-
pacitive elements: one for the passive properties of the muscle and one for the active
properties. The dynamics of each capacitive element are described by equations 10
and 11. A 1-element is used to join the two capacitive elements because the total
tension in the axis of the fiber is the sum of two tensions (see figure 20).
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Figure 20: Bond Graph model of the ventricle and its coupling with the BR action potential model

The rise of the force and the variation of the fiber length lead to variations of
ventricular pressure and, thus, to the ventricular contraction. In this approach,
the ventricle is assumed to be made of concentric rings of muscular fibers. So the
ventricular pressure depends only on the tangential tension, which corresponds to
the fibers axes. An empirical relation between fiber force and ventricular pressure
has been proposed by Diaz-Zuccarini53, in which the ejected volume V is defined as
a function of the fiber strain l by:

V = Aln (12)

where the values of A and n are empirically defined. This approach has been shown
to provide simulation results that are coherent with physiology53. Neglecting energy
losses of the ventricular contraction, the same empiric law holds to describe the
relation between the fiber force and the ventricular pressure. As a result, the change
of energy domain from mechanics to hydraulics can be described by a transformer
implementing equation 12. A Bond-Graph representation of the model is shown in
figure 20.

4.3.2 Model of the circulatory system

The circulatory system is composed of the systemic and the pulmonary circu-
lations that respectively transport blood to bring the nutrients and oxygen to the
organs, and permits the oxygenation of blood in the lung. These vascular systems
are composed of different kinds of vessels called arteries, capillaries and veins. As
proposed by other authors54, a segment of a vessel is modeled in this work as an RCL
circuit, representing the resistive, capacitive, and inertial properties of a given vessel
segment. Each segment is directly represented using the Bond-Graph formalism.
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Figure 21: Bond Graph model of the circulation: a) a simple model distinguishing the pulmonary
and systemic circulation b) a more detailed model differentiating the systemic circulation on the
head, the abdomen and the legs

A number of segments of this kind are connected in series in order to model the
whole circulatory system in a global, lumped-parameter representation. In order to
analyze data from different autonomic tests, two configurations, showing different
resolutions of the vascular system, have been proposed: a simple configuration dis-
tinguishing only the pulmonary and systemic circulation (figure 21.a) and a more
detailed representation in which the model of the systemic vascular tree has been
divided in three parts (the head, the abdomen and the legs) (figure 21.b). The for-
mer configuration is adapted to the analysis of autonomic tests in supine position
(such as the Valsalva manoeuvre), while the latter can be used to study orthostatic
responses (such as the tilt test). The heart valves are modeled as non-ideal diodes
using modulated resistances. The atria are modeled as constant capacitances (fig-
ures 21a and 21b). The ventricular model described in the previous section is used
for the left and right ventricles.

The parameter values used in the model come from the literature55,56. For exam-
ple, the values of the parameters of the aorta are: C=0.2199 ml/mmHg, R=0.0675
mmHg.s/ml and I=0.000825 mmHg.s/ml.

4.4 Model of the ANS

The autonomic nervous system (ANS) is the component of the nervous system
that acts as the main modulator and control mechanism of internal organs, adjusting
their activity to the requirements of the body as a whole and preserving homeostasis
(rising the heart rate during exercise, for example). The short-term regulation of
the CVS is mainly performed by the baroreceptor loop that plays an important role
in blood pressure control, adjusting mainly the heart rate, heart contractility, and
vessels constriction in order to maintain the systemic arterial pressure level within
the physiological range. This adjustment is done by the two components of the
ANS: the sympathetic and the parasympathetic systems.
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Figure 22: a) components of the ANS model b) structure of each ANS regulation component

Models of the ANS are typically based on a continuous transfer function for-
malism describing the different sub-systems that can be associated to an entity of
the cardiovascular control57,58. Many of such models59,60 are based on a common
structure, composed of delays and first order filters, allowing the description of the
different response times of the sympathetic and the parasympathetic systems. The
Van roon model59 has been retained in this work and coupled with the ventricular
and the circulatory models proposed in the previous sections. This model takes into
account the baroreflex, the cardiopulmonary reflex, with a separated representation
for the baroreceptors, the pulmonary receptors, the Nucleus Tractus Solitarii (NTS)
and the sympathetic and parasympathetic systems.

Four variables are controlled by this ANS model, by means of specific efferent
pathways: heart rate, cardiac contractility, systemic resistance and venous volume
(figure 22.a). The heart rate depends on the action of both the sympathetic and the
parasympathetic systems. The contractility of the heart, the systemic resistance,
and the venous volume are only under the influence of the sympathetic system. Each
efferent pathway is based on the same model structure, composed of a delay and
a first order filter, representing the particular neurotransmitter dynamics of that
pathway (figure 22.b). The ANS model is coupled to the CVS by injecting in the
latter the four previous controlled variables in the following way:

• Regulation of heart rate: The output signal of the heart rate regulation
model is continuous. To obtain pulsating blood pressure, an IPFM (Integral
Pulse Frequency Modulation) model is used, because it transforms a continu-
ous input signal into an event series61. The input of the IPFM model is the
output signal of the heart rate regulation model. The output of the IPFM al-
lows the excitation of the BR model of electrical activity. Each emitted pulse
results in an increase of calcium concentration.

• Regulation of cardiac contractility: The Tref parameter (equation 11)
of the active tension of cardiac fiber can be considered to be an indicator of
cardiac contractility. In this sense, we have replaced the Tref definition in
equation (11) by the output signal of the contractility regulation model.

• Regulation of systemic resistance: The value of the parameters of the
systemic resistance is replaced by the output signal of the resistance regulation
model.

• Regulation of venous volume: The constitutive relation of the venous
capacity depends on the unstretched volume Vo. The value of Vo in the venous
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capacity is replaced by the output signal of the venous volume regulation
model.

4.5 Simulation of the cardiovascular response to autonomic maneuvers

Two of the most common autonomic maneuvers are the Valsalva maneuver62

and the Tilt test63. These maneuvers are based on the controlled modification
of one cardiovascular variable, in order to observe the regulatory response of the
ANS. Different observations, such as the electrocardiogram (ECG), the noninvasive
systemic arterial pressure (SAP) or the respiration, are acquired concurrently, to
better characterize this autonomic response. In this section, the proposed model
of the CVS and its regulation by the autonomic nervous system is used to obtain
simulations of the main observed variables during these two kinds of autonomic
maneuvers. The simulations will be compared to actual physiological data acquired
in our laboratory.

4.5.1 The Valsalva Maneuver

The Valsalva Maneuver is a non-invasive, non-pharmacological autonomic test,
which is based on a forced expiration, to increase the intrathoracic pressure. In this
protocol, the subject is placed in supine rest and asked to breath out through a
bugle connected to a pressure measurement system. The subject is asked to main-
tain a pressure of around 30 to 40 mmHg for a period of 15 seconds, after which
a complete expiration is made. The Valsalva maneuver consists of 4 phases. The
forced expiration causes an initial increase in blood pressure, and a slight increase
in heart rate, due to the augmented intrathoracic pressure (phase I). During phase
II, the augmented intrathoracic pressure reduces the volume of cardiac chambers
(mostly the right heart), preventing cardiac filling and reducing the stroke volume
and aortic pressure. This effect produces an unloading of the baroreceptors and an
activation of the sympathetic nervous system, starting to increase heart rate and pe-
ripheral vasoconstriction to balance the decreased aortic pressure. After expiration
(phase III), a further sudden drop of aortic pressure is produced by the reduction in
intrathoracic pressure. However, due to the effect of autonomic activation in phase
II and the progressive restoration of hemodynamic conditions, the aortic pressure
starts to rise. In phase IV, before reaching a normal physiological value, the blood
pressure rises well above the original levels (overshoot phase), causing the loading
of the baroreceptors and a vagal autonomic activation that leads to an abrupt drop
in heart rate64.

For the simulation of a Valsalva maneuver, the simplest model of the circulation
is used. The transmural pressure of thoracic vessels and of the cardiac cavity (ven-
tricles, atria) is raised to simulate an augmentation of the intrathoracic pressure to
a value of 40 mmHg. The model is simulated during 15 seconds, in order to obtain
the heart rate and blood pressure signals. The obtained simulated signals are thus
compared to real signals, acquired from normal subjects by using a ”Task Force
Monitor” acquisition system (CNSystems, Graz, Austria).

Figures 23.a and 23.c show simulated signals and figures 23.b and 23.d present real
data. In general, and from a qualitative standpoint, the model seems to reproduce
the main cardiovascular behaviour during a Valsalva maneuver. It is possible to
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Figure 23: Simulation of the response of the CVS to a Valsalva maneuver for blood pressure a)
and heart rate c), real data of blood pressure b) and heart rate d)

recognize the four typical phases of the Valsalva maneuver on both the simulated
and observed signals. Blood pressure dynamics reveal the rise during phase I, an
increase and a decrease in phase II, a short fall in phase III and the return to
normal conditions in phase IV. Note the consistent simulation of the overshoot
period on phase IV. Heart rate dynamics are also consistent with the physiology,
a slow increase of heart rate during Valsalva, which is followed by a decrease after
expiration. However, it is possible to observe some differences between simulations
and real data. They are mainly due to the fact that the parameters values used in
these simulations are those presented in the literature, and were not adjusted for
individual subjects.

4.5.2 Tilt Test

The head-up Tilt test focuses on the short-term regulation of the mean arterial
blood pressure (MABP) by the ANS. It is usually employed for the detection of
vasovagal syncope and consists of observing the variation of heart rate and blood
pressure during the change of a patient’s position from a supine to a head-up posi-
tion. During tilt, approximately 300 to 800 ml of blood may be shifted into the lower
extremities, leading to a reduction of venous return and hence of stroke volume. In
normal subjects, a decrease in the MABP causes the unloading of arterial barore-
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Figure 24: Comparison of simulated and observed data during a tilt test. Simulated blood pressure
a) and heart rate c), real data of blood pressure b) and heart rate d)

ceptors, providing a sympathetic activation that leads to enhanced chronotropism
(increased heart rate), inotropism (increased ventricular contractility) and periph-
eral vasoconstriction. A balance is established between heart rate and contractility
to maintain the cardiac output and MABP in physiological levels.

To simulate a tilt test, the second version of the model (differentiating the head,
the abdomen and the legs) is used, in order to represent a pressure gradient on the
systemic circulation. During a tilt test of a normal subject, an increase of the MABP
of the order of ∆P = 25 mmHg and ∆P = 50mmHg are typically observed for the
abdominal and leg circulations, respectively, while a decrease of ∆P = -30mmHg
is measured at the level of the head. These values have been used to simulate a
tilt test with the model, by introducing a modulated source of pressure in each
compartment. Figures 24.a and 24.b show the simulated and the observed systolic
blood pressures, as measured in the lower part of the body. It is possible to observe
a sudden rise of blood pressure after the tilt, followed by a smooth decrease, due
to autonomic regulation. Then, the pressure increases slowly. The influence of the
autonomic regulation on heart rate is also studied. Figures 24.c and 24.d compare
the simulated and the observed heart rate. It is possible to observe that the heart
rate augments abruptly after the tilt, and slowly decreases when the blood pressure
approaches its physiological values.
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5 DISCUSSION AND PERSPECTIVES

Modeling can be seen as a major tool in order to integrate knowledge, to drive
experiments, to optimize measurements in biological and clinical research. A key ob-
jective behind modeling is also, by determining the deviations of model parameters in
pathological states from their normal behaviors, to conjecture the reverse process, in
other words, to derive ways to go back from abnormal to normal states and to assist
in pathology diagnosis and the definition of optimal therapeutic actions. Coupling
multiformalism and multiscale models are among the most challenging problems to
address in order to apply this model-based approach to real-life situations.

An original generic approach for multiformalism modeling has been presented in
this chapter, allowing the combination, in a single global model, of different types of
models defined by different formalisms with proper spatial and temporal scales. This
approach has been defined to cope with submodels characterized by wide ranging
spatial and temporal dynamics and thus represents an initial step towards a feasible
multiresolution framework for clinical applications. Examples of the application
of this multiformalism approach have been shown, with models covering different
scales:

• Models of the cardiac electrical activity presented in sections 4.1 and 4.2 inte-
grate levels from cell to tissue. Different cardiac electrophysiological properties
have been simulated in different types of tissues, showing the interest of the
definition of hybrid, multiformalism models.

• The model of the cardiovascular system and its modulation by the autonomic
nervous system presented in section 4.3 is an example of integration from tissue
to system levels. It also shows the application of a multiresolution modeling,
led by the clinical application of interest.

Validation results in both cases have highlighted that the qualitative clinical in-
terpretations are preserved while using multiformalism models. Experiments have
also shown a reduction of the computing time by a factor up to 87.3 while using mul-
tiformalism models with the proposed temporal synchronisation methods instead of
classical monoformalism simulation with fixed step integration. Though satisfactory,
these results are still not sufficient for practical use in a clinical context.

As has been pointed throughout this chapter, most of the issues to deal with are
very challenging and require an important international research effort. It is our
feeling however that this is only a limited part of the whole landscape. Let us look
forward to what should be explored in the near future. This we will do by revisiting
a classical and fundamental epistemological loop (figure 25), familiar to experimen-
talists (especially biologists and physicists). This iterated loop applies of course
to many research domains dealing both with artificial (human-made) and natural
systems but is, in our experience, much more complex for living systems. A unidirec-
tional traversal of this loop may seem evident. We start with a hypothesis (intuition
or idea), design the experimental platform and a specific protocol that hopefully
allow testing it, define the sensing devices required, process the data and interpret
the results. This straitghtforward path, where a number of internal connections are
not represented, is much more difficult to define than we first imagined.
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Figure 25: The iterated loop

It must be recognized, for instance, that when looking back to biomedical re-
search some decades ago, engineering science investigations were, in the best cases,
driven by the questions formulated by physicians using standardized medical proto-
cols. The research work was then focused on the ways to process the observations,
to extract the information capable of automatically assisting the clinician in diag-
nosis (e.g mainly pattern recognition and classification methods). This situation is
defined by the connection between sensing and processing, no feedback being most
often considered, and the interpretation was left to the medical doctor. Such ap-
proach has been characterized as ”descriptive analysis”, ”surface processing”65,66

emphasizing that a very limited knowledge of the underlying mechanisms was used.
It was expected that the identification of the signal waveforms, their time and space
distributions would be enough to discriminate the pathologies and rightly classify
patient-specific features. This trend is still in place in engineering science. It is
frequent to see how an emerging mathematical method (wavelets in signal process-
ing, level sets in image analysis and many others) leads to a flurry of new papers
in the biomedical literature. These may bring new cues in detection, estimation,
recognition, etc. but they will never be able to better understand the mechanisms
behind these patterns.

This is where the modeling approach enters into our basic loop. It means that
the objective is to interpret, at least partially, the observations in terms of phys-
iological variables that govern or are involved in some way in the appearance of
normal or disease states. In other words, the medical interpretation is expected to
be based on objective links with the underlying processes. Achieving this is not
obvious because it requires an in-depth knowledge of cellular components, organiza-
tion, etc. and their functional behavior. It means that inter- or multi-disciplinarity
is mandatory, which, even today, is not so easy. The science of modeling is not
at all new, and many researchers have played an important role in the past with-
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out having sometimes neither the capacity to build the experimental set up they
would have liked nor the computer ressources to numerically simulate the models
they defined. Omitting the work devoted to ”knowledge engineering”, which were
generally more interested in reproducing clinical reasoning, mathematical modeling,
as we have seen, is not an open loop and is not restricted to diagnosis. As soon as
there is a feedback to observational data (arrow from modeling to sensing), it calls
for inverse problem solutions, reconstruction and identification methods, which are
often ill-posed problems.

The remaining segments of our loop are inspired by biology and physics. The
general approach in these disciplines consists, based on a sound hypothesis, to build
from scratch the experiments that will allow verifying or refuting this hypothesis.
It might take time to precisely define such experimental platforms and protocols.
The difference here is that the generation of hypotheses can be driven by the models
already in hand in order to formulate new assumptions, estimate hidden variables,
etc. In short, models can drive hypothesis generation and experimental design, and
this aspect will be of major importance in the face of the huge amount of pieces of
knowledge that is acquired everyday.

However, we summarize up to now a somewhat classical framework. What must
be the future, is specified by incorporating the ”multi-modal”, ”multi-level”, ”multi-
scale” paradigms together. What does this mean? Only that they have to be ad-
dressed simultaneously at all stages: when designing the platforms and experiments,
performing the data acquisition, deriving the proper processing and the modeling.
We will give some examples that motivate our views.

The ”multimodal” approach has been applied in medical imaging for some time.
It takes two different aspects:

• the sequential observations of the same organ using different physical tech-
niques: for instance, MRI (Magnetic Resonance Imaging), Multidetector CT
Scanner and PET. Each source is supposed to bring specific and complemen-
tary information (morphological and functional, for instance) that allow re-
fining the diagnosis for a given patient. In such cases, registration methods
(for rigid and non-rigid transformations) play an important rôle by referenc-
ing all the data sets in the same coordinate space. This is often carried out a
posteriori.

• Integrated acquisition: here, it is expected that the observations will be ac-
quired simultaneously and allow access to some or all of the variables that de-
termine and characterize a specific object (e.g protein, cell, organ, system,...).
There is no need anymore for registration techniques and time resynchro-
nizations which necessarily introduce more errors, even if these are somewhat
reduced. This trend can be observed in medicine with the merging of CT-
Scanner and PET.

Having said that, we are still far from explaining what we have in mind. ”Mul-
timodal” for us means the capability to acquire most of the variables of interest
(mechanical, electrical, chemical, optical, etc.) from the same device, at the same
time. ”Multimodality” is then achieved a priori. Such devices are far from being
available.
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The next step, to highlight what we mean by ”multiscale” over time, is to give
them the potential to handle very fast as well as very slow processes. As presented
in this chapter, the time scales to be dealt with range from submilliseconds to hours
and days or more. This is crucial in a number of situations where micro-events
may occur and explain fine mechanisms which will have, at the same time, long-
term consequences. These micro-events are also eventually repeating from very
distant, rare, abnormal temporal patterns and, if not measured, their interpretation
can be strongly biased. The so-called ”Holter” recording system for long-duration
monitoring in cardiology has been designed to answer such needs while preserving
the ordinary context of the patient. There is a serious effort made in that direction
in biomedical signal recording but not, to our knowledge, in imaging.

Last but not least, the ”multilevel” dimension. Although there are already a few
techniques that can independently span several levels, much remains to be done. A
good example of the current technology is given for the exploration of the brain.
For macroscopic studies, we have the EEG (electroencephalogram) and the MEG
(magneto-encephalogram), both being non-invasive and offering a way to embrace
whole brain activities, either spontaneous or stimulated. At the mesoscopic level, the
SEEG (stereo-electroencephalogram, resulting from the implantation of depth elec-
trodes in the brain) or ECoG (electro-corticogram, with electrodes set at the surface
of the cortex) allow getting regional or populational neuronal signals. Continuing
toward smaller sets of neurons, either micro-electrodes or multiple microelectrode
arrays are available. These techniques can be combined (SEEG with MEG) and
thus bring joint multilevel views. They can also be coupled with optical devices in
order to track other physiological variables.

There is no doubt that the sources providing signals and images in living systems
will continue to improve in space and time resolution (high field MRI, high speed
tomodensitometry, multiphotonic imaging, etc.) and will lead to more detailed
structural and functional analysis. The theoretical advances that can be anticipated
in mathematical modeling and information processing are another major component
toward the understanding of complex systems. Together, they will open new paths,
but thinking in ”multi-dimensions” (”modality”, ”level”, ”formalism”, ”scale”, etc),
as shown, is the definitive challenge for tomorrow.
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