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Abstract: Iterative algorithms such as ML-EM become the standard for the reconstruction in emission 

computed tomography. However, such algorithms are sensitive to noise artifacts so that the reconstruction 

begins to degrade when the number of iterations reaches a certain value. In this paper, we have investigated a 

new iterative algorithm for penalized-likelihood image reconstruction that uses the fuzzy nonlinear anisotropic 

diffusion as a penalty function. The proposed algorithm does not suffer from the same problem as that of 

ML-EM algorithm, and it converges to a low noisy solution even if the iteration number is high. The fuzzy 

reasoning instead of a nonnegative monotonically decreasing function was used to calculate the diffusion 

coefficients which control the whole diffusion. Thus, the diffusion strength is controlled by fuzzy rules 

expressed in a linguistic form. The proposed method makes use of the advantages of fuzzy set theory in 

dealing with uncertain problems and nonlinear anisotropic diffusion techniques in removing the noise as well 

as preserving the edges. Quantitative analysis shows that the proposed reconstruction algorithm is suitable to 

produce better reconstructed images when compared with ML-EM, OS-EM, Gaussian-MAP, MRP, TV-EM 

reconstructed images. 

 

Keywords Fuzzy, Nonlinear anisotropic diffusion, Positron Emission Tomography (PET), Image 

reconstruction, Maximum likelihood-expectation maximization (ML-EM) 

 2

H
A

L author m
anuscript    inserm

-00183785, version 1



1 Introduction 

Iterative image reconstruction methods have attracted considerable attention in the past decades for 

applications in positron emission tomography (PET) due to the feasibility of incorporating the physical 

and statistical properties of the imaging process more completely [4, 25]. So far, all statistical 

reconstruction algorithms are based on the maximum likelihood (ML) or the least squares cost function. 

The maximum likelihood-expectation maximization (ML-EM) algorithm [31], which is a general 

statistical method for seeking the estimate of the image, allows computing projections that are close to the 

measured projection data. Iterative based ML reconstruction algorithms nevertheless require a 

considerable computational cost per iteration. An accelerated version of the ML-EM algorithm, the 

ordered subsets EM (OS-EM) was proposed by Hudson et al. [21] to significantly improve the 

convergence speed in the PET reconstruction. This ordered subset principle has been then exploited in 

many algorithms for the same objective.  Let cite for instance the rescaled block-iterative EMML 

algorithm (RBI-EMML) [7], the row-action ML algorithm (RAMLA) [6], the complete-data OSEM 

(C-OSEM) [19] or the paraboloidal surrogates (PS) method (OS-SPS) [1]. 

Generally speaking, the tomography reconstruction with a limited number of data appears as a highly 

underdetermined ill-posed problem. The projection data generated by the PET system are initially noisy 

and the ML algorithm tends to increase this noise and in particular the noise artifacts through the 

successive iterations. This accumulation of noise leads to a premature stopping of the ML-EM 

reconstruction process. Several methods have been developed to decrease this accumulation of noise and 

improve the quality of the reconstructed images in tomography [32, 9, 23, 15]. Some include a penalty 

function (they are also called regularization techniques) to control the noise propagation and produce a 

satisfactory reconstruction. This is the case of the Maximum a Posteriori (MAP) algorithm based on the 

Bayes theorem [17, 18, 12]. The MAP solution can be found by combining the Poisson likelihood 

function with the image prior. MAP algorithms lean on local characteristics such as the nearest neighbor 

correlation or the homogeneity in the local neighborhood to decrease or remove the noise and smooth the 

reconstructed image. The one-step-late algorithm, introduced in the field of image reconstruction by 

Green [18], has the particularity to exploit the previous iteration to compute prior coefficients. The MAP 
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estimation allows the introduction of a prior distribution which reflects the likelihood of the estimate. 

However, if no prior distribution is available, another solution is to design an edge-preserving image 

mode as a prior distribution. A wide variety of methods have been reported in the literature that include 

edge-preserving techniques such as the Gibbs prior [17], entropy prior [12], median root prior (MRP) [3, 

9, 32], Huber prior function [9, 14] and total variation (TV) prior [27]. The Gibbs prior assumes the 

Markov random field distribution for emitted photons. The entropy prior is based on the classical 

Boltzmann statistics for emitting particles (atoms or molecules) [12]. The MRP assumes that the unknown 

image is locally monotonic, i.e., the pixel values are spatially non-increasing or non-decreasing in a local 

neighborhood. This kind of method may not be very accurate in some cases [9], but is suitable to use 

when the image resolution is high. The Huber prior function proposed by Fessler [14] has a shape similar 

to the log (cosh (t)) used by Green [18]. It provides accurate and low noise images, but the parameters 

(the regularized parameter β and threshold parameterδ ) may be difficult to determine. Panin et al. [27] 

shown that the TV-EM algorithm using the total variation as a penalty term, was quite effective for 

SPECT. Nevertheless, the TV penalty term may include some bias in the reconstruction and reduce the 

contrast of the resulting image [27]. Another class of iterative image reconstruction methods made use of 

the weighted least squares (WLS) method [4, 13]. Recently, Anderson et al [4] developed a WLS 

algorithm and demonstrated that this algorithm converged faster than the ML-EM and produced images 

that were significantly of better resolution and contrast. 

  Since the introduction of fuzzy set theory by Zadeh in 1965 [36], the fuzzy theory and applications 

have been rapidly developed in the areas of image processing and computer vision, such as filtering [33], 

enhancement [30], and segmentation [24]. However, there is few research dealing with emission 

tomography problems until recently. A fuzzy clustering-based segmentation technique was applied in [37] 

to segment the transmission images into the main anatomical regions of the body in terms of the 

corresponding attenuation coefficient values. This approach allows to reduce the noise in the correction 

maps while correcting for attenuation coefficients of specific tissues. In [26], a fuzzy rule was included in 

a MAP algorithm, where the potential function was modeled on the basis of fuzzy derivatives and fuzzy 

rules. It was shown [26] that the method is very effective to remove the noise without destroying the 
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useful information contained in the reconstructed image. 

The aim of this paper is to propose a new penalized likelihood iterative reconstruction algorithm for 

PET, based on a fuzzy non-linear anisotropic diffusion to remove noise while avoiding over-smoothing 

across edges. The nonlinear anisotropic diffusion (AD) process has shown the capability of eliminating 

the noise while preserving the accuracy of edges and, has thus been widely used in image processing [28, 

22, 29]. In Perona-Malik diffusion [28], a non-negative and monotonically decreasing function which 

approaches zero at infinity was used, so that the diffusion process takes place only in the interior of 

regions. It thereby does not affect the edges where the magnitude of the gradient is sufficiently large. This 

non-negative and monotonically decreasing function is also called as diffusion coefficient. Demirkaya [10] 

proposed a method to suppress the streak artifacts and reduce the statistical noise in the measured 

attenuation data in PET by filtering the 2D projections with a nonlinear AD filtering techniques. In [11], 

the AD filtering technique was used to denoise the emission images and the attenuation maps of a whole 

body and improve the quantitative accuracy of the emission images. Jin et al. [22] developed an adaptive 

nonlinear diffusion algorithm to filter the medical images by utilizing the Central Limit Theorem to select 

the threshold. Black et al. [5] expressed the idea that the choice of the diffusion coefficients could greatly 

affect the level of preservation of the edges. On the other hand, for noisy images, edge preserving and 

smoothing operations are combined in the same process. The former aims at preserving the intensity 

invariability of the edge pixel, while the latter aims at reducing the increase in noise. Fuzzy reasoning has 

demonstrated its efficiency in modeling these uncertainly problems [8]. In [8], the fuzzy reasoning has 

been used to calculate the diffusion coefficient and get a more accurate and flexible control of the 

smoothing and edge preserving. The diffusion process depends on the difference between the center pixel 

gray levels and neighbor pixel gray levels. It is limited on the edges by assigning a small diffusion 

coefficient when an edge is detected. On the contrary, the diffusion coefficient is large when a fast 

diffusion is needed, i.e., inside the regions. Here, we propose a new method from [8] to remove the noise 

while preserving the edges for the PET reconstruction which combines a fuzzy reasoning with a 

non-linear anisotropic diffusion to adapt the diffusion coefficients according to the characteristics of the 

image. We show that this new version does not suffer from the noise accumulation problem encountered 

 5

H
A

L author m
anuscript    inserm

-00183785, version 1



in the ML-EM algorithm and converge to a low noisy solution even if the iteration number is high 

 

2 Materials and methods 

2.1 Theoretical background 

Shepp and Vardi [31] introduced a Poisson model that is widely accepted as being mathematically valid 

for the PET reconstruction process. In that model, the positron emissions are modeled as a spatial 

inhomogeneous Poisson process with unknown intensity. Given the measured emission data vector ={yi; 

i = 1, ..., m}, the log-likelihood function to be maximized with respect to the activity ={xj; j = 1, ..., n} is 

y

x

∑ −=
i

iii yyyL ))()(log()( xxx                           (1) 

where 

∑ +=
j

ijiji rxpy )(x                              (2) 

pij denotes the element of the system probability matrix P and represents the probability that a particle 

emitted at pixel j will be detected by a detector pair i. designates the mean number of background noise 

counts in the ith measurement. 

ir

The goal of the PET reconstruction is to estimate the image vector x from the collected data vector y. 

The iterative expectation maximization (EM) algorithm starting with a strictly positive vector x(0) to 

estimate an image by maximizing the log-likelihood function is given by: 
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where k is the iteration number. 

The nonlinear anisotropic diffusion was introduced by Perona and Malik as an alternative to Gaussian 

(or low-pass) filtering [28]. Let us consider the following penalized functional U(x) defined on the spaces 

of smooth images 

Ω∇= ∫Ω dU ||)(||)( xx ϕ                               (4) 

where ∇ denotes the gradient operator, |||| x∇  is the gradient magnitude, and ||)(|| x∇ϕ  is a 

monotonically increasing function of |||| x∇ . One way to compute the above expression is via gradient 
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descent by using the calculus of variations theory 
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with the initial and boundary conditions 

0)0,,( x=vux , and 0=
∂
∂

Ω∂N
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                             (6) 

where ∇⋅ is the divergence operator, and N the outward unit norm of the boundary . We define a 

function g(x) such as 

Ω∂

x
xx )(')( ϕ

≡g                                      (7) 

Substitution of (7) into (5) yields 

]||)(||[),,( xx ∇∇⋅∇=
∂

∂ g
t

tvux
                             (8) 

Function g(⋅) represents the edge-stopping function or diffusion coefficient, this function is a nonnegative 

monotonically decreasing function with g(0) =1.0 and g(b)→0 when b→∞. Qualitatively, the effect of the 

anisotropic diffusion is to smooth the noisy on the image while preserving the edges. The diffusion 

processing can be controlled by the choice of diffusion coefficient g(⋅) that greatly affects the extent to 

which discontinuities are preserved. Eq. (8) can be discretized as follows: 

t
vuWWEESSNN

t
vu

t
vu xCxCxCxCxx ,,
1

, ][ ∇⋅+∇⋅+∇⋅+∇⋅+=+ λ          (9) 

where , , ,  are the diffusion coefficients in the direction north, south, east, west, 

respectively, and the parameter λ is chosen as 

NC SC EC WC

4/10 ≤≤ λ  to ensure the numerical stability [28]. A 

simple method to approximate these diffusion coefficients is as follows: 

||)(|| ,1, vuvuN xxgC −= −  

||)(|| ,1, vuvuS xxgC −= +  

||)(|| ,,1 vuvuE xxgC −= +  

||)(|| ,,1 vuvuW xxgC −= −                              (10) 
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Aja et al. [2] thought that these diffusion coefficients could be replaced by some fuzzy variables. The 

input parameters are the linguistic variables D1 and D2, and the output parameter is diffusion coefficient 

CF . The computation of the variables D1 and D2 is realized as follows: for CE , the 

input parameter D1 is the absolute difference between the centre pixel and the east direction pixel of 

4-neighbor pixels, e.g., . The D2 is defined as D2=max{

}),,,{( ESNWF ∈

||1 ,1, vuvu xxD +−= 2
1,11,1 ||

2
1

++−+ − vuvu xx , 

2
,11,1 || vuvu xx +−+ −

2
1

, 2
,11,1 || vuvu xx +++ −

2
1

}. The purpose for us to define the variable D2 using such a 

strategy is that we prefer consider the contribution of all pixels gray levels rather than that of some pixels 

gray levels as proposed in [2]. Similar calculations are made for west, north, and south directions. We will 

use these input parameters to make a fuzzy inference to calculate the output parameter CF. 

  Linguistic variables D1, D2, CF can be modeled by the sets 1ℜ , 2ℜ , Cℜ containing certain number of 

terms described by fuzzy sets , , σ1ℜ ς2ℜ υCℜ  

},,,,,,,{}1,,1,,1{11 81 LLLMLSMLMSSLSMSSD =ℜℜℜ=ℜ= LL σ

Δ

 

},,,,,,,{}2,,2,,2{22 81 LLLMLSMLMSSLSMSSD =ℜℜℜ=ℜ= LL ς

Δ

 

},,,,,,,{},,,,{ 81 SSSMSLMSMLLSLMLLCCCCCF =ℜℜℜ=ℜ= LL υ

Δ

        (11) 

where the inputs , , and the output σ1ℜ ς2ℜ υCℜ  are defined as 

}11|))1(,1{(1 11 UDDD ⊂ℜ∈=ℜ ℜ σ
μσ , 8,,1L=σ  

 }22|))2(,2{(2 22 UDDD ⊂ℜ∈=ℜ ℜ ς
μς , 8,,1L=ς   

}|))(,{( cFFCF UCCCCC ⊂ℜ∈=ℜ ℜ υ
μυ , 8,,1L=υ                 (12) 

The number of terms in each term set is 8; SS
Δ
= small small, SM

Δ
= small medium, SL small large, 

MS medium small, ML

Δ
=

Δ
=

Δ
=medium large, LS

Δ
= large small, LM

Δ
= large medium, LL large large are fuzzy 

numbers on the university sets U1(D1), U2(D2). Fig. 1(a) and (b) shows the membership functions with 

triangular form and trapezoidal form, respectively. In the above definition, 

Δ
=

)(τμSS  is the membership 
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function associated with SS, where τ stands for 11 UD ∈ , 22 UD ∈ , cF UC ∈ . The membership function 

)( FC C
υ

μℜ  has the same form as )1(D1σ
μℜ  and )2(2 D

ς
μℜ

)FC

, the only difference being the x-axis which is 

expressed as a function of 10000(log10*25.0 −  instead of log . Here, we assume that the 

membership functions are analytically known from Fig. 1. 

)1(255 D

  The next step consists of setting the if … and … then rules of inference. We use the following fuzzy 

rule in this algorithm 

  then CF is  υCℜς2ℜσ1ℜR(D1, D2):  If D1 is   and  D2 is 

The rule set for the fuzzy anisotropic diffusion is based on the following idea: If the difference between 

the pixel gray levels is small, then the diffusion coefficient is high. On the contrary, a large restriction to 

diffusion is imposed when the difference is large enough. Table 1 shows this fuzzy anisotropic diffusion 

decision table: if … and … then rules. The content of the decision table can be modified according to the 

characteristic of noise [2]. If FP-EM reconstructed images are characterized by a high level of noise, a 

larger diffusion coefficient is applied that emphasizes the smoothing inside the regions of the image. The 

decision table is thus built in such a way υCℜ υ includes larger values of  to take into account the high 

level of noise. 

There are several ways to perform the operation of defuzzification. Some existing methods for 

defuzzification take into consideration the shape of the clipped fuzzy numbers. Here, we chose the mean 

of the maximum method proposed in [35]. 

 

2.2 Implementation of algorithms 

  In ML-EM, the objective function is based on the conditional probability , where y is the 

measured data, and x is the emission image. The penalized solution  is of the form 

)|( xyf

x̂

))(x(maxarg
0x

x̂ ψ
≥

=                                (13) 

where 
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)()()( xxx FL +=ψ                              (14) 

Here L(⋅) is the log-likelihood function and F(⋅) is the penalty term. In Bayesian terms, (13) represents the 

a posteriori probability  and F(⋅) is the prior term resulting from the a priori 

probability . A commonly used Bayesian prior is the Gibbs distribution. 

)()|()|( xxyyx Ffff ∝

)(xFf

  The purpose of this paper is to compute a penalized-likelihood estimate  by replacing the function 

F(⋅) in Eq. (14) by a fuzzy nonlinear anisotropic diffusion penalized function. The reconstruction method 

(called FP-EM) includes thus two terms: a log-likelihood term and a fuzzy penalty term. The estimate  

is then obtained by maximizing the function: 

x̂

x̂

)()()( xxx UL βψ +=                             (15) 

where U(x) characterizes the penalty function defined in Eq. (4) and β the regularization parameter that 

balances between the goodness of the fitting to the original image and the amount of penalty imposed to 

the original image. The log-likelihood function L(x) can be written under the vector form as: 

)log()()( rPxyrPx1x +++−= TTL                        (16) 

The first partial derivative of )(xψ for each given pixel xj is as follows: 
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The Kuhn-Tucker conditions for xj to be the optimal solution of the nonlinear optimization problem 

imply: 

0)(
=

∂
∂

jx
xψ

,  if                                (18) 0>jx

0)(
>

∂
∂

jx
xψ

  if   0=jx                             (19) 

The optimization of the function )(xψ  can then be performed through a scale gradient descent 

algorithm. Finally, we derived the following iterative relation for computing the estimated image x: 
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The above formula can be simplified by using (7) as follows: 

)(
)||)(||( )()()(

)(
)1(

rPx
yP

xxP
xx

+∇∇⋅∇−
=+

k
T

kkT

k
k

gβ
                   (21) 

In image restoration, the diffusion coefficient g(⋅) is usually calculated by two nonnegative monotonically 

decreasing functions, i.e., 

))||||(exp(||)(|| 2

ε
xx ∇

−=∇g                                (22) 

or 

 2||)/(||1
1||)(||

εx
x

∇+
=∇g                                (23) 

The constant ε takes a suitable tuning value whose setup can be obtained from the previous noise 

estimation. The equation above indicates that we could utilize the method described in subsection 2.1 to 

compute the diffusion coefficients. 

 

2.3 Phantom description 

We used a 128×128 pixel Shepp-Logan phantom that we downloaded from the web site [20] to 

evaluate the method in term of quality of the reconstruction and robustness to the noise (Fig. 2(a)). The 

simulated projections were calculated from such geometrical definitions as was the discrete representation 

of the phantom. The image is projected at 128 evenly spaced angles from 0 to 1800 with 128 samples per 

angle. The size of the final reconstructed image was 128×128 pixels. A stochastic Poisson noise was also 

added to the simulated projections to reproduce a low SNR. Complicating factors such as attenuation and 

scatter were not considered in this study. The probabilities in the system matrix were computed in 

advance using the “angle of view” method proposed in [31]. Two sinograms were designed to test the 

algorithm: a noiseless one and another one noisy, this latter being generated by adding to the original 

projection data a uniform field of random coincidences reflecting a scan of 6% of the total counts [16]. 
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These two sinograms were globally scaled to a mean sum of 1,000,000 true events. 

Fig. 2(b) depicts another phantom on which we compared the performances of the algorithm in 

presence of two kinds of noise: Poisson and Gaussian noise. It represents an elliptic uniform disc, two 

cold spots, and two hot spots of different diameters included in the internal structure of the disc. The size 

of the image matrix is 384×384 mm2 and the pixel size is 3 mm. The projection data were obtained from a 

forward projection of the phantom. These projection data were arranged into 180 angular views, each 

view consisting of 128 parallel lines of response (LORs). Two noisy sinograms were also built to test the 

algorithm, respectively including a Poisson (2×105 photons) and a Gaussian noise (zero mean and 0.005 

variance).  

 

2.4 Evaluation of the reconstruction quality 

The performance of the algorithm was evaluated from four objective criteria:  

• The Log-likelihood function. Since the proposed algorithm computes iteratively the estimate of the 

penalized likelihood, the log-likelihood function was an appropriate qualitative measure to assess the 

performance of the algorithm. The log-likelihood function is given by Eq. (1). 

 

• The normalized Mean Square Error (MSE). We measured the convergence rate by computing the 

normalized mean square error (MSE) between the simulated noiseless activity distribution and the image 

estimate as a function of the iteration number k. This item expresses the dispersion between the 

reconstructed image and the original phantom. The definition of the MSE is given by: 

2

2
)(

||||
||||

true

truek

MSE
x

xx −
=                               (24) 

where ||⋅||2 is the standard Euclidean norm. xtrue and x(k) denote the value of the simulated activity image 

vector and the reconstructed image vector, respectively. 

 

• The bias of a region of interest (ROI). The intensities on the phantom under consideration is assumed to 

be constant over each ROI and equal to true
ROIx . Let )(k

ROIx be the mean intensity over a ROI, then the Bias on a 
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ROI is defined as follows [27]: 

true
ROI

true
ROI

k
ROIBias

x
xx −

=
)(

                                 (25) 

 

• The variance on a ROI. The variance measure is also used to evaluate the quality of the reconstruction: 

∑
∈

−
−

=
ROIj

k
ROIjx

N
Variance 2)( )(

1
1 x                          (26) 

where N denotes the number of pixels in the ROI. 

 

3. Results 

Images have been reconstructed with six algorithms: the maximum likelihood-expectation 

maximization algorithm (ML-EM), the OS-EM [21], the Maximum a Posteriori reconstruction algorithm 

with Gaussian prior (Gaussian-MAP) [18], the prior based on the median filter: MRP [3], the Maximum a 

Posteriori with total variation energy potential (TV-EM) [27] and our algorithm called FP-EM. The initial 

estimator x(0) was set to a strictly non-zero positive vector. For Gaussian-MAP, MRP, TV-EM, and the 

FP-EM, the regularization parameter β was set to 1, 0.5, 0.8, and 1, respectively, and was kept constant 

over the iterations. The triangular membership function shown in Fig. 1(a) was used for FP-EM. 

Fig. 3 shows the reconstruction results on the noiseless Shepp-Logan phantom using the different 

methods. Except for the OS-EM algorithm, the iteration number was fixed to 100 for all the 

reconstructions. For the OS-EM reconstruction, the number of iterations was set to 8 with 4 subsets. A 

first visual analysis shows that the ML-EM reconstruction provides a satisfactory result but is 

characterized by a slightly streaky artifacts inside the object (Fig. 3(a)), the OS-EM method globally 

increases the contrast of the reconstructed image (Fig. 3(b)), the Gaussian MAP and MRP algorithms 

leads to an over smoothing on the reconstruction (Fig. 3(c), (d)), the TV-EM and the FP-EM 

reconstructions globally provides a good reconstruction of the image but make appear a very slightly 

blurring along the edges (Fig. 3(e), (f)). 

Simulations were then performed on noisy projection data. Fig. 4(a) shows the reconstruction 
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obtained by stopping the ML-EM algorithm at iteration 25 (corresponding to the smallest MSE). In the 

case of a non-penalized ML-EM and OS-EM, the remaining noise inside the object is higher than in the 

result obtained from the Gaussian MAP method. Moreover, this noise increases with the number of 

iterations. The background in the resulting MRP reconstruction is more uniform than in the 

Gaussian-MAP’s. However, the cold spot of MRP was contaminated by more noise compared to the 

Gaussian-MAP's. When introducing the penalty term in the TV-EM formulation, the result makes appear 

a good reduction of the noise as an edge preservation although a small bias along the edges. The FP-EM 

algorithm has a better behavior to the noise compared with the other methods: regions have been well 

smoothed and the sharp edges as the small artifacts of oscillatory nature have been significantly reduced. 

Fig. 5 depicts the convergence speed for the reconstructed images by the log-likelihood function. 

Although the log-likelihood function with TV-EM algorithm increases rapidly at the early iterations, as 

can be seen in the enlarged part, the FP-EM algorithm has better behavior in terms of convergence with 

increasing iteration number. It is also observed that the MRP algorithm has better performance than the 

TV-EM, Gaussian-MAP and ML-EM algorithms. Comparing the results presented in Fig. 5(a) and (b), 

one can see that the log-likelihood functions of the image reconstructed from noisy projections are in 

good agreement with the case of projections without noise. The simulation results obtained with the 

proposed algorithm show a significant improvement in convergence rate. 

  Detailed comparisons of MSE of reconstruction using noiseless projections and noisy projections are 

shown in Fig. 6(a) and (b), respectively. Fig. 6 illustrates the stability of the FP-EM algorithm in 

comparison with the ML-EM, Gaussian-MAP, MRP, TV-EM algorithms. The ML-EM algorithm 

converges to maximal-likelihood image, which, however, is not the desired solution due to the high noise 

level. In our simulation, the MSE in ML-EM reconstruction reaches its minimum at iteration number 25 

and then starts to increase with increasing iteration number. In other words, it should be stopped after a 

certain number of iterations, e.g. iteration 25. However, the proposed FP-EM method does not suffer from 

this shortcoming and it converges to a low noisy solution even if the number of iterations is high. The 

MRP and TV-EM reconstructions have also better quality than ML-EM and Gaussian-MAP 

reconstructions according to the simulation of mean square errors. 
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  A portion of the reconstructed Shepp-Logan phantoms has been zoomed in Fig. 7. From a visual 

standpoint, the ML-EM images suffer from the presence of noise compared to the other images. In 

contrast, one can observe that Gaussian-MAP reconstructed images are too smooth, especially nearby the 

boundary of the different tissues. The OS-EM reconstruction was characterized by the highest contrast 

recovery of spots and high noise level. From Fig. 7, we see that the noise was removed from the interior 

regions of TV-EM image but it is still present along the edges. On the other hand, the fuzzy anisotropic 

diffusion regularization smoothes out the noise from the region interiors and preserves well the edges in 

the reconstructed images. To enhance this fact, we present another portion of the phantom shown in the 

third row of Fig. 7. It shows that the edges of the small spot in the TV-EM image are not as clear as the 

ones in the FP-EM image. In the reconstructed images with Gaussian-MAP, MRP, TV-EM, the small spot 

is completely removed from these images. Fig. 7 illustrates that the FP-EM image is smooth and, at the 

same time, two spots in the image are well reconstructed and differ greatly from the background. 

  Fig. 8 shows the same profiles of the Shepp-Logan phantom for six different reconstruction methods to 

further evaluate the proposed iterative algorithms in terms of the image quality. The projection data 

include 6% uniform Poisson distributed background events. ML-EM and OS-EM profiles show that these 

methods are more sensitive to the noise (see Fig. 8(b), (c), (e)), they increase the noise making the regions 

inhomogeneous. Gaussian-MAP, MRP and TV-EM tend to significantly increase the intensity inside the 

regions. MRP and FP-EM profiles appear close to the initial profile drown on the phantom (Fig. 8(b), (c), 

(d)). In terms of the spike (pixel position 65, Fig. 8(d)), only the FP-EM method keeps a close profile to 

the initial one even if it gives a slight of the intensity. The others give either a more important 

under-estimation (OS-EM, TV-EM, ML-EM) or an over-estimation (MRP, Gaussian MAP). These results 

are consistent with the visual observation of the hot spots in the reconstructed phantom shown Fig. 4. In 

conclusion, the method that better preserves the edges while smoothing the region is the FP-EM method. 

  We now consider the case where the projections include a 6% uniform Poisson distributed background 

events. Fig. 9 depicts the MSE values for a set of four methods (Gaussian-MAP, MRP, TV-EM, and 

FP-EM for which both the triangular form and trapezoidal form were used as the membership function) 

for different weightings of the penalty term (0.2 ≤ β ≤1). It can be seen that the quality of the MRP and 

 15

H
A

L author m
anuscript    inserm

-00183785, version 1



TV-EM reconstruction is slightly dependent on the parameter β, the lower MSE is obtained when β was 

selected 0.5 and 0.8, respectively. Larger β values in the MRP and TV-EM algorithms lead to the 

degradation of the image. FP-EM is insensitive to the changes of β when β∈[0.2, 1]. Even if a small 

weight is assigned to the penalty term (β = 0.2), FP-EM gives a lower MSE than those obtained by the 

other algorithms. Gaussian-MAP provides its lowest MSE for β = 1. These experiments show that MRP, 

TV-EM, Gaussian-MAP, and FP-EM give the best reconstruction when β is set to 0.5, 0.8, 1, and 1, 

respectively. This graph also shows that the use of one or the other membership function does not change 

the performance of the FP-EM method. 

To further test the robustness of the proposed method regarding to different kinds of noise and different 

phantoms, we examined the behaviors of FP-EM method using a phantom containing a cold and hot spots 

shown in Fig. 2 (b). The reconstruction was stopped after 40 iterations. For OS-EM method, 4 subsets 

were used. We first test the robustness of the proposed method under Poisson noisy conditions shown in 

the first row of Fig. 10. The results again indicate the better performance of the FP-EM for Poisson noisy 

projection data. The reconstructed images using noisy projections contaminated by zero mean Gaussian 

noise with variance 0.005 were shown in the second row of Fig. 10. One can observe that the OS-EM and 

TV-EM reconstruction decrease the contrast of reconstructed images, especially in the lower activity area. 

This phenomenon is more obvious for OS-EM. MRP algorithm effectively alleviate the noise artifacts in 

the reconstructed images, however, MRP has slightly poorer capability to preserve the edges. 

Gaussian-MAP or FP-EM seems to reach a good compromise between the noise suppression and loss of 

spatial resolution, at least from a visual standpoint. 

Fig. 11(a) and (b) display the detailed plot of the MSE using six different algorithms with maximum 

iteration number up to 40 under different noisy projection conditions. As it can be seen from Fig. 11, the 

OS-EM (4 subsets) converges faster than other algorithms at early iterative steps. It achieves the 

minimum MSE value at iteration 8 then this value re-increases with increasing iteration number. Fig. 11(a) 

shows that FP-EM has the best performance in terms of the robustness to Poisson noise, and the TV-EM 

performs better than the Gaussian-MAP, MRP, EM-EM and OS-EM methods. However, we can see from 

Fig. 11(b) that, for projection data contaminated by Gaussian noise, the TV-EM did not perform as well as 
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for Poisson noisy projections. MRP seems to be quite insensitive to this kind of noise. Due to the use of 

MRP prior, noises can be effectively suppressed in the reconstructed image, but the edges were blurred as 

shown in Fig. 10. 

Tables 2, 3 and 4 tabulate the variance of the ROIs with different activities. For Poisson noisy 

projections: projections including 2×105 photons uniform Poisson distributed background noises. For 

Gaussian noisy projections, projections contained by zero mean value Gaussian noise with variance 0.005. 

Variance analyses are consistent with those of visual observation of the hot spots and cold spots in the 

reconstructed image shown in Fig. 10, and consistent with those of MSE analysis indicated by Fig. 11. 

In Fig.12, we discuss the bias on the ROIs with different activities under Poisson and Gaussian noisy 

projection conditions shown in the first row and the second row, respectively. It can be observed from the 

first row that FP-EM displays the lowest bias for two ROIs. The bias appeared in the result with FP-EM 

for a ROI with medium background activity was only larger than that of MRP. Besides the FP-EM 

method, the TV-EM presents a smaller bias on the ROI with high activity compared to Gaussian-MAP, 

MRP, EM-EM and OS-EM algorithms, while the MRP has a better behavior in the low and medium 

activities. The experiment was repeated by using the Gaussian noisy projections to reconstruct the image. 

Among all the algorithms, the MRP gives the smallest bias on the ROI with low or medium activity, but it 

shows the biggest bias in the high activity. FP-EM reconstruction leads to the lowest bias ROI in higher 

activity. 

 

4 Discussions 

  We have proposed a new iterative algorithm which exploits the fuzzy reasoning to calculate the diffusion 

coefficients. The control of the diffusion by a set of rules allows adapting the diffusion coefficients according 

to the characteristic of noise present in the projections or reconstructed image. The decision table (Table 1) was 

built to emphasize the smoothness on the region when the noise is important. The future work will be 

oriented to the introduction of techniques for learning and tuning the rule-base from data [34]. 

Experiments have shown that the FP-EM algorithm had good properties of convergence and that it was 

robust to the Poisson noise. On the other hand, a small bias can appear in presence of a Gaussian noise. 
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We have also shown that the choice of the regularization parameter β was critical for the Gaussian-MAP, 

MRP and TV-EM methods but not for the FP-EM (in this study, we selected a β value which provided the 

lowest MSE for each algorithm).  

  The FP-EM appears more expensive in terms of computation time (see Table 5). Note that the computer 

used in this experiment is Sony Corporation, VGN-S3 Series, Pentium (R), 1.8GHz, Memory: 1GB. 

Indeed, the ordered subset (OS) technique is a useful method to accelerate the image reconstruction for 

the ML-EM. OS-EM requires a less number of iterations than the other algorithms for achieving the 

convergence. However, like the ML-EM algorithm, the drawback of this method is the difficulty to 

remove the noise. If the iteration number is too high, the OS-EM produces a degraded image. 

  MRP has been used for the reconstruction of PET image and shown that it possessed a good noise 

reduction and in particular in presence of Gaussian noise. According to [3], if the median filter size in 

MRP is increased from 3×3 to 5×5, small edges may be smoothed. Therefore, we selected a median filter 

of size 3×3 to avoid an over-smoothing of the reconstructed image. However, Fig. 7 still indicates a risk 

in using MRP on small structures because they can be completely removed from the image. 

  The TV-EM algorithm is less robust to the Gaussian noise than to the Poisson’s one, but its overall 

performance is not very high compared to the other methods. 

 

5 Conclusions 

  The ML-EM method is the most general statistical approach and becomes the standard in positron 

emission tomography. However, the reconstructed images become increasingly noisy as the number of 

iterations increases. To limit the noise accumulation, we have presented an iterative algorithm for PET 

reconstruction based on fuzzy anisotropic diffusion penalty. The proposed method is capable of taking 

advantages of fuzzy theory and anisotropic diffusion regularization. It appears more accurate compared to 

the ML-EM, OS-EM, Gaussian-MAP, MRP, and TV-EM algorithms. The fuzzy anisotropic diffusion 

penalty has an effect of edge-preserving and denoising. It allows suppression of noise and Gibbs 

phenomena without significantly affecting the edges. Simulation results showed that incorporation of the 

fuzzy anisotropic diffusion penalty improves the reconstruction quality for both noise-free and noisy 
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projection data. 
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Table 1. Decision table of fuzzy nonlinear anisotropic diffusion rule. 

D2  

D1 
12ℜ  22ℜ  32ℜ  42ℜ  52ℜ  62ℜ  72ℜ  82ℜ  

11ℜ  1Cℜ  1Cℜ  2Cℜ 2Cℜ 3Cℜ  4Cℜ 5Cℜ  7Cℜ  

21ℜ  1Cℜ  2Cℜ  2Cℜ 2Cℜ 3Cℜ  4Cℜ 5Cℜ  7Cℜ  

31ℜ  2Cℜ  2Cℜ  2Cℜ 2Cℜ 3Cℜ  4Cℜ 5Cℜ  7Cℜ  

41ℜ  2Cℜ  2Cℜ  2Cℜ 3Cℜ  3Cℜ  5Cℜ  6Cℜ 8Cℜ  

51ℜ  3Cℜ  3Cℜ  3Cℜ  3Cℜ  4Cℜ 5Cℜ  6Cℜ 8Cℜ  

61ℜ  4Cℜ  4Cℜ  4Cℜ 5Cℜ  5Cℜ  6Cℜ 6Cℜ 8Cℜ  

71ℜ  5Cℜ  5Cℜ  5Cℜ  6Cℜ 6Cℜ 6Cℜ 7Cℜ 8Cℜ  

81ℜ  7Cℜ  7Cℜ  7Cℜ 8Cℜ  8Cℜ  8Cℜ  8Cℜ  8Cℜ  

 

 

Table 2. The variance of a ROI with higher activity. The ROI contains 973 pixels.  

Noise ML-EM OS-EM Gaussian-MAP MRP TV-EM FP-EM 

Poisson 0.065941 0.072625 0.054043 0.054965 0.053571 0.053248  

Gaussian 0.22759 0.20371 0.12704 0.14371 0.15842 0.11165 

 

Table 3. The variance of a ROI with lower activity. The ROI contains 576 pixels.  

Noise ML-EM OS-EM Gaussian-MAP MRP TV-EM FP-EM 

Poisson 0.051018 0.053042 0.050012 0.051143 0.047039 0.049093  

Gaussian 0.09265 0.09447 0.08142 0.08535 0.089048 0.07332 
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Table 4.The variance of in an ROI of medium activity. The ROI contains 4316 pixels.  

Noise ML-EM OS-EM Gaussian-MAP MRP TV-EM FP-EM 

Poisson 0.063541 0.072014 0.056213 0.051979 0.043026 0.041356  

Gaussian 0.06147 0.06648 0.03391 0.04873 0.05391 0.03571 

 

Table 5. The CPU time after 100 iterations for Gaussian-MAP, MRP, TV-EM and FP-EM algorithms (Second). 4 

subsets and 8 iterations for OS-EM. 25 iterations for ML-EM (the smallest MSE was obtained) 

Image Size ML-EM OS-EM Gaussian-MAP MRP TV-EM FP-EM 

64×64 3.3 1.4 14.1 14.1 14.2 20.6 

96×96 7.8 3.2 33.8 32.5 34.2 45.9 

128×128 13.7 9.5 58.5 57.7 60.3 78.8 

256×256 32.6 23.8 137.9 135.8 140.3 178.1 
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(a) 

 

(b) 

Fig. 1 Terms of linguistic variables D1, D2 (a) Triangle membership function. (b) Trapezoidal membership 

function 

 

  
(a)                 (b) 

Fig. 2 The phantoms used in the simulation study. (a) Shepp-Logan phantom (128×128 pixels). (b) Cold and 

hot spots phantom (128×128 pixels). 
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(a)                  (b)                 (c) 

 
          (d)                  (e)                 (f) 

Fig.3 Images reconstructed from noiseless projection data using different methods. For OS-EM, 4 subsets and 

8 iterations were used. For ML-EM, early stop at iteration 25 (the smallest MSE was obtained). (a) ML-EM 

algorithm (b) OS-EM algorithm (c) Gaussian-MAP algorithm (d) MRP algorithm (e) TV-EM algorithm (f) 

FP-EM algorithm 

 
(a)                 (b)                  (c) 

 
          (d)                 (e)                 (f) 

Fig.4 The Shepp-Logan phantom with different reconstruction methods. Projections including 6% uniform 
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Poisson distributed background events. For OS-EM, 4 subsets and 8 iterations were used. For ML-EM, early 

stop at iteration 25 (the smallest MSE was reached). (a) ML-EM algorithm (b) OS-EM algorithm (c) 

Gaussian-MAP algorithm (d) MRP algorithm (e)TV-EM algorithm (f) FP-EM algorithm. 
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(a)                                      (b) 

Fig. 5 Comparison of log-likelihood function increase rates of ML-EM, Gaussian-MAP, MRP, TV-EM, and 

FP-EM algorithms. (a) Noiseless Projections (b) Projections including 6% uniform Poisson distributed 

background events.  
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(a)                                       (b) 

Fig. 6 Comparative analysis of MSE versus iteration number. The MSE for the ML-EM, Gaussian-MAP, MRP, 

TV-EM, and FP-EM algorithms (a) Noiseless Projections (b) Projections including 6% uniform Poisson 
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distributed background events. 

  

(a)         (b) 

 

 

Fig. 7 Close-up details of Shepp-Logan phantom. Projections include 6% uniform Poisson distributed 

background events. The iteration number was set to 100 for the Gaussian-MAP, MRP, TV-EM, and FP-EM. 

For OS-EM, 4 subsets and 8 iterations were used. For ML-EM, early stop at iteration 25 (the smallest MSE 

was reached). (a)(b) Synthetic phantom. From the first column to the last column are images with ML-EM, 

OS-EM, Gaussian-MAP, MRP, TV-EM, and FP-EM algorithm, respectively. 
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(b)                                      (c) 
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(d)                                     (e) 
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Fig. 8 Error analysis of line profile at row 60. Projections including 6% uniform Poisson distributed 

background events. For OS-EM, 4 subsets and 8 iterations were used. The number of iterations was set to 100 

for other algorithms. (a) The profiles of the six images reconstructed from Shepp-Logan phantom compared to 

the real pixel values. (b) - (e): Enlarged parts of (a). 
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Fig. 9 The MSE of Shepp-Logan phantom including 6% uniform Poisson distributed background events 

obtained by running 100 iterations for the Gaussian-MAP, MRP, TV-EM, and FP-EM algorithm using different 

regularization parameter β. Case 1: Triangle member function was used for FP-EM. Case 2: Trapezium 

membership function was used for FP-EM 

 

 

 
 

Fig. 10 From the left column to the last column are respectively the ML-EM, OS-EM, Gaussian-MAP, MRP, 

TV-EM, and FP-EM algorithms. The first row is projection date contained by the Poisson noise. The second 

row is projection data contained by zero mean value Gaussian noise with variance 0.005. 
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(a)                                        (b) 

Fig. 11 MSE versus iterations. (a) Projection contained Poisson noise. (b) Projection contained by zero mean 

value Gaussian noise with variance 0.005 
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Fig. 12 Bias in the ROI as a function of the iteration number. First row: projection contained by Poisson noise. 

Second row: projection contained by zero mean value Gaussian noise with variance 0.005. 
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