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Fourth Order Approaches for Localization of Brain Current So urces

Laurent Albera, Anne Fegol, Delphine Cosandier-Rife, Isabelle Merlet, Fabrice Wendling

Abstract— Two high resolution methods solving inverse prob- MUSIC-like methods, one can mention the extension of the
lems potentially ill-posed, named4-MUSIC and 4-RapMUSIC,  original MUSIC algorithm to Fourth Order (FO) statistics
are proposed. They allow for localization of brain current (so-called MUSIQ) able to deal with the case of under-

sources with unconstrained orientations from surface electro- determined mixtures of sources 9. One can also mention
or magneto-encephalographic data using spherical or realistic : IXtu u [9]- :

head geometries. The4-MUSIC and 4-RapMUSIC methods Sequential approaches such [7], which are based on both
are based on i) the separability of the data transfer matrix SO statistics and deflation concept to increase localizatio

as a function of location and orientation parameters and i) resolution. In particular, the RapMUSIC algorithm [7] take
the Fourth Order (FO) virtual array theory. In addition, 4-  5qvantage of the factored matrix formulation of the trans-

RapMUSIC uses the deflation concept extended to FO statistics f lati hio bet d d b data b
accounting for the presence of potentially but not totally coher- €' r€laionship between deep sources and scalp data by

ent sources. Computer results display the superiority of thet- ~ Separating nonlinear (location) from quasilinear (orion)
RapMUSIC approach in different situations (two closed sources, source parameters in order to reduce computing time [3].

additive Gaussian noise with unknown spatial covariance, ...) On the other hand, Time-Frequency (TF) approaches were
especially over classical algorithms. proposed (see [1] for instance) to improve the resolution
. INTRODUCTION of the localization in the case of very closed sources with

Electroencephalography (EEG) and magnetoencephalog%’-ecual nonstationary properties. Finally, besides zades

phy (MEG) are two complementary techniques respective Etgogst' other Iocahfa;lon meth_odse applied to EEG and
measuring electrical potentials and magnetic fields preduc ata were reported (review in [ _])' . . .

by neuronal activity, at the surface of the head. Localati Three remarks can be made from this brief overview. First,
of neuronal activity sources requires to solve the inversdost of the aforemgntloneq array processing methods are
problem which is underdetermined in theory, as the numb@rased on SO stat|st|cs,_ Wh'Ch_ implicitly ",T'ply_ that sources
of sources is generally larger than the number of sensofd® _Gaus'3|an. In pr.actlce, t,h's ass_umptlon IS hot justified
and so ill-posed. Conversely, when the number of sources‘?@ys'dog'_c?"y and information available at higher orsler
assumed to be lower than the number of scalp measuremeria _be utilized. Second, TF approagr_les s_howed to be not
the problem is overdetermined and has a unique solution. plicable when sources have quasi-identical TF supports.
order to solve the EEG/MEG inverse problem both a moddi ird, time SO techniques cannot deal with underdetermined

of neuronal sources and a model of the head are requiréH!Xt“reS of sources or with a Gaussian noise of unknown

The current dipole is the most commonly used model for apat_'a' covariance. )
source of electrical activity in the brain. Head models aim Higher Order (HO) methods inherently account for these

at representing geometrical and electrical propertieshef t limitations. However, to date, there is no attempt to prepos
different tissues composing the volume conductor. Variou FO method that takes advantage of i) the separability of the

models were proposed going from concentric homogeneogéta transfer matrix as a function of location and orientati
spheres with isotropic conductivities to realisticallyaped Parameters and/or ii) the deflation concept. The intent of
models with refined tissue conductivity values. the present paper is to describe two new FO MUSIC-like
Numerous array processing methods were developed methods addressing these issues. These methods aredeferre
estimate multidimensional parameters of sources, aligwirf® @S 4-MUSIC and 4-RapMUSIC, respectively. Both are
among other things the localization of brain current dipoleP@s€d on i) the factored matrix formulation of the data
from scalp measurements. Among subspace approaches, fig@sfer function and onii) the FO virtual array theory wéos
Second Order (SO) MUSIC (MUltiple Signal Classification)r_elevance has already been displayed in radiocommunica-
method [10] was proposed for overdetermined mixtures dfons contexts [2], and both account for the presence of
sources. This approach gave rise to several variants aim@@SSiPly but not totally coherent sources.
at improving performances. On the one hand, among time
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Il. ASSUMPTIONS ANDNOTATIONS

This work was supported in part by the Regional Council ofttBny
(http://www.region-bretagne.fr) and it is protected byatemt whose refer- A. The Problem Formulation
ence isno. 05.11668, DV326 (SAIC), November 17 2005. . . .

L. Albera, D. Cosandier-Rigié, I. Merlet and F. Wendling are with both ~ We assume that a\{x K) realization of a/V-dimensional
Iresearcfz grot;p INdSERMIUM]B f|342. LalbofatOife Traitement dl";ﬂist de  random proceséx(k)} is observed. Moreover, each random
‘Image (LTSI), and Faculty of Electrical Engineering, Ueigity of Rennes . . .

1, F-35042 cedex Rennes, France. VeCtorx(k) IS gven by'

A. Ferieol is with the THALES Communications group, 146 Boulevard

de Valmy, BP 82, F-92704 Colombes, France z(k) = A(O) s(k) +v(k) 1)
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where {s(k)} is a P-dimensional source vector processg, the location/orientation parameters of th¢h source and
which observations are the time courseg™ofurrent dipoles; (g, 2 def a(6,) ®a(6,) the FO virtual source localizing

A(©) = [a(01),---,a(fp)] is the (V x P) static mixing vector, that is, the true localizing vector of theh source for
matrix that depends o® = {61,...,60p}, the collection the corresponding FO virtual array [2]. The column vectors
of the multi-parameters of thé sources, and{l/(k')} is a(@ 2 (1 Sp < P) appear in matrim' and so they are
the noise vector process that is assumed to be Gaussian @pghogonal to each column di,. Thus the normalized FO

statistically independent of the source vector process.  pyll-spectrum (null-polyspectrum) criterion can be defie
In EEG (or MEG) applications, each column vectd®)  follows:

of the static mixing matrix represents the electrical (or 2217 o 92112

magnetic) field generated at all scalp sensors by a current J1(6) = ([‘1(9) | o [a(6) ]) /||a(@f2||"  (5)
dipole with a unit time course localized at a given position ot . . .
p for a given orientationp. Vector a(@) can be written as wherell, = F, E, s thenoise subspace projector of matrix

. . . . Q.., and theP roots of J; correspond asymptotically to the
the product of afyx3) gain matrixG(p) and the orientation P vectorsh,. Using properties of the Kronecker produgt,

vector ¢: a(0) = Glp) ¢ @) after inserting (2) into (5), becomes:
D" G(p) Iy G(p) P
where the multi-parameter vect@e=[p" ¢'|" of the consid- J2(0) = «I)T(g()p)T g(p()p;) (6)

ered current dipole includes the nonlinear location patame

p and the quasilinear orientation parameferVector a(6)  where & &< ¢%? and G(p) def G(p)®? are the FO source
will be referred to as thesource localizing vector in the orientation vector and the FO gain matrix, respectively. Pa
sequel. ~ rameterd), = [p," ¢,]" (1<p<P) can then be obtained by
Although both methods we developed can be applied 9looking for the P global minimag, of the function inp de-
both EEG and MEG data, and to both spherical and realistffhed by the minimum eigenvalue of matri(p)" Iy G(p)
head models, the present work is focused on the EEG contégtthe metricG(p)" G(p), and by ii) identifying each vector
with a spherical head model. An analytic expression for thq,p (1 < p < P) as the eigenvector associated with the
gain matrixG(p) can be found in [8]. minimum eigenvalue of matrig(p,)" Iy G(p,) in the metric
B. FO statistics g(pp)Tg(pp) [5]. An algorithm is proposed in section Ill-
) B in order to compute vectorp from ®. Consequently
For the sake of convenience, the present work is limiteghe orientation parameters are deduced from the location
to stationary and ergodic data. In that case, thx(\*)  parameters, which modifies tii®-optimization of criterion

quadricovariance matrix [9] [2)),, of process{z(k)} can (g 1o a 3D-optimization. Therefore, criterion (6) can be
be easily estimated from the scalp data. Given the multilinsgncentrated with respect a leading to:

earity property of cumulants [4}), has a special algebraic

structure, with several matrix redundancies. If statidtic J3(p) = )\{[g(p)T Gp) "GlpT I, g(p)} (7)
independency between sources and noise is assumed, this o )
property can be expressed as follows: where \{ B} dgnotes the minimum eigenvalue of matifik _
) - The computational cost can considerably be reduced again
Q, = [A%?] Q. [A®?] = AQ. A’ (3) if criterion J5 is replaced by the following criterion:
where@,, A A® A and® are the P2 x P?) quadrico- Ja(p) = det{G(p)" o G(p)} ®)
variance matrix of{s(k)}, the Kronecker square of matrix det{G(p)" G(p)}
A and the Kronecker product operator, respectively. wheredet{B} denotes the determinant of matd.
II. ALGORITHM B. The 4-MUSIC and 4-RapMUSIC approaches
A. The FO null-spectrum In this section, we present tAeMUSIC and4-RapMUSIC
Compute the Eigen Value Decomposition (EVD) of themethods based on i) the separability of the data transfer
symmetrical matrixQ,, as follows: matrix as a function of location and orientation parameters

I o . and ii) the FO virtual array theory [2], using the low cost

Q.= E E, | { OS 0 } [ E; E, | (4) function as defined in (8). In addition, theRapMUSIC al-
gorithm exploits the deflation concept that we have extended

whereL,, E,, E, andR denote theRxR) real-valued diag- to FO statistics.

onal matrix of the non zero eigenvalues@f, the (V?xR) More particularly, the4-MUSIC algorithm consists in

matrix of the associated eigenvectors, thé{ N>R )) matrix ~ searching for global minimizers of criteriofly. Indeed, if

of the eigenvectors associated with the zero eigenvalud®e noise subspace projector was estimated perfectly,asich

of @, and the rank of@, respectively. Since matrix),  asymptotically, then thé> source location vectorg, would

is symmetrical, each column af, is orthogonal to each be directly found as thé global minimizers of (8) over a

column of E,,. Now Span{.A} = Span{ E;}, therefore each sufficiently densely sampled grid of the nonlinear paramete

column of A is orthogonal to each column dE,. Given space. Then each source orientation vegjofl <p < P) can
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be computed from the previous locations using both follow-

ing steps. First, let the FO source orientation vedipbe the

normalized quasilinear parameter vector that must muyiltipl o RS T SR S S e

G(p,) onright to produce vecta(6,)“?. It has to be derived ]

from the eigenvector corresponding to the minimum eigen-

value of matrix [g(pp)Tg(pp)]ilg(pp)THO G(p,). Sec- _ o .

ondly, the source orientation vectqkp can be computed Fig. 1. Localization of 1 source with 10 electrodes.

from &,, by i) remodeling it into one { x N) matrix B,

(the n-th column of B, is made up from theV consecutive

elements of®, as from the[N(n—1)+1]-th one), and ii) IV. RESULTS

diagonalizing it. Indeed, the eigenvector associated tith Performances of four MUSIC-like algorithm&-MUSIC

strongest eigenvalue dB,, is, up to a sign factor, equal to [3], 2-RapMUSIC [7], 4-MUSIC and 4-RapMUSIC) were

D, compared in an EEG context, in three different situations.
Nevertheless, for a finite number of samples, errors in owimulations were performed using3ashell spherical head

statistic estimate reduce (8) to a function with i) a singlenodel (radii were8 cm for brain,8.5 cm for skull and).2 cm

global minimum that corresponds for instance to the sourder scalp; brain and scalp conductivities w&&10~* S/cm

of maximum Signal-to-Noise Ratio (SNR), and #)-1 local and skull conductivity wad0 times lower) and a set of ten

minima. Although the global minimum is easily identifiable,electrodes from 0-20 standard (namely Fz, Cz, Pz, Fp2, F3,

it is more difficult to find theP—1 remaining local minima F4, P7, P8, T7 and O2). Depending on the situati®s; 1 or

since nonlinear search techniques may miss shallow @rindependent sources were considered. A physiologically-

adjacent peaks and return to a previous peak. Algorithnislevant model, consisting in a network of coupled neuronal

have been proposed to solpeak-picking problem (review populations [12], was used to compute realistic source time

in [7]), but they rapidly become complex and subjective asourses. TheP sources had the same SNR equall fodB,

the number of sources and the dimensionality of vectgrs they were arranged in the samlane, and their orientations

increase [7]. So, a computation strategy such as the fallpwi ¢, (1 < p < P) were randomly fixed such a#cz)pH = 1.

FO deflation concept has to be established to avoid this peakhe background noise was considered as temporally and

picking problem, giving rise to the-RapMUSIC method.  spatially white, except for situation I1V-C. Simulation vdts

This latter consists in localizing recursively tiesources. Were averaged ovev/ =200 realizations.
Indeed, thep-th step of thel-RapMUSIC method allows for WO criteria were used to quantn‘y the quqhty of the source
identifying the&(p)-th source location and orientation vec-localization fo.r ea_lch method. The f|rst one is the Probg/o[ht
tors. The use of the permutation functiérof {1,2,..., P} of Non Localization (PNL),_wh_|ch is deflr_1ed by the ratio
is necessary since the source localizing vectors(6,) may between the number of realizations for which all the sources

be recovered only in the disorder. Indeed, equation (1) sho/@'® not localized and the total number of realizatiors
that the order in which the components sfk) and the The second.om_a is the averaged Root Mean Square Error
associated columns ofl(©) are set does not change the(RMSE), which is defined, for sourgeg by:
expression ofe (k). Theé(p)-th source location vectopy ),
nim)
6, - 6, H}) (10)

M’
1
can be achieved by searching for the global minimum root RMSE(6,) = I Z ( min {

RMSE

Dipole position on z—axis (cm)

of (8) replacingG(p) andIl, by Atf@f G(p) and the noise mo1 \'SISF
subspace projectoI,_;, of matrix [ALE@f]Qm [ALE@f]T, whereM’ (M’ < M) is the number of realizations for which
respectively, where: ! P the localization method has succeeded in finding exactly

P solutions, andd; ™ is the j-th source parameter vector

Vi 1<j<p—1. a(é)g(j)) _ G(pg(j))qbg(j) estimated durmq thea-th realization. o
A, = [a(gf(l)) a(Og(p_l))] 9) A. Effect of the dipole depth on source localization

A;A =In— A1 [(Ap1)" Apfl]’l[Apfl]T The behaviour of the four MUSIC-like algorithms was
studied in the presence of a unique source using only six
calp electrodes. Figure 1 displays the variations of the

Note that the rank of the data quadricovariance matri o .
q MSE criterion of the four methods as a function of the

1®2 1 ®2.T . .
A4, 1]Qy [ A, ] s stictly smaller thanR. Indeed, the source location on the-axis. It appears that both FO

m“'t'p“ca“fggm the '“fg“g' guadrlcovr?lrlano@m on left and methods localize more precisely the source than both SO
right by A, and [A;, ;] , respectively, comes down 0 yethods, whatever source depth. Note that PNL criterion is

remove the contribution of the—1 first localized sources ot reported here because it was quasi-zero for all methods
from @, and consequently to increased the dimension Qfnatever source depth.

the noise subspace and so the capacity of source locatizatio o )

As far as the source orientation vectpy,, is concered, it B- Localization of poorly spatialy separated sources

can be computed from the source location veggy,, as The behaviour of the four algorithms was also studied in
explained in the previous paragraph. the case of two poorly spatialy separated sources. Figure 2
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Fig. 2. Localization of 2 very close sources with 10 electd Fig. 3. Source localization in the presence of a coloredenois
presents the RMSE and PNL criteria of the four methods V. CONCLUSION

as a function of samples for two sources using ten sur-

face electrodes. Source location parameters were chosen aWe proposed in this paper two novel algorithms for brain
‘ a P . OSeNeffrent source localization, namely theMUSIC and 4-
equal top, = [0,0,0.8]" and p, = [0,0,1.12]" (values in

centimeters). It clearly appears on figure 2(b) that Zhe RapMUSIC methods. Computer results showed the superior-
MUSIC and4-MUSIC methods have difficulty in localizing ity of 4-RapMUSIC overd-MUSIC and classical algorithms

such a®2-MUSIC [3] and2-RapMUSIC [7] for both overde-
both sources, wheregs t.IQeRapMUSIC and4—RapMUSIC termined mixtures of sources and a small number of ten
algorithms succeed in finding two solutions. Nevertheles

. . Flectrodes. Forthcoming works will display i) its supeitipr
as dlsplqyed by f|gu.re 2(a), theRapMUSIC method does for larger number of electrodes as used in standard or higher
not localize as precisely both sources as 4HeapMUSIC

algorithm resolution montages, ii) its capacity to localize more sear
9 ' than surface observations, and iii) its behavior when appli
C. The case of colored noise to patients in whom strong hypotheses about localization of

Both FO algorithms were compared to both SO algorithm@Pileptic zones are available.
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