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Abstract 

This paper describes a macroscopic neurophysiologically-relevant model of the entorhinal 

cortex (EC), a brain structure largely involved in human mesio-temporal lobe epilepsy. This 

model is intervalidated in the experimental framework of ictogenesis animal model (isolated 

guinea-pig brain perfused with bicuculline). Using sensitivity and stability analysis, an 

investigation of model parameters related to GABA neurotransmission (recognized to be 

involved in epileptic activity generation) was performed. Based on spectral and statistical 

features, simulated signals generated from the model for multiple GABAergic inhibition 

related parameter values were classified into eight classes of activity. Simulated activities 

showed striking agreement (in terms of realism) with typical epileptic activities identified in 

field potential recordings performed in the experimental model. From this combined 

computational/experimental approach, hypotheses are suggested about the role of the different 

types of GABAergic neurotransmission in the generation of epileptic activities in EC.  
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I. Introduction 

 In mesio-temporal lobe epilepsy (MTLE), a subtype of temporal lobe epilepsy (TLE) 

[1], stereo-electroencephalographic (SEEG, intracerebral depth electrodes) recordings in 

intractable patients showed that seizures may originate from the entorhinal cortex (EC) [2]. 

More recently, this brain structure has been shown to play an important role in the 

interictal/ictal transition in MTLE [1, 3].  

Several evidences arguing that EC is largely involved in MTLE have also been obtained from 

field potential recordings in experimental animal models [4-7]. These animal models are 

particularly adapted to investigate the role of the EC in epileptic activity generation because 

this structure belongs to the “paleocortex”, a well conserved part of the cortex during the 

species evolution. So, it can be assumed that the intrinsic organization of EC is very similar 

between animal species and humans and consequently, studies from epilepsy acquired animal 

models can be very informative about human epilepsy pathophysiology. 

SEEG signals and field potentials can be considered as macroscopic recordings. Both 

reflect overall dynamics rising from interconnected populations of principal neurons and 

interneurons. Actually, an important issue consists in relating these macroscopic recordings to 

circuit and synaptic transmission mechanisms (type of post-synaptic receptors involved, 

kinetics of postsynaptic responses, efficacy of synaptic transmission) underlying epileptic 

activities. This issue can be addressed using a computational modeling approach based on 

cytoarchitectonic and neurobiological knowledge about the anatomical structure under 

analysis. In the present study, we describe a realistic model of the EC which offers the 

possibility to investigate the simulated field potential activity as a function of the temporal 

dynamics of its postsynaptic components. Bifurcation and stability analysis of the model are 

then used to generate hypotheses about synaptic mechanisms involved in the transition from 

normal to epileptic activity in an in vivo model (guinea-pig isolated brain preparation). 
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II. Background and objectives 

  The purpose of this study is to interpret epileptic activities (interictal and ictal) 

recorded from the EC in an animal model: the isolated guinea-pig brain perfused with 

bicuculline [8, 9] through realistic modeling of field potential activity. The model is based on 

EC cytoarchitectonic and neurobiological data reported in literature and summarized in 

appendix. In this work, we focused on the analysis of GABAergic synaptic interactions 

between principal cells and interneurons populations included in the model. Indeed, an 

important role in generation of epileptic activities (interictal and ictal) has recently been 

attributed to GABA-mediated neurotransmission. This hypothesis is issued from several 

studies investigating epileptic activities recorded from hippocampus in experimental models 

[10-12] and in epileptic patients [11, 13, 14]. Additional evidences have also been obtained 

from different modeling approaches validated with combined real recordings. Using the 

modeling (at cellular level) of a neuronal network, Traub et al showed that GABAa receptor-

mediated inhibition was crucial for shaping gamma oscillations [15]. In another study [16], a 

physiologically-relevant macroscopic model of hippocampus permitted to reveal that fast 

onset ictal activity was explained by the impairment of dendritic GABAa receptor-mediated 

inhibition with slow kinetics. Based on experimental animal recordings, a role of GABAergic 

inputs from interneurons has also been suggested in production of epileptic activities within 

the EC [5, 17, 18].  

Consequently, we specifically studied GABAergic synaptic interaction related parameters in 

the model. We performed both sensitivity and stability analysis in order to identify model 

parameter evolutions which explain observed transitions of dynamics in real signals (for 

example, from interictal spikes to fast activity at seizure onset and from fast onset to ictal 

burst activity). 
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III. Computational model 

A. Level of modeling 

A macroscopic modeling approach (neuronal population level) was chosen because 

this level allows simulation of signals that can be directly compared to real signals (field 

potentials reflect overall dynamics rising from interconnected populations of principal 

neurons and interneurons). Theoretical description of the approach is described in [19] and its 

first use for electrophysiological data interpretation were reported by Freeman [20] and Lopes 

Da Silva [21, 22]. More recently, this class of models was exploited in various 

neurophysiological or clinical studies [23, 24] [16, 25] [26] . 

This macroscopic approach differs from Traub’s [15] which uses a large number (up to more 

than one thousand) of neurons and interneurons (each one represented by a complex multi 

compartmental model) for each subpopulation. Indeed, in macroscopic models, populations of 

cells composed by different subpopulations (typically principal cells and interneurons) which 

interact via synaptic connections are considered. In other words, each subpopulation may be 

seen as a unique ‘lumped-parameter neuron model’ while a population model is obtained from 

interconnection of these neuron models. The complexity of the corresponding mathematical 

model is hence dramatically decreased.  

Each lumped-parameter model includes inputs (either inhibitory or excitatory) interpreted as 

average firing rates of action potentials (averaged on both time and space). Inputs are simply 

defined by a lowpass linear filters whose output represent the average postsynaptic potential 

and whose time constant can be specifically adapted to the kinetics of receptors present in the 

postsynaptic membrane. The output of the model is interpreted as a mean frequency of action 

potentials fired at the soma. It is obtained from the weighted summation of postsynaptic 

potentials fed into a static nonlinear operator which accounts for threshold and saturation 

effects. 
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B. Entorhinal cortex computational model 

Based on available data about the cellular and network organization of the EC (see 

appendix, figure 1 and table 1), we introduced i) NP specific subpopulations of neurons  

(pyramidal cells, stellate cells) and interneurons which are encountered in deep and superficial 

layers of this brain structure and ii) a set of intra-layer and inter-layer interaction links 

between these NP subpopulations (Figure 1 A).   

Regarding synaptic interactions in this network, we distinguished excitatory postsynaptic 

activities (glutamatergic) from inhibitory postsynaptic activities (GABAergic or glycinergic).  

GABAergic transmission is itself mediated by GABAa (with slow and fast kinetics) and 

GABAb receptors. 

In the model, the dynamics of the set of the NP interconnected subpopulations correspond to 

the state trajectory of a system of NP interconnected differential equation subsystems (one 

subsystem per subpopulation). Each subsystem equation corresponds to a multiple input/one 

output system (as represented in figure 1 B for subpopulation number p) and that can be 

described by equation (1). For the subpopulations influenced by noise, the term  in (1) is a 

random input (positive mean gaussian white noise) which models non specific afferences on 

principal cells only (i.e. pyramidal - ,  - and stellate - St – subpopulations). Otherwise, if 

no 'external noise' acts on the subpopulation, a zero value must be substituted for variable 

in (1) : 

pn

1P 2P

pn

2 2( ) [ ( ),{ ( ), }, ( )], ( ) , , 1..pp I
p p p k p p

d y t f y t o t k I n t y t R t R p NP
dt

θ + += ∈ ∈ ∈ =     (1) 

 
                                            2 2 1 2 2: p pp pI I

pf R Rθ + + + +→ I                              (2) 
  

           
 

H
A

L author m
anuscript    inserm

-00183634, version 1



 7

where p denotes the considered subpopulation index, py denotes the state vector of this 

subpopulation,  is the list of outputs from afferent subpopulations and { ( ), }ko t k I∈ p pI  

(cardinal of pI ) is the number of afferent  subpopulations.  

 
As illustrated in figure 1-B, for given subpopulation number p, the relationship between 

presynaptic afferent input(s) (  and  or  {  only) and population firing output ( ) 

can be defined as in equation (3) and (4):   

{ }ko pn }ko po

( ) ( ( ))p
p po t S x tµ=    (3) 

( ) .( * )( ) ( * )( )
p

p

p p p
p k k k p n

k I

x t C o h t n h
∈

= +∑ t     (4) 

where  accounts for the average number of synaptic contacts from population k to 

population p, 

p
kC

( )px t  represents the input potential at the soma which is a summation (symbol * 

denotes the convolution product) of linearly filtered versions of afferent inputs  and of 

the input noise  (if present). Filters are themselves defined by their respective impulse 

responses detailed in equations (5) and (6): 

( )ko t

pn

( ) exp( / )p p
k k p

k

th t M t p
kττ

= −  if , = 0 otherwise  , 0t ≥ pk I∈   (5) 

( ) exp( / )
p p p

p

p p p
n n np

n

th t M t τ
τ

= − 0t ≥ if , = 0 otherwise .        (6) 

where p
kM  is a positive (excitatory input) or negative (inhibitory input) constant equal to the 

product of  maximal value of  and of the neperian logarithm basis e (the larger ( )p
kh t p

kM , the 

more efficient the synaptic link ) and k → p p
kτ  is a time constant (the larger p

kτ , the 

smoother the input) which accounts for the rise and decay time of postsynaptic potentials, in 

accordance with receptor kinetics and propagation delays along dendritic trees. 

H
A

L author m
anuscript    inserm

-00183634, version 1



 8

The function pS µ  defined by equation (7) and which appear in the right part of figure 1 B, 

0
0 0

0

2( ) 0, , , ( , , )
1 exp( ( ))

p
p

p p
pp p

eS x e x R r e v
r v x

µ µ⎤ ⎡= ∈ ∈ =⎦ ⎣+ − 0
p p  (7) 

is a sigmoid function (nonlinear positive increasing function) which models nonlinear 

threshold (minimum pre-somatic mean potential level for action potential firing) and 

saturation (maximal firing rate) effects as constants  ,  and pe02 pv0
pr  respectively define the 

maximum firing rate, the post-synaptic potential corresponding to a firing rate equal to  

and pe0
pr  the steepness of the sigmoid. 

The link between convolution kernels  or p
kh

p

p
nh  in (5) and (6) and differential 

equation systems (1) is given by the equivalence between on one hand  

and and on other hand the order two differential equation systems:  

,1( ) ( * )( )p p
k k kz t h o t=

,1( ) ( * ) ( )
p

p p
n n pz t h n t=

{ ,1 ,2( ) ( )p p
k k

d z t z t
dt

= , ,2 ,2 ,12

2 1( ) ( ) ( ) ( )
( )

p
p p p k
k k kp p p

k k k

Md z t z t z t o t
dt τ τ τ

= − − + k }  (8) 

{ ,1 ,2( ) ( )p p
n n

d z t z t
dt

= , 2

2 1( ) ( ) ( ) ( ))
( )

p

p p p

p
np p p

n n np p p
n n n

Md
pz t z t z t n

dt τ τ τ
= − − + t  } (9) 

where the pair of 'local' states variables { ,,1( )p
kz t ,2 ,1( ) ( )p p

k k
dz t z t
dt

= }, and 

{ ,

pk I∈

,1( )p
nz t ,2 ,1( ) ( )p

n n
dz t z t
dt

= p } (if noise present) are introduced and pooled to form the 

subpopulation state vector py : 
 

1,1 2,1 1, 2,
[ , ,.., , ,0,0]

p p

T p p p p
p I I

y z z z z=    (10) 

1,1 2,1 ,1 ,21, 2,
[ , ,.., , , , ]

p p

T p p p p p
p nI I

y z z z z z z= p
n

p

  (11) 

 
Here, the last two components  in (11) denote the two state variables associated with 

the convolution kernel 

,1 ,2,p
n nz z

p

p
nh  , similarly as in (8) but with  in place of . These 2 

components  are taken into account only if input noise is present, i.e. only for index p 

pn ko
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corresponding to subpopulations P1 , P2 and St. Otherwise, they are set to zero as in equation 

(10). 

The conjoint activity of all subpopulations is represented by the time evolution of the global 

state vector  1[ ,.., ]T T
NPy y y= T   in dim( )yR   with

1..

dim( ) dim( )
p

p

p N

y y
=

= ∑ . 

Parameters set pθ  in p
pf θ  is { , (( , , ), )} { , }

p p

p p p p p
p k k k p n nM C k I M pθ µ τ= ∈ ∪ τ  (if noise 

present) or { , (( , , ), )}p p p p
p k k k pM C k Iθ µ τ= ∈  (if noise not present)  

 Finally the overall system of equations may be written as: 

dim( )( ) [ ( ), ( )], ( ) ,yd y t f y t n t y t R t R
dt

θ += ∈ ∈ , 0(0)y y=    (12) 

where 0y denotes the initial state vector value and where the global vector parameter θ  is the 

concatenation of the . , 1,..,p
pp Nθ =

  C. Stochastic nature of the model 

 In this time-continuous model (12), the input vector  ( )n t  is a positive mean Gaussian 

noise vector that pools the noise inputs  and that models non specific afferences from 

surrounding neuronal groups whose individual influences are not ‘organized’, i.e. not 

synchronous. Consequently, the model is governed by a set of stochastic nonlinear ordinary 

differential equations. However, if 

( )pn t

( )n t  is substituted by the statistical mean of the input  nM  

in   (3), we obtain a deterministic system of nonlinear ordinary differential equations: 

dim( )( ) [ ( ), ], ( ) ,y
n

d y t f y t M y t R t R
dt

θ += ∈ ∈ ,   0(0)y y=     (13) 

which can be studied for stability (see results section). 

D. Model output 

In order to explore real data recorded with a field electrode, we must establish a 

correspondence between the electrode signals, say , and vector ( )X t ( )y t  in (13). The 
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classical approach is to use the approximation dim( )( ) ( ), yTX t h y t h R≈ ∈%  where the non null 

components of column parameter vector  are such that  h ( )Th y t  is equal to a weighted sum 

of functions ( )px t  (postsynaptic potentials) in which index p corresponds to pyramidal cell 

subpopulations [27]. This choice is relevant because spatial alignment of pyramidal neurons 

(‘in palissades’) implies that vector summation of dendritic current dipoles corresponds to the 

summation of their modules in this case.  

E. Model parameters 

As mentioned in section II (Background and objectives), we only focus on GABAergic 

interactions. Consequently, variations of maximal postsynaptic potential parameters p
kM  will 

be considered only when index k corresponds to GABAergic neurotransmission (I1, I2 or I3). 

Standard values of I1, I2, I3, I4. glycine mediated neurotransmission) and E (glutamate 

mediated neurotransmission) as well as corresponding time constants p
kτ  are given in table 2. 

For each subpopulation with non specific afferences, 
p

p
nτ  will be set to eτ  value given in table 

2. 

Furthermore, for two connections  and ( )pk → ( )'p'k →  on target subpopulations p and p’, we 

impose  if k and k’ correspond to the same type of neurotransmission.  'p
'k

p
k MM =

The other parameters in θ  remain fixed. Regarding connectivity parameters , values are 

given in table 3. The value of   is independent of p and is equal to  

p
kC

0 0( , , )p p p
p r e vµ =

(0.56 mV-1, 2.5 s-1, 6 mV). Finally in the sequel we will denote 0 1 2 3( , , )I I Iθ =  the triplet of 

free parameters.  
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IV. Model parameter identification 

Model parameter identification (or parameter estimation) is a difficult problem.  It can be 

approached by elaborating a mapping procedure T which associates an observed sampled 

signal ( ), {0, ,.., ( 1) }X t t N X∈ ∆ − ∆ =  an estimated value 0̂ ( )T Xθ =  for unknown parameter 

0θ  with an estimation error criterion (like a mean square error, for example) that is expected 

as low as possible.  

In order to build T, we introduced a K-dimensional feature vector ˆ ( ) KX F G X R→ = ∈   and 

we defined T by minimization of a square error norm: 
0

2

0 0
ˆ ˆ( ) arg min ( )T X F Fθθ θ= = −    

where 0
0

ˆ( ) ( )F E Fθθ =  (
0

θ -dependant mathematical expectation of , so   is an unbiased 

estimator for ). The interesting aspect of this method is that the choice for  is open. The 

drawback is that computation of

F̂ F̂

F F̂

( )F θ  calculus is generally intractable.  

To overcome this difficulty, a possibility is to evaluate ( )Fθ θ→  by means of simulated 

observations ( )SX nθ  (where index S refers to 'Simulation' and where n  is the random input 

noise vector in the model). For sufficient signal duration (number of samples) the evaluation 

( ( )SG X nθ )  can then be put in place of ( )F θ  in 
2ˆ ( )F F θ−  to search θ̂  optimal value by 

mean of an optimization algorithm, under the assumptions that  is informative about the 

true value 

F̂

*θ  of θ  (i.e.  must not be too different from F̂ ( )G θ ) and that  *( )G θ
θ
∂
∂

 is 

sufficiently large. 

A. Activity maps 

Assuming the two above conditions, we used a feature vector  and the error function F̂

0
2ˆ ( ( )SF G X nθ−  to uncover, from simulations, disjoint regions in the space of free 
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parameters ( 3
0 Rθ ∈ ), each region being associated to a particular type of model activity. 

Then, activities reflected in real signals as well as transitions between activities are interpreted 

as possible paths connecting corresponding regions in the space of free parameters. As this 

space is of dimension 3, paths are displayed on the (I1, I2) plane, for different values of I3. In 

the results section, (I1, I2) planes are referred to as ‘activity maps’. 

B. Classification procedure 

Activity maps are obtained from a supervised classification procedure. This procedure starts 

from a partitioning of the domain of possible values of 0θ  in  classes  defined 

from the similarity between simulated and real activity (one class per activity). This 

partitioning provides a set  

CN 1{ ,.., }NCC C

1{ ,.., }NCF F% % 3( i )F R∈%  of reference values in the feature space. 

Then, for a large set 0( , ), 1,...k kn kθ = ,N (N depending on the discretization of 0θ ) such that 

0 , 1,..k k .θ = ,N constitutes a ‘sufficiently dense’ exploration of the 0θ  space and where 

, 1,...kn k = ,N  are independent realizations of the input noise in the model, the procedure  

affects  0kθ  to class   if and only if the square distance jC

0 0
22 2( , ( ( ))) ( ( )) , 1,..,k k

i S k i S kd F G X n F G X n i NCθ θ= − =% % ,  is minimum for j=i. 

This approach was motivated by two considerations: 1) in experiments, visual inspection of 

real signals reveals a limited number of types of activity and 2) in a large amount of 

simulations with different values of kθ , simulated signals displayed only a small number 

(equal to 8) of types of dynamics.  

C. Determination of reference centers  1{ ,.., }NCF F% %

NC reference values * *
01 0,.., NCθ θ  for which characteristic dynamics are obtained, when X(t) is 

simulated, are first retained. Let 0{ ( ), }, 1,..,r
S r k CX n r J k Nθ ∈ =  be  sets of independently 

simulated signals (eq. 4) where, for each k, 

CN

0 ,r r Jkθ ∈   are randomly selected in a sphere of 
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radius R centered on *
0kθ . Then, for each class Ck, feature reference kF%   is chosen to be equal 

to the arithmetic mean of the 0( ( )),r
S rT X n r Jθ

k∈ . 

D. Definition of feature vector  1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , )TF F F F F F F=

 
 Both morphological and spectral signal characteristics were used in the definition of 

feature vector F̂ . The former are essentially based on the amplitude distribution of signals 

which was assumed to be discriminant as it varies from one type of activity to another (figure 

2, last column). The first three features were obtained from partitioning of the amplitudes of 

signals normalized by the maximum of their modulus. Number of bins and thresholds were 

optimized in terms of separation between different classes of activity. This procedure led to 

define three amplitude intervals, [-0.6, -0.05], [-0.05, 0.05] and [0.05, 0.6]. Features , , 

and  correspond to the percentage of samples whose amplitude value are included in the 

above intervals, respectively. 

1F̂ 2F̂

3F̂

Let 10 ,..., −= NXXX  be N  samples taken in the observed or simulated signal, and let 

10 ,..., −= NXrXrrX  be the “rescaled” signal where: 
0 1

( 1,1)
max ( )

k
k

kk N

X
Xr

X
≤ ≤ −

= ∈ −  

We introduce ).,.,rX(FRF̂ 050601 −−= , ).,.,rX(FRF̂ 0500502 −=  and ).,.,rX(FRF̂ 600503 =  

where { }1( , , ) /k kFR Y card Y Y
N

α β α β≤= < 0, <α < β <1, for any real sequence 

10... −= NYYY . 

 

The last three features were defined to characterize the frequency content of signals and more 

particularly, their power into specific frequency sub-bands. As for amplitude features, tests 

were performed to determine the number of frequency sub-bands and boundaries. Best results 

were obtained for 3 sub-bands, [3, 12], [13, 17] and [18, 50] Hz. Features , , and  4F̂ 5F̂ 6F̂
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correspond to the signal power in the above intervals obtained from computation of the power 

spectral density (PSD, figure 2, middle column) using the averaged periodogram method.  

Let us consider ( ) { 255,...,1,0,, ∈ffXPER } as the block averaged periodogram obtained with 

256 points FFT and 50% overlap between adjacent blocks (which is an estimator of the PSD). 

We then define, for , the normalized band power on { } as 1 20 127f f≤ < ≤ 21,..., ff

1 2

1 2
0 127

( , ) ( ( , )) /( ( , ))
f f f f

NBP f f PER X f PER X f
≤ ≤ ≤ ≤

= ∑ ∑  and the last three features as 

4̂ (3,12)F NBP= ,  and . 5̂ (13,17)F NBP= 6̂ (18,50)F NBP=

Finally the feature vector is defined as . 1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , )TF F F F F F F=

 

V. Experimental data 

Experimental data were obtained from brains of Hartley guinea pigs (150-200g, 

Charles River, Calco, Italy) isolated and maintained in vitro by perfusion with a cold (4-10°C) 

oxygenated (95%) complex saline solution according to the standard procedure described 

elsewhere [28-30]. Experiments were performed at 32°C after gradually raising the 

temperature with 0.2°C/min steps. Extracellular recordings were performed in deep layers of 

the EC with 16-channels silicon probes (100 µm contact separation, provided by Jamille 

Hetcke, CNCT, University of Michigan, Ann Arbour, MI) inserted perpendicularly to EC 

lamination under direct visual control with a stereoscopic microscope. Focal epileptiform 

discharges in the limbic region were induced by 3-5 minutes arterial applications of the 

GABAa receptor antagonist, bicuculline (50 µM; SIGMA) diluted in the perfusion solution 

[9].  

The viability of the isolated brains was tested by recording the responses evoked in the limbic 

cortices by stimulating the lateral olfactory tract [31-33]. At the end of the 

electrophysiological experiments, in order to verify the position of the electrodes, an 
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electrolytic lesion were made by passing a 30 µA current for 30 seconds between the two 

deepest contacts of the silicon probe. Further, this lesion was localized on 75-100µm thick 

coronal sections obtained from the isolated brain under exploration. The experimental 

protocol was reviewed and approved by the Committee on Animal Care and Use and by 

Ethics Committee of the Istituto Nazionale Neurologico. 

From recordings performed in 10 isolated brains, eight classes of activities (numbered 

from 1 to 8) have been identified (Figure 3). Corresponding signals simulated by the model 

are displayed. It can be noticed that they closely resemble real field potentials. Class 1 refers 

to normal background activity as observed in real recordings before bicuculline perfusion. 

After injection of bicuculline, infrequent spikes (class 2) appear, and become rhythmic (class 

3) before seizure begins. Class 4 corresponds to fast activity usually observed at the onset of 

seizure. Classes 5 and 6 respectively refer to frequent bursts (class 5) and infrequent (or 

sporadic) bursts activities which are classically observed during the seizure time-course. 

Finally, two other types of epileptic activities have been identified: spikes mixed to fast 

activity (class 7) which can be observed just before the seizure onset and polyspikes (class 8) 

encountered during ictal period. 

 

VI. Results 

 Activity maps obtained for different values of I3 (GABAb inhibition) are shown in 

figure 4. These activity maps represent the distribution of the eight classes of activity (detailed 

above) in the two-dimensional parameter plane I1/I2 (GABAa slow/GABAa fast inhibitions). 

From visual inspection of these maps, we can notice that for high values of I3, the model 

produces almost only background activity. Epileptic activities start to appear when I3 

decreases. All classes of epileptic activities are exclusively produced if I3 is set below a 

threshold value (6.5 mV). Below this I3 threshold value and considering low values of I1, fast 
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onset activity, frequent and infrequent bursts are produced for high values of I2 while the 

different spiking activities (spikes mixed to fast activity, polyspikes, spikes frequent and 

infrequent) are observed for low values of I2. Beyond the I3 threshold value, fast onset activity 

disappears while the amount of polyspikes activity increases. Finally, it can be noticed that 

the amount of frequent spikes as well as frequent burst activities decrease in favor of 

infrequent spikes and infrequent burst activities when I3 rises. In other words, the frequency 

of spikes (for low values of I2) and of burst (for high values of I2) is controlled by the I3 value 

in the model. 

 Activity maps can also be considered as a representation of bifurcations in the model, 

corresponding to transitions from one class of activity to another one. However, there are no 

bifurcations in the model for the transition from infrequent spikes or bursts to frequent spikes 

or bursts. Indeed, in these cases, the same activity is produced by the model and only the 

frequency of these activities is different. 

 We also performed a preliminary study of model stability (eq. 4) by analyzing noise 

independent properties. The model was recognized as experimentally stable if, for some 

random initial conditions, the state vector converged to a same fixed point in the absence of 

input noise fluctuations (standard deviation equal to zero). A more formal study of fixed 

points is beyond the scope of this paper. Results from stability study provided the limit values 

in the two-dimensional parameters plane I1/I2 separating the stable from the unstable 

parameter regions in the model. This limit (solid line) was superimposed on each activity 

map. As interestingly observed in figure 4, the unstable zone globally corresponds to values 

of I1/I2 parameters for which epileptic activities are produced by the model. The stable zone 

increases with parameter I3 value.  
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 The knowledge of activity maps generated from the model may be used to interpret 

temporal dynamics and transitions observed in real field potentials recorded from EC during 

the transition to seizure in the experimental animal model.  

 

A first example corresponding to the seizure pattern which is encountered in most cases 

(named as typical) is given in figure 5. Eight steps (S1- S8) are distinguished according the 

pseudo-stationary nature of the activity reflected by the signal (Figure 5-A): normal 

background activity (S1), infrequent spikes (S2), more frequent spikes (S3), rhythmic  spikes 

(S4), spikes mixed to fast activity (S5), fast onset activity (S6), frequent bursts (S7) and finally, 

infrequent bursts (S8). The observed transitions from background to infrequent spikes activity 

and then, between periods of epileptic activities can be represented on the activity maps as 

possible paths connecting corresponding regions of activity and which provide to a time-

evolution for model parameters I1, I2 and I3. All these paths are oriented from high to low 

values along the I1 axis, denoting a reduction of GABAa slow inhibition and in a next step, from 

low to higher values along the I2 axis and along the “virtual” I3 axis, interpreted as an increase 

of GABAa fast and GABAb inhibitions.  

In order to simulate time-series signals (figure 5-B) which temporal dynamics reproduce those 

observed in the real field potentials (figure 5-A), we chose one possible path drawn on 

activity maps shown in figure 5-C.  Following this path, starting from standard I1/I2 values for 

which a background activity (step S1) is simulated by the model, five successive decreases in 

I1 value leads the model to generate realistic infrequent spikes (S2) and then, frequency of 

spikes increases (S3) until rhythmic spikes appears (S4). Next, these rhythmic spikes mix to 

fast activity (S5) until the emergence of fast activity (S6) corresponding to the seizure onset. 

Afterwards, frequent burst activity is observed when I2 and I3 values increase (S7). Finally, a 
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second increase in I3 values leads to a slowing down of burst activity (S8) before the seizure 

ends.  

An interesting feature of the procedure is its capacity to also interpret another seizure pattern 

less frequently encountered in real recordings and characterized by a lack of rhythmic spikes 

and fast onset activity when seizure begins (figure 6-A).  Using the same procedure, we 

defined two possible paths characterized by 6 steps (S1-S6) on the activity maps (Figure 6-C 

and 6-D). Starting from the same standard I1/I2 values (S1) than in the precedent example, the 

first path (figure 6-C) leads to hypothesize that I1 value (GABAa slow inhibition) decreases 

more abruptly and in a lesser extent (S1 to S4). So, three successive decreases in I1 value result 

in the appearance of spikes (S2) whose frequency increases (S3) before the emergence of 

spikes mixed to fast activity (S4). But the I1 value does not sufficiently decrease such that fast 

activity at seizure onset is observed. Afterwards, as observed in the precedent seizure pattern, 

frequent burst activity (S5) is generated when I2 and I3 values increase and finally, the burst 

activity slows down (S6) consecutively to a further increase of parameter I3 value. The second 

possible path (figure 6-D) leads to the hypothesis that the I3 value (GABAb inhibition) might 

be higher in this experiment and remains constant. For this higher I3 value, no fast onset 

activity is produced by the model. In this case, the three successive decreases in I1 values (S1 

to S4) lead the model to generate infrequent spikes (S2), more frequent spikes (S3) and then 

spikes mixed to fast activity (S4). Appearance of the frequent burst activity is explained in the 

model by an increase in I2 value and then, a re-increase in I1 value results in the production of 

an infrequent burst activity before seizure termination. From these inhibition profiles, time-

series signals shown in figure 6-B are produced by the model. As in the previous example, it 

can be noticed that this simulated signal is very realistic compared to the real field potential 

recording. 
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VII. Discussion and conclusion 

In this study, we proposed a macroscopic computational model which produces 

vectorial signals corresponding to normal background activity and also to different types of 

epileptiform activities which are very realistic compared to real signals (extracellular field 

potentials) recorded from EC in the isolated guinea-pig brain during seizures induced by 

bicuculline perfusion. The macroscopic modeling level (based on a lumped parameter 

approach) chosen for this study seems us to be particularly suited to the nature of 

experimental recordings and human intracerebral recordings (i.e. SEEG). Indeed, the model 

output corresponds to a reflection of ensemble dynamics rising from macroscopic statistical 

interactions between interconnected neuronal sub-populations (pyramidal cells and 

interneurons) and therefore, it can be interpreted as extracellular field potentials recorded in 

animal models or in intractable patients under pre-surgery exploration.  

A crucial step in the modeling is to determine parameters values and to validate 

modeling results. In this study, this step was achieved in interaction with real recordings from 

experimental guinea-pig model. Because it is very difficult to determine parameters values 

only from available experimental data, the parameters identification was addressed in this 

work using a systematic variation procedure of parameters values around standard values. 

This procedure was coupled to an automatic classification method of simulated signals based 

on their spectral and statistical features. Here, it needs to notice that this procedure has only 

been applied to model parameters related to the three types of GABAergic inhibition present 

in the model, based on convergent evidences that GABAergic synaptic interactions play a 

important role in generation of epileptic activities [5, 17, 18]. Amplitude of other average 

post-synaptic potentials (excitatory and Glycine-mediated inhibitory) as well as connectivity 

values were kept constant. In spite of these restrictions, our classification method resulted in 

very homogeneous classes of activities as it can be observed on activity maps. This last result 
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increases model’s confidence as it suggests that there are not several possible parameters sets 

to generate one given type of activity identified from real recordings. Moreover, from these 

parameters sets, very realistic signals could be simulated. As exemplified with the two 

different seizure patterns, they provided a physiologically relevant interpretation of transitions 

between the different types of activity, either from the background activity to the period 

preceding the seizure onset (where spikes appears and increase in frequency) or during the 

seizure time-course itself. In terms of stability, this work also showed that instability in the 

model (globally corresponding to epileptic activities) was caused by introducing both a 

decrease of GABAa slow and GABAb receptor-mediated inhibitions. Beyond the validation of 

modeling results from real recordings, the model can also be used to generate testable 

hypothesis about possible mechanisms underlying the transition from background to epileptic 

activities.  From this study, the role of GABAb-mediated inhibition in the epileptic activities 

generation, in the decrease of burst frequency or in the process of seizure termination should 

be experimentally tested.  

The model can also be considered as a valuable tool to advance in the understanding of 

pathophysiological mechanisms of human epilepsy. Indeed, the computational model 

integrates several types of knowledge: neurobiological (cellular organization, connections…), 

pharmacological (types of receptors, types of neurotransmitters, bicuculline effect) and 

physiological (role in generation of epileptic activities). As presented in this study, using 

modeling results, it has been possible to interpret field potentials in terms of synaptic 

interactions for different types of GABA receptors and therefore, to put forward hypothesis 

about the role of these types of GABA inhibitions in the generation of epileptic activities. For 

example, in the model, fast onset activity seems to be produced only if I2 parameter value 

(GABAa fast receptor-mediated inhibition) is sufficiently high. The model acts as a bridge 

between the macroscopic observations (extracellular field potentials) and fine mechanisms at 
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synaptic level. Thus, this model could offer a good way to progress in the role of EC and 

mechanisms present within this brain structure involved in human MTLE. Another 

perspective is to use such models to represent the temporal dynamics of epileptic activity 

sources located in limbic structures. Indeed, electrical or magnetic potentials observed on 

electrodes positioned at the surface of the head can be computed, given some information 

about the spatial distribution of these sources and given a volume conductor model (forward 

problem). Such an approach could contribute to better interpretation of spatio-temporal 

dynamics reflected in MEG [34] or EEG [35] signals recorded in temporal lobe epilepsy.  

 

Appendix: Cellular organization of entorhinal cortex 

According with anatomo-functional description reported in previous works [36, 37], 

“superficial layers” (superficial to lamina dissecans (layer IV)) and “deep layers” (between 

lamina dissecans and the white matter) are represented in a superficial EC model and a deep 

EC model. The global EC model corresponds to superficial EC model interconnected to deep 

one (figure 1). In the sequel, we describe  the cytology and network connectivity of the EC. 

 A. Principal excitatory neurons 

 Principal excitatory neurons in the entorhinal cortex consist in pyramidal cells 

localized in superficial layers (mainly in layer III) and deep layer (mainly layer V) and stellate 

cells localized in superficial layers (mainly layer II) [37-43]. Pyramidal neurons in deep layers 

project to pyramidal and stellate neurons in superficial layers [44], [45, 46]. In turn, they 

receive afferent inputs from pyramidal neurons in superficial layers [43].  

  B. Interneurons 

The EC model includes two classes of interneurons: inhibitory and excitatory [47, 48]. 

Based on pharmacological studies, it has been shown that inhibitory interneurons project to 

four types of post-synaptic receptors: glycine receptors [49] [50]; GABAb receptors [51, 52]; 
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and two kinetically distinct subtypes of GABAa receptors (fast and slow) [53] identified from 

recording of spontaneous inhibitory synaptic currents in EC interneurons (layers II and V). 

According with this assumption, spatially segregated synapses (axo-somatic and axo-

dendritic) from inhibitory interneurons to pyramidal and stellate cells have been identified 

[43, 47, 54]. Taken together, these observations suggest that there are dendritic and somatic 

inhibition in the EC and according to previous works, dendritic inhibition would involve 

mainly GABAa slow receptors while somatic inhibition would involve mainly GABAa fast ones 

[55, 56].  

All interneurons (inhibitory and excitatory) receive afferents excitatory inputs from 

stellate (only in superficial layers) and pyramidal cells [36, 53, 57]. An additional excitatory 

afferent input to GABAergic interneurons comes from excitatory interneurons [36, 53, 57]. In 

turn, excitatory interneurons receive inhibitory feedback from GABA interneurons via 

GABAa (slow and fast) receptors [36, 47, 48]. Moreover, glycinergic interneurons receive an 

inhibitory feedback from GABAergic interneurons via GABAa slow receptors [50]. 

 C. Extra-entorhinal inputs  

Pyramidal (in superficial and deep layers) and stellate cells receive an extrinsic 

excitatory input from subiculum, pre- and para-subiculum [58] as well as from CA1 [59-62], a 

subfield of hippocampus. Another extra-entorhinal input comes from neocortex and olfactory 

cortex [36] as well as subcortical structures [36, 63].  

 D. Entorhinal outputs 

The main output pathway of EC originates from stellate cells and deep pyramidal 

neurons which give rise to the perforant route, projecting to dentate gyrus and CA3/CA2 

hippocampal fields [43, 45, 46, 64]. The second EC output consists in the temporo-ammonic 

pathway from pyramidal neurons in superficial layers (mainly layer III) which send their 

axons predominantly to hippocampal field CA1 and the subiculum [36, 65, 66]. 
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Legends: 

Table1: Table of input subpopulation indexes as used for equations writing. Each source 

subpopulation (P1, P2: pyramidal cells. St: stellate cells. Exc: excitatory. Inh: inhibitory. IN: 

interneurons) has been conventionally numbered from 1 to 12 and the different types of 

neurotransmission (I: inhibitory and E: excitatory) are denoted in the first colon, line 3 to line 

7 with the corresponding neurotransmitter in brackets. The connectivity oriented graph 

represented on figure 1-A is encoded in the table cells: an empty cell for no afference, else the 

list of existing afferences. The last line indicates noise input applied to P1, P2 and St 

subpopulations.   

 

Table 2: Amplitude of average post-synaptic potentials (initial values for which normal 

background activity is simulated) and time constants used in the model 

 

Table 3: Local connectivity constants in EC model 

 

Figure 1: (A) Cellular organization (P1, P2: pyramidal cells. St: stellate cells. Exc: excitatory. 

Inh: inhibitory. IN: interneurons) of the EC established from literature review about 

cytoarchitectonic and neurobiological data. This was used as the starting point in the EC 

model design. From generic input/output diagram (B) representing all inputs and the output 

for any neuronal population and mathematical conversions (transfer functions, sigmoid 

function), a particularized diagram for the pyramidal subpopulation in deep layers (P2) is 

given as example (C). 
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Figure 2: The different types of activity produced by the model and comparison with real field 

potentials recorded from EC in isolated guinea-pig brain. In figure 4, each type of activity is 

coded by the color indicated in corresponding box.  

 

Figure 3: For each type of activity, spectral (frequency bands: 3-12 Hz; 13-17 Hz; 18-30 Hz) 

and statistical (number of points in interval -60/-5 %; -5/5 %; 5/60 %) features included in the 

features vector used to perform the classification are represented.  

 

Figure 4: Activity maps obtained for model exploration with respect to I1 (GABAa slow 

receptor-mediated inhibition) and I2 (GABAa fast receptor-mediated inhibition) parameters 

corresponding to the synaptic gains in feedback loops from inhibitory interneurons to 

pyramidal cells in deep layers of EC. Limit values (illustrated by a solid line) in the two-

dimensional parameters plane I1/I2 separating the stable from the unstable parameter regions 

in the model (based on stability study) is superimposed on each activity map. Stable 

(respectively unstable) region appears on the right (respectively left) side of the line. For two 

maps (I3=6.5 and I3=8), closed contours were observed inside which stability was found. 

 

Figure 5: (A) Typical seizure pattern recorded from EC in the isolated guinea-pig brain 

perfused with bicuculline. Eight phases can be distinguished in this pattern (see details in 

text). (B) Corresponding simulated signals generated by the model for each phases from 

synaptic gains profiles defined by the path drawn on activity maps. (C) One possible path on 

activity maps explaining the transitions of activity observed in the real field potential 

recording (A).  
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Figure 6: (A) another seizure pattern characterized by the lack of rhythmic spikes and fast 

activity at the seizure onset. In this pattern, six phases can be distinguished (see details in 

text). (B) Corresponding simulated signals produced in the model for each phases from 

synaptic gains profiles defined by the path drawn on activity maps (see (C)). One possible 

path on activity maps (C) explaining the transitions of epileptic activity observed in the real 

field potential recording (A) assuming that GABAa slow receptor-mediated inhibition decreases 

less abruptly and in a lesser extent. Another possible path on one activity map (D) explaining 

the transitions observed from background activity to the seizure activities in real recordings 

(A) with hypothesis that GABAb receptor-mediated inhibition is strong.
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Table 1: 

Layers   DEEP SUPERFICIAL

1            2 3 4 5 6 7 8 9 10 11 12Neuronal population 
type 

 
 

Neurotransmission  
          type 

P2 Exc IN Inh IN Inh IN Inh IN P1 St Exc IN Inh IN Inh IN Inh IN Inh IN 

I1 (GABAa, slow)   4 4        11 11 11 11    

I2 (GABAa, fast)   5 5       10 10 10     

I3 (GABAb) 3       12 12      

I4 (Glycine)        9 9      

E (Glutamate) 1, 6  1 1 1, 2 1, 2 1, 6 1, 7 6,7 6,7 6, 7, 8 6, 7, 8 6,7, 8 

N  n2       n1 n3      
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Table 2:  

 DEEP SUPERFICIAL  
 Average amplitude 

(mV) 
Average amplitude 

(mV) 
Time constants 

(ms) 
Excitatory PSP 

(Glutamate) E = 6 E = 3 τe = 10 

Inhibitory PSP      
(GABAa, slow) 1I = 25 1I = 25 τ1 = 30 

Inhibitory PSP      
(GABAa, fast) 2I = 40 2I = 40 τ2 = 4 

Inhibitory PSP      
(GABAb) 3I = 5 3I = 5 τ3 = 300 

Inhibitory PSP      
(Glycine) Not present 4I = 40 τ4 = 27 
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Table 3:  
 

             p 
   k P1 P2 St IN IN exc GABAa,s IN GABAa,f IN GABAb IN Gly

P1 160        4 4 50 50 50 50 30

P2 3        160 - 50 50 50 50 -

St         - - 160 50 50 50 50 50

IN exc - - - - 20 20 20 - 

IN GABAa,s 35        35 35 20 - - - 10

IN GABAa,f 25        25 25 20 - - - -

IN GABAb 15        15 15 - - - - -

IN Gly -        35 35 - - - - -
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