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Summary

Cox model is the model of choice when analyzing survival data presenting
only right censoring and left truncation. There is a need for methods which
can accommodate more complex observation schemes, involving general cen-
soring and truncation. In addition it is important in many epidemiological
applications to have a smooth estimate of the hazard function. We show that
the penalized likelihood approach gives a solution to these problems. The
solution of the maximum of the penalized likelihood is approximated on a
basis of splines. The smoothing parameter is estimated using approximate
cross-validation; confidence bands can be given. A simulation study shows
that this approach gives better results than the smoothed Nelson-Aalen es-
timator. We apply this method to the analysis of data from a large cohort
study on cerebral ageing. The age-specific incidence of dementia is estimated

and risk factors of dementia studied.

Key words: Hazard function, penalized likelihood, spline, trun-

cation, interval-censoring, proportional hazards.
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1 Introduction

The analysis of survival data takes a prominent role in epidemiology. The
model of choice for many applications is Cox model (1972) which allows
estimation of the relative risks without making parametric hypotheses on
the baseline hazard function. With this model, both right censoring and left
truncation can easily be handled. However there are two limitations: more
complex observation schemes cannot be treated; this approach does not yield
a smooth estimate of the hazard function.

There are more and more instances where complex observation schemes
have to be treated. In registers, the observations are right truncated because
cases are registered at a certain date if and only if they have developed
the disease before that date (Lagakos, Barraj and De Gruttola, 1988). In
cohort studies, it often happens that there are successive visits and the time
the event of interest occurred is only known to lie between two visits: this
produces interval censored data. Prevalent cases of a disease can be viewed
as left censored observations. For all these situations we need more general
tools than the Cox model.

Peto (1973) proposed the non-parametric maximum likelihood estimator
(NPMLE) of the survival function for interval censored data and Turnbull
(1976) extended it to arbitrarily censored and truncated data. Finkelstein
(1986), Finkelstein, Moore and Schoenfeld (1993), Tu, Meng and Pagano
(1993) developed discrete proportional hazards models for such cases using
the full likelihood maximized by the EM algorithm and Alioum and Com-
menges (1996) proposed an extension of the proportional hazards model in

continuous time.
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These methods are useful for estimating the survival function but not the
hazard function. An estimated hazard function is often an important result
in epidemiology. In particular, if age has been chosen as the time scale, the
hazard function is the age-specific incidence of the disease. Choosing age as
the time scale generally creates left truncated data and estimation of the age-
specific incidence is most often done using the person-years method (Breslow
and Day, 1987). In this method, the smoothing comes from the assumption
of constant hazard rate during 5-year periods. However the person-years
method (and its extension to regression model via Poisson regression) is lim-
ited because the estimate of the hazard is not really smooth but presents
jumps. An interesting solution proposed by Ramlau-hansen (1983) and An-
dersen et al (1993) is to smooth the Nelson-Aalen estimator by kernel meth-
ods. However neither method can accomodate more than right censoring and
left truncation.

A complete solution to the problem seems to be easy with a parametric
approach but this approach is not satisfactory because an age-specific inci-
dence may have any shape and we do not know it before analyzing the data.
The approach of Kooperberg, Stone and Truong (1995) can be viewed as
a very flexible parametric approach. The family of parametric functions is
defined as those which can be constructed using a basis of splines.

Another approach is based on penalized likelihood. Here we explicitly
introduce an a priori knowledge of smoothness of the hazard function, by
penalizing the likelihood by a norm of the second derivative of the hazard
function. The estimator is defined non-parametrically as the function which

maximizes the penalized likelihood. The solution is then approximated on a
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basis of splines. Such an approach has already been proposed by Senthilselvan
(1987) and O’Sullivan (1988) in the case of right censored data. Senthilselvan
(1992) treated the case where left truncation is also present.

In this paper we show how this approach can be applied in complex cases
of truncation and censoring, including for instance interval censoring and
right truncation. We also show how it can be applied to regression models
including the proportional hazards model. We propose to represent the haz-
ard function (rather than the log-hazard) on a basis of splines; this avoids
numerical integrations to compute the cumulative hazard function and hence
the likelihood. These proposals are presented in section 2 which also contains
a method based on approximate cross-validation for automatically choosing
the smoothing parameter and a method for obtaining confidence bands. In
section 3, we present simulations comparing the penalized likelihood esti-
mator to the smoothed Nelson-Aalen estimator. In the fourth section, the
age-specific incidence of dementia is estimated using data from a large co-
hort study. We also study risk factors of dementia and compare the results
obtained with the penalized likelihood approach to those obtained with Cox

model.

2 Problem and method

2.1 Incomplete data: censoring and truncation

Let X, Xs, ..., X,, be a sample of n positive random variables with common
survival function. In the sequel we denote by f the probability density func-

tion, S the survival function, A the hazard function and A the cumulative
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hazard function of X. Using the notations and definitions introduced by
Turnbull (1976), we say that the observation X; is interval-censored if the
only information about it is that it lies in a known interval A; = [L;, Ry];
L; < X; < R; with A; C IR". Both left- and right-censoring are just par-
ticular cases of interval-censoring. Let Ly, ..., L, and Ry, ..., R, two samples
of censoring times. X; is right-censored if X; > L;. In this case we do not
observe X; but only L;, and we have A; = [L;, +00). If X; is left-censored we
just know that X; < R; and we have A; = [0, R;]. If L; = R; (= X;) then X;
is uncensored. A convenient assumption which is sufficient for the censoring
to be non-informative is that the L; and the R; are fixed or independent of
X;.

We say that X; is truncated if it is observed conditionally on the event
X, € B;; we shall restrict to the case where B; is an interval. Let £, ..., L,
and R4, ..., R, two samples of truncating times. X is left-truncated if B; =
[L;, +00), right-truncated if B; = [0, R;] and interval-truncated if it is both
left- and right-truncated. If B; = [0,400) then X; is not truncated. If X;
is both interval-censored and truncated we have A; C B;. Similarly to the
censoring, we shall assume that £; and R; are fixed or independent of X;.

While dealing with censored and truncated data it is more convenient to
work with the hazard function or the cumulative hazard function because
the log-likelihood can be expressed simply in terms of these functions.
In the general case the log-likelihood is:

= 218\ X7 R i <L <R <R 1
= Ye(3pa)  GshsRER O
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with

A(L R) e’A(L") — e’A(Ri) if Lz < Ri,
v A(Ly)eMED it L =R,

Thus the log-likelihood can be expressed as a function of A and we shall note

I(\).

2.2 Penalized likelihood

In many situations we expect the hazard function to be smooth. A possible
means for introducing such an a priori knowledge is to penalize the likelihood
by a term which takes large values for rough functions. One can find a good
overview of this subject in Silverman (1985).

The smooth aspect of a function is related to the value of its second
derivative, which leads to take for roughness penalty [ /\"Q(U)du. We assume
that A(.) belongs to the class of continuous functions, twice differentiable
and whose second derivative is square integrable. We define the penalized

log-likelihood as:

plN) = I\ —k / A (u)du 2)

Where [ is the usual log-likelihood and x is the smoothing parameter which
must be positive; k controls the balance between the fit to the data and the
smoothness of the function. Maximization of (2) over the desired class of
function defines the maximum penalized likelihood estimator (MPLE) A and

hence A and other possibly interesting functions.
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2.3 Approximation via splines

The solution of (2) can be approximated on a basis of splines. We briefly
present the splines used here and give some computational aspects of this
approach. For more details see Ramsay (1988) (monotone splines), Wegman
and Wright (1983) (splines in statistics) and de Boor (1978) (B-splines).

Splines are piecewise polynomial functions which are combined linearly
to approximate a function on an interval. We use M-splines, which are a
variant of B-splines, and I-splines.

A M-spline of order k is defined as:

k[(@—t;) Mj (2]k—1)+(t; 45 —2) Mj 1 (e[ k—1)]

M](CE|I€) = (k=1)(tj+r—t;) ) t] S r < tj-l—ka
0 elsewhere,
with
1 .
—— if <z <tiyq,
M;(z]l) = (tjv1—t;) i J+1

0 elsewhere.

where ¢4, ..., t,, is a sequence of increasing knots. Each M;(z|k) is zero outside
of the interval [t;,%;4], hence is non-zero over k intervals and over each
interval there are k£ non-zero M-splines. For our approximation we use splines
of order 4.

To each M-spline we associate a I-spline:

L (xlk) = /0 M, (ul ) ds

Each M; is piecewise polynomial of degree ¥ — 1 and each associated I; is
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piecewise polynomial of degree k defined as (if t; <z < tj44):

0 if h>j,
J
x|k +1 e .
L(alk) = 4 ;mkﬂ—tl% i ktl<h<j,
1, if h<j—k+1.

These splines are convenient to manipulate; among other things a lin-
ear combination of splines is easy to differentiate or integrate. Note that
M-splines are nonnegative and I-splines are monotonically increasing; it re-
sults that the monotonicity constraint for a function represented on a basis
of I-splines can be fulfilled by constraining the coefficients to be positive.
Thus the estimator A() can be approximated by a linear combination of m
I-splines A(.) = > ey 9(0;)1;(.), where g(6;) > 0 Vj (for example g(6;) = el
or g(#;) = 0,°); in practice we use g(f;) = 6, to avoid convergence problems
when ¢(6;) should be zero. By derivating we obtain: A(.) = > iy 9(0;) M;(.).
So with the same vector of coefficients @ = (61, ..., 6,,)” we get the cumulative
hazard function with I-splines and the hazard function with M-splines. In
fact the set of functions generated by the basis of splines with positive coef-
ficients is included in the set of positive functions generated by the basis of
splines. However our numerical experience shows that this set is rich enough
to provide a good approximation of the hazard function.

A spline function is completely defined by a sequence of knots and the
coefficients of the splines. We may put knots at every data points but the
computational price would be heavy for large n. It is convenient to locate
the knots at every p data points as described in O’Sullivan (1988). In any

case there must be a knot before or at the first data point and after or
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at the last data point. Note that the more knots we take, the better the
approximation will be. The approximation A of X is the function belonging
to the space generated by the basis of splines which maximizes pl()\). The
general penalized log-likelihood for interval censored and truncated data is

then:
2
=325 9(0;)1;(Ls) _ —Z-g(ﬂ')l-( )
n
Zlog< O (L) _ -5, 90,1 (R:) ) / (Zg M ) du,

L <Li< R <R;

For uncensored observation this must be modified in an obvious way as
in (1). The estimated vector @ of @ for a fixed & is obtained by maximizing
the log-likelihood using a combination of a Newton-Raphson and a steepest
descent algorithm. The Newton step involves a line search with a step reduc-
tion if the new point is not better. The steepest descent step involves a full
line search and is attempted only if the Newton step has failed, due generally
to a difficulty to inverse the Hessian of the log-likelihood. Few iterations are
needed if the initial value is judiciously chosen because the Newton-Raphson
iteration is used. In other cases the steepest descent iteration is often used
because the Hessian may be singular and the convergence is slower. We stop
the iterations when the difference between two consecutive log-likelihoods is
small, the coefficients are stable and the gradient is small enough. We have
not yet encountered local maxima that are not global maxima.

When we get the vector of coefficients, with the knots sequence we have

all the functions of interest, as in a parametric method.

10



2.4 Selection of the smoothing parameter

A rough estimate of the smoothing parameter « is often enough, so we may
select it empirically. But an automatic choice of this parameter seems almost
always necessary because it is less subjective. The method of cross-validation
gives a solution to this problem.

The standard cross-validation score which must be maximized to obtain

K 1S:

1duosnuew Joyine yH

where @_; = 6_;() is the maximum penalized likelihood estimator of  for
the sample in which the ¢*" individual is removed and [; is the log-likelihood
contribution of this individual. This score is equivalent, in the case of the
log-density estimation, to the Kullback-Liebler cross-validation score (see

Silverman, 1985 and O’Sullivan, 1988).
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The maximization of this score however is computationally expensive,
because it requires a maximization for each individual and for each different
value of k. So we use an approximation. O’Sullivan (1988) proposed to
use a one step Newton-Raphson expansion to approximate the leave-out-one
estimate of 0, @; and derived the formulas for the estimator of a density. We
extend his method to our case.

_ ~ ~ -1 .
The one-step Newton-Raphson approximationis: 8_; = 60— [H — 2/{9} d_;
N 0%l .
when H is the converged Hessian — (), € is the penalized part of the
0
. . ol;
converged Hessian and d_; = —d; = —%(0). If g(0;) = 6, we have

Q= / M, (u) M, (u)du.

11
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So we must maximize the approximate score:

= Z 1;(0-;) (3)

Then we denote A_;(z) the function obtained with the vector 8_;.
In the general case we obtain:
—A z(L) e—K_i(R,')

So we have after some simplifications and first order approximations

12

V (k) 1(6) + trace ([ﬂ — 2&0] - H*) (4)

12

1) — trace ([H - 2;{9] - H) (5)

with H* =" d_id , =" did;

It should be noted that the above expression essentially is an AIC criterion
(Akaike 1974) if we interpret trace ([fI — 2/{9} B H ) as the model degrees
of freedom (mdf). Indeed mdf decreases in k from m (if k = 0) to 2 (if
k — +00) which is the number of degrees of freedom of a straight line. The
boundary at 400 is 2 instead of 0 because £ has two zero eigenvalues. To

maximize (5) we use a golden section search.

2.5 Approximate Bayesian confidence bands

A Bayesian technique for generating confidence bands for penalized likelihood
estimators was proposed by Wahba (1983), Silverman (1985) and O’Sullivan
(1988). Then, 6 is regarded as a random variable. Up to a constant, the
penalized log-likelihood pl is a posterior log-likelihood for 8 and the penalty

12
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term the prior log-likelihood. After a Gaussian approximation, the covariance
. -1
of 8 is — [%H — nﬂ] . Then, an approximate 95% Bayesian confidence

interval for \ at point z is:

Mz) £ 1,966 (x),

where the approximate standard error is:

¢M Laresa) w

where M (z) = (M, (x M, (z))T. To obtain approximate Bayesian con-
fidence bands for A, we can use the same formula with the I-splines basis.
Hence we can easily deduce an approximate Bayesian confidence bands for
the survival function. Another possibility would be to determine confidence

intervals using a boostrap technique.

2.6 Generalization to regression models

The penalized likelihood can be applied for estimating the hazard function
in a general regression model defined by: A;(.) = ©[Ao(.), 2;8], where Ao(.)
is the baseline hazard function, 3 is a vector of regression parameters and
z; the vector of covariates for subject 7. The accelerated failure time model,
the additive model and the proportional hazards model are particular cases

of this general form. The penalized log-likelihood used is then:

"2

Do(.), 28] — & / N (o) du (6)

where Z is the matrix with rows equal to z;, i« = 1,...,n. In our method,

the selection of the smoothing parameter is a serious difficulty. We use a two

13



steps search: firstly we maximize (2), ignoring the explanatory variables, to
obtain an estimator of x and a good initial guess of A¢(.) and subsequently
we maximize (6) with x fixed to obtain B and Ag(.). The regression param-
eters and the baseline functions are estimated simultaneously by the robust

Newton-Raphson method described in section 2.3.

3 Simulation study

1duosnuew Joyine yH

In order to see how our method performs, we compared it to the smoothed
Nelson-Aalen estimator. The data were generated from a Weibull distribu-
tion or a mixture of gamma distributions. Samples of sizes 50, 100 and 500
were generated. Each simulation involved 100 replications. For each sam-
ple the distances between the true hazard function and both MPLE and

smoothed Nelson-Aalen estimator were calculated. The distance used is the
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integrated squared error (ISE):

/J(/\(u) ~Aw)” du

where A and ) are the true and estimated hazard function respectively and
J = [:C(l) + b, r(ny — b], the interval on which the smoothed Nelson-Aalen
estimator is defined with z(;) and z(y) the smaller and higher generated
failure times and b the bandwidth for the kernel estimator.

We generated a random sample X7, ..., X, ofi.i.d failure times and C', ..., C,
of censoring times, the C; were independent of the X;. So the observed sam-
ples were (Y1,61), ..., (Yn, 6n) where Y; = min(X;, C;) and §; = Ijx,<¢,. The
density of X was a simple Weibull (f(¢;2,0.06)) or a mixture of Gamma
(0.4T°(t; 14,1.8)+0.6I'(¢; 50, 2)), with the probability density functions f(¢;v,p) =

14
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pyPtP e 0" and T'(; o, y) = %ﬁﬁ_at The probability density function of
C; was a simple Weibull or a simple Gamma. The percentage of censoring
was around 10% and 50%.

The Epanechnikov kernel was used to smooth the Nelson-Aalen estima-
tor. The optimal bandwidth was automatically chosen for each sample by
a method of cross-validation described in Andersen et al (1993). For the
MPLE the smoothing parameter x was chosen by the approximate cross-
validation method. The number of knots was 12. Figure 1 displays the
smoothed Nelson-Aalen estimate and the MPLE for one simulated example
from a mixture of Gamma.

The results of the simulations are summarized in Table 1 for the Weibull
distribution and in Table 2 for the mixture of Gamma. We computed 5%-
trimmed means of the distances to eliminate the rare cases when numerical
problems occured in the automatic choice of k¥ or b. In these tables, we
give the average of the length of the interval over which the distance was
calculated, because it differs from one sample to the other. Note that the
mean length of J varies much between the different simulations so we cannot
compare the rows of the tables. The increase of the distance with n for the
smoothed Nelson-Aalen estimator is due to the increase of the length of J.
We notice that though the distance is calculated on the interval J the MPLE

is closer to the true hazard function on average for each case.

15



1duosnuew Joyine yH

5
73
®
-
2
o
o
=
©
N
~
a1
W
<
)
-
@,
o
S
—

4 Application

In order to illustrate the MPLE method we present an application to mod-
eling the risk of developing dementia. Dementia is a common disease among
the elderly in the developed countries. The incidence of dementia is not
well known because of the lack of studies and direct estimation demands
the follow-up of many people for several years. The application is based on
the Paquid research program (Letenneur et al, 1994), a prospective cohort
study of mental and physical aging that evaluates social environment and
health status. The target population consists of subjects aged 65 years and
older living at home in 75 civil parishes in southwestern France. The base-
line variables registered included socio-demographic factors, medical history
and psychometric tests. Subjects were re-evaluated 1, 3 and 5 years after
the initial visit. Prevalent cases were removed from the sample because of
their high mortality relative to non-demented people of the same age. So
this produced a left-truncation problem. We have restricted our analysis to
the sample of people living in the administrative area of Gironde and for
which educational level was recorded. The sample consisted of 2717 subjects
and during the follow-up 128 incident cases of dementia were observed. Age
distribution of the study sample is presented in Table 3. Age was used as the
basic time scale in order to get age-specific incidence of dementia. The age of
onset of dementia of the subjects was left-truncated by the age of the subject
at inclusion in the study, and right censored if the subject had not developed
dementia at the time last seen. The information available on incident cases
of dementia was the date of the visit last seen without dementia and the date

of the visit first seen with dementia. Thus the ages of onset of dementia for

16
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these 128 subjects were interval-censored. We used splines of order 4 with
12 knots and the smoothing parameter was automatically selectioned. The
method of approximation discussed in this paper allows the direct treatment
of these data which are both interval-censored and left-truncated. The ap-
proximate cross-validation method lead to mdf = 2.9 (which is nearly the
number of degrees of freedom of a quadratic curve). Figure 2 displays the
estimated hazard function of dementia in Gironde. It increases steadily with
age with no evidence of a plateau in the oldest age, but approximate bayesian
confidence bands are very large at that time.

Using prevalent cases, Dartigues et al (1992) found that educational level
and main occupation during life-time were risk factors of cognitive impair-
ment. Thus the hypothesis that educational level is a risk factor of dementia
is an interesting one and we can test it using follow-up data. Two explana-
tory variables were considered: gender and educational level. In the sample
there are 1623 females and 1094 males. Educational level was classified into
three categories: no schooling (118 subjects), grade school level (1660 sub-
jects) and high school or university level (939 subjects). Two methods of
inference were used for a proportional hazards model. The first one was a
semi-parametric model based on penalized likelihood, as described in section
2.5. The baseline hazard function was approximated by M-splines of order
4 with 12 knots. The second method was a Cox model with delayed en-
try (Cnaan and Ryan, 1989), inference was based on Cox partial likelihood.
This method does not take into account interval-censoring. So, we pretend to
know exactly the age of onset by taking the middle of the interval of censor-

ing. This analysis was performed with BMDP software. We analyzed three

17
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models: one model including gender, the second education level and the third
both variables (Table 4). Note that we cannot compare the log-likelihoods
of the two methods because one is a penalized log-likelihood and the other
a partial log-likelihood. It is remarkable that the results for the regression
coefficients for the Cox model and the penalized likelihood approach are very
close. Subjects with no schooling have an increased risk of dementia. Inci-
dent dementia is not significantly related to gender. However, the graph of
the two hazard functions estimated separately (not shown here) seem to be

different. So the question remains open.

5 Discussion

We have shown that the penalized likelihood approach yields a method for
analyzing survival data arising from complex observation schemes where the
conventional methods including Cox model and Nelson-Aalen estimators were
not applicable. Our simulation study shows that in the case where the smooth
Nelson-Aalen estimator of the hazard function can be applied, the penalized
likelihood estimator is better. In addition there is no problem of edge effects
in the latter while every method based on kernel smoothing will have such
problems (see however in Andersen et al (1993) an attempt to remove this
problem). Thus the present method and program make it possible to an-
alyze a wide variety of epidemiologic problems; for instance we could treat
a data set on pediatric AIDS which would be a combination of data from
registers, that is right truncated, and from cohorts, that is right censored.

This approach can also be applied to non-proportional hazards models; it

18



1duosnuew Joyine vH

=
(%]
(0]
=
=
o
o
=t
(o]
N
B
(6)]
ic
<
(¢)
=i
@,
o
=
[EEY

would be just as easy to treat an additive risk model or an accelerated fail-
ure time model. Time varying variables can also be treated, however this
implies more computations: in this case Ag(t) is approximated using a basis
of M-splines and A;(t) must be computed by numerical integration, except

for simple form of z;(¢).
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Table 1
Comparison of the performances of the MPLE and the smoothed

Nelson-Aalen (sNA) estimator for estimating the Weibull hazard function
based on 100 replications. The table gives: the sample sizes (1™ column),
the density of censoring variable (2" column), the trimmed estimates of the
mean of the integrated squared error (MISE) (and standard deviation) of:
distance for MPLE (3" column) and for the sNA estimator (4** column);
the length of J = [z(1) + b, z(y) — b], on which the sNA estimator is defined.

Sample size ~ C density ~ MISE[MPLE] MISE[sNA] length of J

[
50 F(t:4,0.031) 0.033 (0.037) 0.073 (0.079) 27.38 (3.44)
100 - 0.025 (0.030) 0.050 (0.041) 30.67 (3.03)
500 - 0.054 (0.101) 0.084 (0.079) 35.16 (1.98)
50 f(t;2,0.06) 0.018 (0.019) 0.044 (0.037) 19.93 (3.08)
100 - 0.021 (0.025) 0.043 (0.036) 23.45 (2.93)
500 - 0.036 (0.064) 0.044 (0.039) 28.26 (2.58)
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Table 2
Comparison of the performances of the MPLE and the smoothed
Nelson-Aalen (sNA) estimator for estimating the hazard function of the

mixture of Gamma (0.41'(¢, 14, 1.8) + 0.6I'(¢, 50, 2)) based on 100
replications. The table gives: the sample sizes (1*** column), the density of
censoring variable (2*¢ column), the trimmed estimates of the mean of the
integrated squared error (MISE) (and standard deviation) of: distance for
MPLE (3 column) and for the sNA estimator (4** column); the length of

1duosnuew Joyine vH

J = [z@1) + b, z(n) — b], on which the sNA estimator is defined.

Sample size  C density ~ MISE[MPLE] MISE[sNA] length of J

50 I'(t;50,1.65) 0.038 (0.030) 0.107 (0.079) 22.63

100 - 0.036 0.142 24.44

200 - 0.017 0.176 28.08
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100 - 0.009 0.020 17.86

( (
( (
50 [(t;50,2.4)  0.009 (0.005) 0.010 (0.011
( (
( (

200 - 0.009 0.030 21.43
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Table 3
Number of subjects in different age groups according to age at inclusion in
the study, age at censorship and age of dementia, and number of

person-years. n = 2717 Paquid 1989-1994

Age 65-70 70-75 75-80 80-85 85-90 90+
Inclusion 833 602 630 384 206 62

Censoring 232 775 605 551 280 146

dementia 2 13 33 38 26 16

person-years 1564 2500 2129 1542 742 272
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Table 4
Regression analysis of age of dementia, comparison between penalized
likelihood method and Cox model with delayed entry. In the columns there
are respectively, the covariates, and for the two methods the estimated
regression coefficients, standard errors, relative risks, confidence intervals
for the relative risk and log-likelihood. Three models involving gender and

education level were fitted.

Penalized likelihood method Cox model with delayed entry

B o RR 95% CI 1 B o RR 95% CI 1

-526.68

gender 0.27 0.17 1.32 [0.93,1.85] -525.40 0.25 0.19 1.29 [0.88,1.89] -711.5

no schooling 0.90 0.36 247 [1.21,5.04] -523.14 0.93 0.36 2.55 [1.24,5.23] -708.8
grade school 0.40 0.20 1.49 [0.99,2.24] 0.40 0.21 1.50 [0.99,2.27]

gender 0.22 0.18 1.24 [0.87,1.77] -522.40 0.23 0.19 1.25 [0.86,1.84] -708.1
no schooling 0.86 0.36 2.36 [1.15,4.85] 091 0.36 2.50 [1.22,5.15]
grade school 0.36 0.20 1.44 [0.95,2.17] 0.39 0.21 1.47 [0.98,2.23]
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Figure 1: True hazard function, smoothed Nelson-Aalen estimator and ap-

proximated maximum penalized likelihood estimator for a simulated exam-

< ple. The sample size is 500, with 40 right-censored data. The smoothed
2
o Nelson-Aalen estimator is plotted within the interval J on which it is de-
5
= fined, the other curves are plotted within [0, z()).
5
=)
=
3
=
= Figure 2: Approximation of the hazard function of dementia in Gironde (solid
=
2 line) and bayesian confidence bands (dotted line).
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