N

N

PHMPL: a computer program for hazard estimation
using a penalized likelihood method with
interval-censored and left-truncated data.

Pierre Joly, Luc Letenneur, Ahmadou Alioum, Daniel Commenges

» To cite this version:

Pierre Joly, Luc Letenneur, Ahmadou Alioum, Daniel Commenges. PHMPL: a computer program
for hazard estimation using a penalized likelihood method with interval-censored and left-truncated
data.. Computer Methods and Programs in Biomedicine, 1999, 60 (3), pp.225-31. inserm-00182450

HAL Id: inserm-00182450
https://inserm.hal.science/inserm-00182450
Submitted on 26 Oct 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inserm.hal.science/inserm-00182450
https://hal.archives-ouvertes.fr

I
>
—
Q
c
Lo
=5
o
=
=
QO
=
(=)
0
(@]
=h
©
S
=
0
)
=
=
©)
o
[
[0¢)
N
N
a1
o
<
()
=i
@,
o
=
[N

HAL author manuscript

Computer Methods and Programs in Biomedicine 1999;60(3):225-31

PHMPL: a computer program for hazard
estimation using a penalized likelihood method

with interval-censored and left-truncated data

Pierre JOLY, Luc LETENNEUR,
Ahmadou ALIOUM, Daniel COMMENGES
ISPED
Université Victor Segalen Bordeaux II
146, rue Léo Saignat
33076 Bordeaux Cedex, France

Tel : (33) 5 57 57 11 36
Fax : (33) 5 56 99 13 60
E-mail: Pierre.joly@dim.u-bordeaux2.fr

Corresponding author : Pierre JOLY

October 25, 2007



1duosnuew Joyine vH

=
n
®
=
z
o
o
[
[ee]
N
S
a1
o
<
®
-
4,
o
=i
[N

Abstract

The Cox model is the model of choice when analyzing right-censored and
possibly left-truncated survival data. The present paper proposes a program
to estimate the hazard function in a proportional hazards model and also to
treat more complex observation schemes involving general censored and left-
truncated data. The hazard function estimator is defined non-parametrically
as the function which maximizes a penalized likelihood, and the solution is
approximated using splines. The smoothing parameter is chosen using ap-
proximate cross-validation. Confidence bands for the estimator are given. As
an illustration, the age-specific incidence of dementia is estimated and one

of its risk factors is studied.

Key words: Hazard estimation, proportional hazards, penalized

likelihood, truncation, interval-censoring.
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1 Introduction

In survival analysis, the model of choice in many applications is the Cox
model [1] which allows estimation of relative risks without imposing para-
metric assumptions on the baseline hazard function. Using this model, both
right censoring and left truncation can be handled. However, more com-
plex observation schemes cannot be treated. For instance, in cohort studies,
the subjects are observed at specific times of visits and the event of interest
frequently occurs between two visits: this produces interval-censored data.
Another drawback of using the Cox model is that a smooth estimate of the
hazard function is not available.

Turnbull [2] proposed a non-parametric maximum likelihood estimator
of the survival function for arbitrarily censored and truncated data. This
method was extended [3] to the proportional hazards model in continuous
time for such cases. These methods cannot be used to estimate the haz-
ard function, which has often a meaningful interpretation in epidemiology.
In particular, if age has been chosen as the time scale, the hazard function
is the age-specific incidence of the disease [4]. In epidemiology, age-specific
incidence is most often estimated using the person-years method. Another
solution is to smooth the Nelson-Aalen estimator by kernel methods. How-
ever, neither method can accommodate interval censoring.

An alternative approach is to define the estimator non-parametrically as
the function which maximizes the penalized likelihood. The solution is then
approximated using splines. Such an approach has been proposed in the case
of right censored data [5] and in the case of left truncated and right censored

data [6].
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This paper presents a computer program called PHMPL which imple-
ments this approach. PHMPL can be used to estimate regression parameters
in a proportional hazards model with interval censoring and left truncation.
It can also be used simply to obtain smooth estimates of the hazard function
and to plot the hazard’s curve, in order to check the proportional hazards
assumption, for example.

In section 2 we present the model, a method for automatically choosing
the smoothing parameter and another for obtaining confidence bands. In
section 3, PHMPL is described and in section 4, an application is demon-

strated.

2 Computational methods

This section presents a brief description of the methodology used. A more
detailed presentation can be found in a previous work [7].

Let X, Xs, ..., X,, be a sample of n positive random variables with com-
mon survival function. Thereafter, we denote by A the hazard function and
A the cumulative hazard function of X. The observation X, is interval-
censored if the only information known about it is that it lies in a known
interval A; = [L;, R;] C IR"; L; < X; < R;. Right-censoring is just a partic-
ular case of interval-censoring with R; = +oo. If L; = R; (= X;) then X; is
uncensored. X, is left-truncated if it is observed conditionally on the event
X; > L;, where L; is the truncating time.

In general, under the usual assumptions regarding censoring and truncat-
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ing mechanisms, the log-likelihood can be written:

e_A(Li) i e_A(Ri)

(A = Zlog( p—T ) L; < L <R;. (1)
i=1

If L; = R; (uncensored observation) the numerator is A(L;)e &),

2.1 Penalized likelihood

Most often, the hazard function can be expected to be smooth. A possible
means for introducing such a prior: knowledge is to penalize the likelihood
by a term which takes large values for rough functions.

We define the penalized log-likelihood as:

Pl = 1\ —k / A" (w)du 2)

where [ is the log-likelihood defined previously in (1) and & is the smoothing
parameter which must be positive; k controls the balance between the fit to
the data and the smoothness of the function. Maximization of (2) in the

desired class of function defines the maximum penalized likelihood estimator

A~

(MPnLE) A.

2.2 Approximation using splines

The MPnLE cannot be calculated explicitly, but can be approximated using
splines. We use M-splines, which are a variant of B-splines, and I-splines
which are integrated M-splines [8].

A spline function is completely defined by a sequence of increasing knots
(t1,...,t;) and the coefficients @ = (61, ..., 0,,)T of the splines. In our approx-

imation we use splines of order 4 (also called cubic splines). Therefore, we

5



1duosnuew Joyine yH

5
0
)
=
3
o
o
|_\
(o]
N
~
a1
l=}
<
()
-
v,
o
S
|_\

have m = [ + 2 parameters to estimate the hazard function. In the pro-
gram, a knot is set on the first and last data points and the other knots are
put equidistantly between them. Theoretically, the more knots, the better
the approximation. Increasing the number of knots does not deteriorate the
MPnLE: this is because the degree of smoothing in the penalized likelihood
method is tuned by the smoothing parameter x and not by the number of
splines. On the other hand, once a sufficient number of knots is established,
there is no advantage in adding more. Moreover, the more knots, the longer
the running time, especially if there is a search for the smoothing parameter;
some numerical problem can arise, particularly for a large number of knots.
That is why the maximum number of knots is limited to 25. So it is rec-
ommended to start with a small number of knots (e.g. 7) and increase the
number of knots until the graph of the hazard function remains unchanged
(rarely more than 12 knots).

Since M-splines are nonnegative and I-splines are monotonically increas-
ing, the monotonicity constraint for a function represented on a basis of
I-splines can be fulfilled by constraining the coefficients to be positive. Thus
the estimator 3\() is approximated by a linear combination of m M-splines
M) = > 5o 0;M;(.). With the same vector of coefficients 8, we get the
cumulative hazard function with I-splines and the hazard function with M-
splines.

The approximation A of ) is the function belonging to the space generated
by the basis of splines which maximizes pl()\). The estimated vector 0 of 0 for
a fixed k is obtained by maximizing the log-likelihood using the Marquardt

algorithm [9], which is a compromise between the steepest descent and the
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Newton-Raphson algorithms.

2.3 Selection of the smoothing parameter

We can provide an empirical estimate of the smoothing parameter x or use an
automatic choice by using an approximation of the standard cross-validation
score [5].

For an automatic choice, we maximize the following approximate cross-

validation score:

Vik) ~ l(é)—tmce([ﬁl—2mﬂ]_lfl> (3)

2
where H is the converged Hessian W(G) and 2 is the penalized part of the

converged Hessian. We can interpret trace ([I:I — 2&9] - H > as the model
degrees of freedom (mdf). Indeed mdf decrease in x from m (if kK = 0) to 2
(if K — +00) which is the number of degrees of freedom of a straight line.
To maximize the approximate cross-validation score (3), we use a golden
section search. In some cases, the search for the smoothing parameter may
not be reliable because of local extrema. Thus, the estimate of the smoothing
parameter is not optimal. This can be examined by taking different starting
points. Moreover, it seems that the cross-validation score tends to under-
smoothe, especially for small samples, so the smoothing parameter may be
fixed a priori in the program. For very small samples with very few events,
the estimated hazard function is so dependent on the smoothing parameter

that there is no point in plotting it.
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2.4 Approximate Bayesian confidence bands

We use a Bayesian technique to generate confidence bands for penalized like-
lihood estimators [5], [10]. After a Gaussian approximation, the covariance
matrix of 0 is — [%f[ — I{Q] 71. Therefore, an approximate 95% Bayesian
confidence interval for \ at point z is: 5\(3:) + 1,966 (z), where the approxi-

mate standard error is:

\/M ——H+m] 1M(gc),

where M (z) = (M, (), ..., My, (z))". To obtain approximate Bayesian confi-
dence bands for A, hence for the survival function, we use the same formula

with the I-spline basis.

2.5 Regression model

The penalized likelihood can be applied for estimating the hazard function in
a proportional hazards regression model defined by: A;(.) = Ao(.) exp(z:8),
where Ag(.) is the baseline hazard function, B is a vector of regression parame-
ters and z; the vector of covariates for subject . The penalized log-likelihood

used is therefore:

Do(.), Z8] — & / 2 (u)du (4)

where Z is the matrix with rows equal to z;, 1 =1,....n

In our method the selection of the smoothing parameter takes the most
time. When covariates are included, a two-step search is used: firstly function
(2) is maximized, ignoring the explanatory variables, to obtain an estimator

of £ and a good initial guess of \o(.); then, function (4) is maximized with

8
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% fixed to obtain B and /N\o(.). The regression parameters and the baseline
function are estimated simultaneously by the Marquardt algorithm. Time-

varying covariates cannot be handled with PHMPL.

3 Computer program

The computer program PHMPL was written in FORTRAN 77. The program
runs on a Unix station or on a Personal Computer. No external functions or
subroutines are needed. The running time remains acceptable even for large

samples.

3.1 Input

The program requires two different input files: the data file and the parameter
file.

The data file contains as many lines as subjects. The first three columns
of the data file define the times of truncation and censorship. Missing values
are not allowed in the first three columns. The first column is the time at
entry into the study (£;) and is equal to 0 if there is no left-truncation.
The second and the third columns are the left and the right boundaries of
the interval in which the outcome occurred (L;, R;). If a subject did not
experience the outcome, in case of right-censoring, the second column will
be the time of censorship and the third must be coded -1. If the subject is
left censored, the second column will be 0 and the third column will be the
time of censorship. If the time of outcome is known precisely, the same time

has to be given to the second and third columns.
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The subsequent columns contain the value of the explanatory variables.
The missing value in the explanatory variables must be coded -32768. If a
specific variable is included in the model, subjects with a missing value for
this variable are excluded from the analysis.

Each column must be separated by one or several spaces.

The parameter file, PHMPL.INF, contains the parameters of the analysis.

The following information has to be given:

e the name of the data file
e the number of subjects
e the number of explanatory variables included in the data file

e the name of the explanatory variables and an indicator that shows
whether the variable is included in the model (1 = included and 0 =

not included)
e the number of knots (from 5 to 25)

e the indication whether to search the smoothing parameter automati-

cally or not (0 = automatically and 1 = fixed)
e the initial value of the smoothing parameter

e the indication to record the hazard function and the survival function

(1 = saved and 0 = not saved)

e the name of these files

An example of PHMPL.INF file is given in appendix 1.

10
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3.2 Output

The log-likelihood, the value of the estimated smoothing parameter, and the

model degrees of freedom are given on the screen.

The file REGR.RES is created automatically and contains the coefficient
estimates of each explanatory variable. This file is not created if explanatory
variables are not included in the model. This file contains the value of the
log-likelihood, the number of regression parameters, the number of subjects
and the number of events. For each variable, its name, the value of the
coefficient and its standard error, the value of the Wald test, the value of the
relative risk and its confidence interval are given.

At the user’s request, two files are created whose names have to be written
in the parameter file. The first contains the coordinates for plotting the
hazard function and its confidence bands between the first and the last knots;
the second contains the coordinates for plotting the survival function and
its confidence bands. Note that if explanatory variables are included, the

functions saved are the baseline functions.

4 Application

To illustrate the use of PHMPL we present an application for modeling the
risk of developing dementia. The application is based on the Paquid research
program [11], a prospective cohort study on mental and physical aging that
evaluates social environment and health status. The target population con-

sists of subjects aged 65 years and older living at home in southwestern

11



1duosnuew Joyine yH

5
0
)
=
3
o
o
|_\
(o]
N
~
a1
l=}
<
()
-
v,
o
S
|_\

France. The baseline variables recorded included socio-demographic factors,
medical history and psychometric tests. Subjects were re-evaluated 1, 3 and
5 years after the initial visit. Age was used as the basic time scale in order to
obtain the age-specific incidence of dementia. Prevalent cases were excluded
from the sample, so this produced a left-truncation problem. The age of
onset of dementia was left-truncated by the age of the subject at inclusion in
the study, and was right censored if the subject had not developed dementia
at the time last seen. The sample consisted of 2881 subjects and during the 5
years of follow-up, 190 incident cases of dementia were observed. The infor-
mation available on incident cases of dementia was the date of the most recent
visit without dementia and the date of the first visit with dementia. Thus the
age of onset of dementia for these 190 subjects was interval-censored. The
program allows the treatment of these data which are both interval-censored
and left-truncated.

One explanatory variable was considered: primary school diploma. In the
sample 932 subjects did not possess the primary school diploma while 1949
did. The PHMPL.INF file used for analyzing the model is given in appendix
1.

The estimate of the relative risk to develop dementia between subjects
with the diploma and those without was 1.93 (95 % confidence interval
[1.44,2.57]). To verify the proportional hazards assumption for primary
school diploma, we did two separate analyses. The non-parametric estimates
of the risks displayed in Figure 1 confirm that subjects without the diploma
have a higher risk of dementia; however, the hazards do not seem to be pro-

portional. We therefore suggest: A(t) = \o(t + Sz) where z is a covariate

12
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taking values 0 or 1 according to whether the subjects have the diploma.
Thus, the program allows to check whether the proportional hazards model
is appropriate by comparing the two hazard curves obtained through two
separate analyses; when the proportional hazards assumption does not hold,
it is necessary to perform separate analyses for each group, as shown in this
example. Another solution, not feasible with PHMPL, is to perform a strat-
ified analysis [12] allowing different baseline hazards for the strata but the

same effects for other covariates.

5 Availability

The portable code implementing the algorithm is available to the public at
no charge at http://www.isped.u-bordeaux2.fr .

13
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Appendix 1

Example of PHMPL.INF file used for regression analysis:

dementia
2881

1

diploma 1
12

0

l.e6

1

surv.dat

hazard.dat

The main program (PHMPL) reads the data in the file “dementia” that
contains 2881 lines (therefore, 2881 subjects). One explanatory variable is
stored in the file (diploma) and is included in the proportional hazards model.
There are 12 knots and the smoothing parameter is estimated automatically.
The initial value of the smoothing parameter is 10°. The coordinate of the
baseline survival function and its confidence intervals are saved in the file
surv.dat. The baseline risk and its confidence intervals are saved in the file
hazard.dat.

The result of the regression analysis is in the file REGR.RES:
log-likelihood : -886.2611

number of parameters : 1 number of subjects : 2881 number of events :

16
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190

Variable : diploma

beta : 0.6553 SE(beta) : 0.1468
Wald : 4.4627

RR :1.9258 95% IC : 1.4441 2.5681

17
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< Figure 1: Approximation of the hazard function of dementia for subjects
2
2 without primary school diploma (dotted line) and for those with it (solid
5
= line).
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