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Moment-based Approaches in Image. Part 1: basic features 

Huazhong Shu1, 4, Limin Luo1, 4, Jean Louis Coatrieux2, 3, 4 
 
 
 
 
Although the moment theory is well established and widely applied in a number of 
digital image areas, it remains relatively marginal in medical imaging. Taking a 
simple example, there is a huge difference between the number of papers published on 
the use of deformable models and those related to moments. Surprisingly, the formers 
have a limited spectrum of interest, mainly object segmentation and tracking, two 
important issues in computer vision of course, when the latters bring major cues in 
many problems, from reconstruction to detection, from pattern recognition to 
compression. This does not mean at all that the research conducted on the various 
moment families and their applications is not active as it will be shown through this 
series of short papers. Our first objective is to provide to the readers a comprehensive 
reference source that should be of help for their own research. The readers are also 
encouraged to look at other surveys, for instance [1-5]. We would like, and it is our 
second objective, to put some emphasis on some recently studied moments, especially 
the Tchebichef, Krawtchouk, Racah, dual Hahn, etc. moments, all being orthogonal, 
an important property in image processing. This first part presents a classification of 
moments and, rather than entering into theoretical details, it sketches their different 
expressions. The companion papers will review their properties and the potential 
contributions they already bring in image.  
The pioneering work of Hu in 1962 [6] on moment invariants, moments and moment 
functions has opened many applications in the image field. Moments can be applied to 
binary or grey level images, defined in 2D, 3D and higher dimensional space, but also 
to edges and primitives extracted through a preprocessing stage. A classification is 
proposed figure 1 going from the Complex Moments (CM), Rotational Moments 
(RM), Geometric Moments (GM) to Orthogonal Moments (OM). The double arrows 
mean that each of these moments can be expressed within the other formulation while 
single arrows denote a sub-class relation. Orthogonal Moments are then decomposed 
into continuous and discrete families, to which more attention will be paid due to the 
interesting features they have for image applications. They will be introduced for 
simplicity using 2D grey level images. 
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I. Non-orthogonal Moments 
The general two-dimensional (2D) moment definition, using a moment 

weighting kernel ϕnm(x, y) (also known as the basis function), and an image intensity 
function f(x, y), is given by 

       ∫∫=Ψ
2

),(),(
R nmnm dxdyyxfyxϕ , n, m = 0, 1, 2, …               (1) 

    With different basis functions, ϕnm, different types of moments can be obtained. 
In the following, we give a brief description of the above mentioned moments and we 
point out some of their properties. 
 
A. Geometric moments (GM) 

The geometric moments are basically projections of the image function onto the 
monomials, i.e., ϕnm(x, y) = xnym, the (n+m)th order geometric moment, Mnm, is 
defined as 

        ∫∫=
2

),(
R

mn
nm dxdyyxfyxM .                                (2) 

The geometric moments are most widely used in image analysis and pattern 
recognition tasks. This is due essentially to their simplicity, the invariance and 
geometric meaning of the low order moment values. In fact, the zeroth order moment, 
M00, represents the total mass of the image. The two first order moments, (M10, M01), 
provide the position of the center of mass. The second order moments, (M20, M11, 
M02), can be used to determine several useful image features such as the principal 
axes, the image ellipse and the radii of gyration [1]. 

 
B. Rotational moments (RM) 

The rotational moment of order n with repetition m has the kernel ϕnm(r, θ) = 
rnejmθ. That is, the 2D rotational moment defined in polar coordinates is given by [7] 

    θθθπ
rdrdrferD jmn

nm ),(
2

0 0∫ ∫
∞

= ,   |m| ≤ n, n – m = even.         (3) 

The rotational moments have the nice property to be invariant under image 
rotation. In fact, if the image is rotated by an angle ϕ, the relation between the 
transformed moments and the original moments is 

  .                                              (4) nm
jm

nm DeD ϕ=′

A rotation of ϕ is thus achieved by a phase change of the rotational moments, so that 
the magnitude remains invariant. This property makes rotational moments useful 
descriptors in pattern recognition. 
 
C. Complex moments (CM) 

The basis function for the complex moments is ϕnm(x, y) = (x + iy)n(x – iy)m, the 
2D complex moment of order (n+m) is defined as [8] 

      ∫∫ −+=
2
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nm dxdyyxfiyxiyxC .                        (5) 
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The complex moments are related to rotational moments by [1] 

                                                  (6) mnmnnm DC −+= ,

and thus, the rotation transformation of the image affects only to the phase of the 
complex moments. 
 

II. Orthogonal Moments (OM) 
The geometric moment definition has the form of the projection of f(x, y) onto the 

monomials xnym. Unfortunately, the basis set {xnym} is not orthogonal. Consequently, 
these moments are not optimal with regard to the information redundancy. Moreover, 
the lack of orthogonality causes the recovery of an image from its geometric moments 
strongly ill-posed. To overcome the shortcomings associated with geometric 
moments, Teague [9] suggested the use of the orthogonal moments that are defined in 
terms of the continuous orthogonal polynomials such as Legendre and Zernike 
polynomials. Recently, the discrete orthogonal moments (e.g., Tchebichef moments, 
Krawtchouk moments, Racah moments, and dual Hahn moments) have also been 
introduced. 

 
A. Continuous orthogonal moments 
 
Legendre moments (LM) 
   The basis function for Legendre moment is ϕnm(x, y) = Pn(x)Pm(y) where Pp(x) 
denotes the pth order of Legendre polynomial. The (n+m)th order of Legendre 
moment, Lnm, is defined as [9] 

       ∫ ∫− −

++
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1

1
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4
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where Pn(x) is the nth order of Legendre polynomial given by 

       kn
n

k

k
nn x

knknk
knxP 2

2/

0 )!2()!(!
)!22()1(

2
1)( −

=
∑ −−

−
−= .                         (8) 

Since the Legendre polynomials are orthogonal over the interval [-1, 1], the image 
f(x, y) can be reconstructed from its moments. Teague derived a simple approximation 
to the inverse transform for a set of moments through order M given by 

       ∑∑
= =

−−≈
M

n

n

m
mmnmmn yPxPLyxf

0 0
, )()(),( .                              (9) 

 
Zernike moments (ZM) 
    The Zernike moments use the complex Zernike polynomials as the moment basis 
set. The 2D Zernike moments, Znm, of order n with repetition m, are defined in polar 
coordinates (r, θ) inside the unit circle as [9] 

  ∫ ∫ −+
=

1

0

2

0
),()(1 π θ θθ

π
rdrdrferRnZ jm

nmnm ,   0 ≤ |m| ≤ n,  n – |m| is even.  (10) 
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where Rnm(r) is the nth order of Zernike radial polynomial given by 

  [ ] [ ]
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    Like the rotational moments and the complex moments, the magnitude of the 
Zernike moments is invariant under image rotation transformation. The image can be 
reconstructed using a set of moments through order M as 

       ∑∑
=

≈
M

n m

jm
nmnm erRZrf

0

)(),( θθ .                                 (12) 

 
Pseudo-Zernike moments (PZM) 
    The 2D pseudo-Zernike moments are based on a set of pseudo-Zernike 
polynomials that have properties analogue to Zernike polynomials. The 
pseudo-Zernike polynomials are defined by [10] 

      kn
mn

k

k
nm r

kmnkmnk
knrS −

−

= −++−−
−+

−= ∑ )!1()!(!
)!12()1()(

0

,  0 ≤ |m| ≤ n.     (13) 

    Like the Zernike moments, the pseudo-Zernike moments possess the good 
properties of orthogonality and rotation invariance. The set of pseudo-Zernike 
moments contains (M+1)2 linearly independent polynomials of order up to M, while 
Zernike moments have (M+1)(M+2)/2 linearly independent polynomials due to the 
additional constraints of n–|m| being even, therefore the pseudo-Zernike moments 
have a better feature representation capability. It was also proven that the 
pseudo-Zernike moments are more robust to image noise than the conventional 
Zernike moments. 
 

Other kinds of orthogonal moments including Fourier-Mellin moments [11], 
Chebyshev-Fourier moments (CFM) [12], radial harmonic Fourier [13] and 
generalized pseudo-Zernike moments (GPZM) [14] have been recently reported in the 
literature. For more details, we refer the readers to the corresponding references. 

 
B. Discrete orthogonal moments 

As stated by Yap et al [15], one common problem with the continuous moments is 
the discretization error, which accumulates as the order of the moments increases, 
thus affects the accuracy of the computed moments. To face this problem, a set of 
discrete orthogonal moments has been recently introduced. 

 
Tchebichef moments (TM) 
   For a digital image f(x, y) with size N×N, the (n+m)th order Tchebichef moments 
are defined as [4] 

     ∑∑
−
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=

=
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where the scaled Tchebichef polynomials )}(~{ xtn  are given by 
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= ,                                             (15) 
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Here, β(n, N) is a suitable constant which is independent of x and  is the 

hypergeometric function defined as 

)(23 ⋅F
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with (a)k the Pochhammer symbol given by 

)(
)()1()1()(

a
kakaaaa k Γ

+Γ
=−++= .                           (20) 

The scaled Tchebichef polynomials satisfy the orthogonality property 

     ,        0 ≤ n, m ≤ N – 1.               (21) nm

N

x
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The orthogonality property leads to the following inverse moment transform 
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Krawtchouk moments (KM) 
   The Krawtchouk moment of order (n+m) of an image f(x, y) with size N×N is 
defined as [15] 

∑∑
−

=

−

=

−−=
1

0

1

0
21 ),()1,;(~)1,;(~N

x

N

y
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where the set of weighted Krawtchouk polynomials { ),;(~ NpxK n } is defined by 

   
),;(
),;(),;(),;(~

Npn
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= ,                             (24) 

)/1;;,(),;( 12 pNxnFNpxK n −−−= ,  0 ≤ x, n ≤ N – 1.               (25) 
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Here,  is the hypergeometric function defined as )(12 ⋅F
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The original image f(x, y) can be completely reconstructed using the Krawtchouk 
moments as 

    .                    (29) ∑∑
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Racah moments (RAM) 

Both Tchebichef and Krawtchouk polynomials are orthogonal on uniform lattice. 
Recently, Zhu et al [5] introduced a kind of orthogonal polynomials defined on 
non-uniform lattice, known as Racah polynomials, to form a new set of orthogonal 
moments. The (n+m)th order Racah moment of an image f(s, t) with size N×N is 
defined as [5] 

),(),,(ˆ),,(ˆ
1 1

),(),( tsfbatubasuU
b
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b
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the set of weighted Racah polynomials being defined as 
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The generalized hypergeometric function )(34 ⋅F  is given by 
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and the parameters a, b, α and β are restricted to 

    Nababa +=+<<−−><<− ,121,1,2/1 βα .                  (36) 

The orthogonality property of Racah polynomials helps in expressing the image 
intensity function f (s, t) in terms of its Racah moments. The image reconstruction can 
be obtained by using the following inverse Racah moment transform 

  ,  s, t = a, a + 1, …, b – 1,    (37) ∑∑
−

=

−

=

=
1

0

1

0

),(),( ),,(ˆ),,(ˆ),(
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n

L

m
mnnm batubasuUtsf βαβα

where (s, t) represents the uniform pixel grid of image. 
 
Dual Hahn moments (DHM) 
   Another set of discrete orthogonal polynomials, defined on non-uniform lattice, 
known as dual Hahn polynomials, has also been introduced. The (n+m)th order dual 
Hahn moment of an image f(s, t) with size N×N is defined as [16] 
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where the weighted Racah polynomials are 
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with the hypergeometric function )(23 ⋅F  given by equation (19) and the parameters 

a, b and c restricted to 

    Nabacba +=+<<<− ,1,2/1 .                              (43) 

III. Conclusion 
This first paper was aimed at providing the basic formulations of moments, a 
classification and an introductory bibliography. The moment-based approaches have a 
number of interesting features. They have a wide range of orthogonal and 
non-orthogonal basis functions and are simple to compute whatever the order 
required. The image sampling can be either rectangular or polar, based on uniform or 
non-uniform lattices. Their optimal choice to deal with a given problem is however 
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not obvious according to the requirements to face. There are of course many other 
issues to address. Among the important properties to consider there are (i) the 
invariance to scale, translation, and orientation, etc. (ii) the robustness to 
degradations, noise, to changing conditions (illumination) or blurring and (iii) to 
object variations (multiple appearances, occlusions and deformations). Moment 
computations have also a cost that is sometimes considered too high for certain 
applications: this explains that a special attention has been devoted to acceleration 
techniques and VLSI implementations. These important aspects for computer vision at 
large and the most meaningful works in medical imaging will be examined in the next 
papers. 
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Fig. 1 A classification of family of moments with: 
CM: Complex moments; RM: Rotational Moments; GM: Geometric Moments; 
OM: Orthogonal Moments; LM: Legendre Moments; ZM: Zernike Moments; 
PZM: Pseudo-Zernike Moments; GPZM: Generalized pseudo-Zernike Moments; 
CFM: Chebychev-Fourier Moments; TM: Tchebichef Moments; 
KM: Krawtchouk Moments; RAM: Racah Moments; DHM: Dual Hahn Moments 
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