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Abstract 

 

Polymorphonuclear neutrophils (PMN) play a key role in innate immunity. Their activation 

and survival are tightly regulated by microbial products via pattern-recognition receptors such 

as TLRs, which mediate recruitment of the IRAK complex. We describe a new inherited 

IRAK-4 deficiency in a child with recurrent pyogenic bacterial infections. Analysis of the 

IRAK4 gene showed compound heterozygosity with two mutations: a missense mutation in 

the death domain of the protein (p.Arg12Cys) associated in cis with a predicted benign variant 

(p.Arg391His) and a splice-site mutation in intron 7 that led to the skipping of exon 7. A non-

truncated IRAK-4 protein was detected by western blotting. The patient’s functional 

deficiency of IRAK-4 protein was confirmed by the absence of IRAK-1 phosphorylation after 

stimulation with all TLR agonists tested. The patient’s PMN showed strongly impaired 

responses (L-selectin and CD11b expression, oxidative burst, cytokine production, cell 

survival) to TLR agonists which engage TLR1/2, TLR2/6, TLR4, and TLR7/8; in contrast, 

the patient’s PMN responses to CpG-DNA (TLR9) were normal, except for cytokine 

production. The surprisingly normal effect of CpG-DNA on PMN functions and apoptosis 

disappeared after pretreatment with PI3K inhibitors. Together, these results suggest the 

existence of an IRAK-4-independent TLR9-induced transduction pathway leading to PI3K 

activation. This alternative pathway may play a key role in PMN control of infections by 

microorganisms other than pyogenic bacteria in inherited IRAK-4 deficiency. 
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Introduction 

 

Polymorphonuclear neutrophils (PMN) play a key role in host defense against bacterial and 

fungal pathogens (1). They contribute to early innate response by rapidly migrating into 

inflamed tissues, where their activation triggers microbicidal mechanisms such as release of 

proteolytic enzymes and antimicrobial peptides, and rapid production of reactive oxygen 

species (ROS), in the so-called oxidative burst. PMN die spontaneously by apoptosis and are 

then recognized and phagocytosed by macrophages (2). 

PMN directly recognize microbial products via pattern-recognition receptors such as 

TLRs. Human PMN have been reported to express all TLRs except TLR3 (3); TLR5 and 

TLR7 are weakly expressed (4). TLRs are members of the IL-1R superfamily, characterized 

by an intracytoplasmic Toll-IL-1 receptor (TIR) domain which mediates recruitment of the 

interleukin-1 receptor-associated kinase (IRAK) complex via TIR-containing adapter 

molecules such as MyD88. During formation of this complex, IRAK-4 is activated, leading to 

hyperphosphorylation of IRAK-1, which in turn induces the interaction of tumor necrosis 

factor receptor-associated factor 6 (TRAF6) with the complex. TRAF6 then triggers 

downstream signalling, and this results in NF-κB activation (5, 6). In addition, TLR 

engagement activates stress kinases such as MAP kinases, c-Jun NH2-terminal kinase (JNK), 

and phosphatidylinositol 3,4,5-triphosphate kinase (PI3K) in most cells, including PMN (7, 

8). The PI3K pathway has variously been shown to regulate TLR-mediated inflammatory 

responses, through negative feedback functions (9, 10), or to enhance NF-κB nuclear 

translocation (11, 12). In particular, it was recently suggested that the PI3K signaling cascade 

occupies a central role in TLR2-induced activation of PMN (13). 

PMN stimulation through TLRs causes an immediate defensive response, including 

modulation of adhesion molecule expression (L-selectin shedding and β2-integrin 
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upregulation), production of an array of antimicrobial molecules (ROS and cytokines) (3, 13), 

and inhibition of apoptosis (4). The major role of the TIR-IRAK signaling pathway in 

immunity to infections by pyogenic bacteria is illustrated by the recent descriptions of 

children with inherited IRAK-4 deficiency associated with recurrent infections (14-22). The 

cells of these patients fail to respond to IL-1 and IL-18, and to the stimulation of at least five 

TLRs (TLR2, TLR3, TLR4, TLR5, TLR9). 

Here we describe a case of inherited IRAK-4 deficiency related to new double 

heterozygous mutations generating a non functional IRAK-4 protein. We show that some 

PMN functions (adhesion molecule expression, ROS production, survival) which are critical 

for antimicrobial defenses, occur normally in response to CpG-DNA (TLR9), despite an 

impaired response to the other TLR agonists, suggesting the existence of a distinct TLR9-

induced transduction pathway. 
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Materials and Methods 

 

Case report 

We investigated a 14-year-old boy with recurrent infections, osteomyelitis and cellulitis. He 

was born in July 1991 and was the second child of healthy unrelated parents. There was no 

family history of recurrent or severe infections, autoimmune disease, or lymphoma. His 

brother and sister were healthy. At age 15 days he developed a severe necrotic infection of his 

palate, due to Pseudomonas aeruginosa. Despite several surgical procedures he had 

velopharyngeal insufficiency and recurrent otitis media. Vaccines were normally tolerated. 

From the age of 5 years he had severe chronic otitis media, arthritis, and impetigenous 

infections of the face and limbs, usually after skin trauma. Local and systemic antibiotics 

were usually necessary to eradicate the infections. At age 9 years he underwent 

tympanoplasty for tympanic membrane perforation, which was complicated by retroauricular 

cellulitis due to Staphylococcus aureus, and severe impetigo of the face and hands, leading to 

graft loss. The procedure failed to close the tympanic perforation. At age 10 years he was 

hospitalized for cervical adenitis associated with fatigue and weight loss. The CRP was 

elevated, at 24 mg/ml. The PMN count was reduced at 920/mm3 but chest radiograph and 

tuberculin test were normal. Serological tests for Bartonella, Borrelia and Lyme’s disease 

were negative. Surgical biopsy showed non specific subacute lymphadenitis. The adenitis 

regressed on amoxicillin + clavulanic acid. At age 14 years he developed asthma and common 

verrucas. Chest radiography and computed tomography were normal. Inhaled steroid therapy 

and smoking cessation improved his bronchospasm. Prophylactic antibiotic therapy with 

sulfamethoxazole + trimethoprim was started and he underwent a second tympanic repair, 

without infectious complications. 
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His growth and development were normal. He had no severe viral or fungal infections or 

infections due to intracellular bacteria.  

Immunological studies gave normal results (lymphocyte counts: CD3+=2037/mm3, 

CD4+=1328/mm3, CD8+=798/mm3, CD19+=798/mm3, CD16+=321/mm3; IgA=1.27g/l; 

IgG=12.08g/l (IgG1=10g/l, IgG2=2.52g/l, IgG3=0.72g/l, IgG4=0.05g/l); IgM=1.38g/l) 

excepted for a still low number of PMN. The complement system was normal. 

PMN migration was normal when tested with the under-agarose method, with and without 

fMLP (10-7 M) and activated serum (23), ruling out leucocyte adhesion deficiency (LAD). 

PMN phagocytosis of Staphylococcus epidermidis was normal, as was PMN 

chemiluminescence after stimulation with PMA (100 ng/ml), ruling out a chronic 

granulomatous disease.  

 

Reagents 

The reagents and sources were as follows:  

Ultrapurified LPS from E. coli serotype R515 (LPS) and synthetic macrophage-activating 

lipopeptide-2 (MALP-2) (Alexis, Lausen, Switzerland); R-848 and a synthetic palmitoylated 

mimic of bacterial lipopeptides (Pam3CSK4) (Invivogen, San Diego, CA); unmethylated 

CpG-DNA (HyCult Biotechnology, Lausen, Switzerland); hydroethidine (HE, Fluka, Buchs, 

Switzerland); N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol myristate acetate 

(PMA) and ionomycin (Sigma Chemical CO., St Louis, MO); SN50, SB203580, PD98059, 

genistein, wortmannin, rottlerin, and GF109203X (Calbiochem, La Jolla, CA); 

allophycocyanin (APC)-conjugated annexin V, 7-amino-actinomycin D (7-AAD), fluorescein 

(FITC)-anti-CD15, purified anti-L-selectin and FITC-conjugated goat anti-rabbit antibodies 

(Abs), phycoerythrin (PE)-conjugated anti-phosphorylated p38MAPK and ERK1/2 Abs, and 

cytometric bead array (CBA) kit (Pharmingen, Becton Dickinson, San Jose, CA); PE-
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conjugated anti-CD45 Ab (Immunotech, Marseille, France); PE-conjugated anti-CD11b Ab 

(Dakopatts, Glostrup, Denmark); FITC-conjugated goat anti-mouse Ab (Nordic Immunology, 

Tilburg, The Netherlands); anti-IRAK-4, anti-phospho-IRAK-1 and anti-phospho-Bad (S136) 

Abs (Cell Signaling Technology, Beverly, MA); anti-Mcl-1 Ab (Santa Cruz Biotechnology, 

Santa Cruz, CA); TNFα and GM-CSF (R&D, Abington, UK); IL-18 (MBL, Tokyo, Japan). 

 

Incubation of whole blood with TLR agonists  

One-milliliter aliquots of fresh blood, collected on lithium heparinate (10 U/ml), were 

incubated at 37°C for various times with phosphate-buffered saline (PBS), IL-18 (500 ng/ml), 

or the following TLR agonists (reported to stimulate PMN functions) (4): LPS (10 ng/ml) 

(TLR4), MALP-2 (10 ng/ml) (TLR2/6), Pam3CSK4 (500 ng/ml) (TLR1/2), R-848 (10 µg/ml) 

(TLR7/8), and CpG-DNA (100 µg/ml) (TLR9). These optimal concentrations were 

determined in preliminary concentration-response experiments (personal data). 

In some experiments samples were pretreated with the NF-κB inhibitor SN50 (100 µg/ml) or 

kinase inhibitors at optimal concentrations previously determined in whole blood 

(wortmannin, 2500 nM; LY2940002, 25 µM; GF109203X, 5µM; genistein, 100 µM; 

PD98059, 50 µM; SB203580, 25 µM; rottlerin, 10 µM) (4). 

 

Determination of adhesion molecule expression at the PMN and monocyte surface 

Whole-blood samples were either kept on ice or incubated at 37°C for 1 hour with PBS, IL-18 

or TLR agonists as described above; TNFα (100 U/ml) was used as control. Samples (100 µl) 

were then stained at 4°C for 30 minutes with PE-anti-human CD11b or purified anti-L-

selectin Abs. To study L-selectin expression, samples were then washed with ice-cold PBS 

and incubated at 4°C for 30 minutes with FITC-goat anti-mouse Ab. Red blood cells were 

lysed with FACS lysing solution (Becton Dickinson, Mountain View, CA) and white blood 
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cells were resuspended in 1% paraformaldehyde-PBS. Nonspecific Ab binding was 

determined on cells incubated with the same concentration of an irrelevant Ab of the same 

isotype. 

 

NADPH oxidase activity in priming conditions 

Superoxide anion (O2
-°) production was measured with a flow cytometric assay derived from 

the HE oxidation technique (24): Whole-blood samples (500 µl) were loaded for 15 minutes 

with HE (1500 ng/ml) at 37°C and then incubated with PBS, IL-18 or TLR agonists as 

described above; TNFα (100 U/ml) was used as positive control; samples were then treated 

with PBS or 10-6 M fMLP for 5 minutes. Red cells were lysed as described above and white 

cells were resuspended in 1% paraformaldehyde-PBS.  

 

Measurement of PMN apoptosis 

Apoptosis of PMN in whole blood was quantified by using annexin V and 7-AAD (an 

impermeant nuclear dye) as previously described (4, 25). Samples were incubated in 24-well 

tissue cultures plates at 37°C with 5% CO2 for 8 hours with PBS, IL-18 or TLR agonists as 

described above; GM-CSF (1000 pg/ml) was used as anti-apoptotic control. Samples (100 µl) 

were washed twice in PBS, incubated on ice with FITC-anti-CD15 and PE-anti-CD45 Abs for 

15 minutes, and then with APC-annexin V for 15 minutes. After dilution in PBS (500 µl), 

samples were incubated with 7-AAD at room temperature for 15 minutes and analyzed 

immediately by flow cytometry. PMN were identified as CD15high cells. Use of the 

combination of APC-annexin V and 7-AAD distinguishes between early apoptotic PMN 

(annexin V+, 7-AAD-) and late apoptotic PMN (annexin V+, 7-AAD+). 
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Study of intracellular phospho-IRAK-1, phosho-p38MAPK, phospho-ERK1/2 and Bcl-2 

family protein content by flow cytometry 

After incubation of whole blood with TLR agonists or PBS for various times at 37°C, 

leukocytes were permeabilized in 90% methanol as previously reported (4, 26). Cells were 

then stained with anti-IRAK-1 phosphospecific, anti-Mcl-1 or anti-Bad phosphospecific Abs 

for 1 hour at room temperature and washed once in PBS-2% HSA. Samples were then 

incubated for 30 minutes with FITC-goat anti-mouse or anti-rabbit Ab. Phospho-p38MAPK 

and phospho-ERK1/2 contents were studied by staining with PE-conjugated anti-phospho-

p38MAPK and phospho-ERK1/2 Abs. After one wash, leukocytes were resuspended in 1% 

paraformaldehyde-PBS. 

 

Cytokine production by blood cells 

Blood PMN were isolated in LPS-free conditions in medium containing 9% Dextran T-500 

(Pharmacia, Uppsala, Sweden) and 38% Radioselectan (Schering, Lys-Lez-Lannoy, France); 

the leukocyte suspension was then centrifuged on Ficoll-Paque medium (Pharmacia). The cell 

pellet was washed with PBS, and erythrocytes were removed by hypotonic lysis; PMN were 

further purified by negative selection with pan anti-human HLA class II-coated magnetic 

beads (Miltenyi Biotec) to deplete B lymphocytes, activated T lymphocytes and monocytes as 

previously described (27). Less than 0.5% of cells were positive by nonspecific esterase 

staining, and flow cytometry showed the absence of CD45+/CD14high, CD45+/CD3+, and 

CD45+/CD19+ cells; this showed that the PMN were highly purified, without contaminating 

monocytes. In parallel, the mononuclear cell ring obtained after Ficoll-Paque centrifugation 

was treated with anti-CD14-coated magnetic beads (Miltenyi Biotec) to positively select 

monocytes.  
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Whole blood, pure PMN (5x106/ml) or pure monocytes (5x105/ml) were cultured for 18 hours 

at 37°C with 5% CO2 in 24-well tissue culture plates (Costar, Cambridge, MA) in RPMI 1640 

culture medium (Sigma, St Louis, MO). TLR agonists, IL-1β and IL-18 were added to the 

culture medium. PMA (100 ng/ml) and PMA (100 ng/ml) + ionomycin (10-5 M) were used as 

positive controls. Supernatants were stored at -70°C for no longer than 15 days before assay. 

IL-8, IL-6, IL-1β and TNFα were detected simultaneously in supernatants by using the 

human inflammatory cytokine cytometric bead array (CBA) kit (BD Pharmingen, San Diego, 

CA). The CBA working range was 20-5000 pg/ml for each cytokine. 

 

Flow cytometry  

We used a Becton Dickinson FACScalibur (Immunocytometry Systems, San Jose, CA) with a 

15-mW, 488-nm argon laser and a 635-nm diode laser. PMN functions were analysed using 

CellQuest software. To measure apoptosis in whole blood, PMN were identified on the 

CD15/SSC dot plot and 2x105 events were counted per sample. In other experiments, forward 

and side scatter were used to identify the PMN population and to gate out other cells and 

debris; 104 events were counted per sample. Plasma cytokine levels were analyzed with CBA 

software (BD Pharmingen). 
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Blot analysis of IRAK-4 

PMN were isolated and highly purified as described above. Suspensions of 40 x 106 PMN/ml 

in PBS buffer were incubated with PBS or TLR agonists for 5 minutes and treated with 2.7 

mM diisopropylfluorophosphate for 20 minutes at 4°C then pelleted at 400 g for 8 minutes at 

4°C (28). The pellet was resuspended in Chaps solubilization buffer containing 50 mM Tris 

pH 7.5, 15 mM Chaps, 1 mM EDTA and antiproteases. The cells were incubated on ice and 

the suspension was then centrifuged at 1500 g for 5 minutes. Following SDS-PAGE on 10% 

acrylamide gels, the proteins were transferred to nitrocellulose filters. The filters were 

incubated for 1 hour at room temperature in 50 mM Tris, 150 mM NaCl, 0.1% Tween 20 

(TBST) containing 5% (w/v) fat-free dried milk. The nitrocellulose membranes were 

incubated overnight with anti-IRAK-4 Ab at 1/500 dilution. Following 5 washes with TBST, 

the membranes were incubated with goat anti-mouse or goat antirabbit Abs conjugated to 

horseradish peroxidase. After 5 washes with TBST, the blots were revealed with a 

chemiluminescence method (ECL; Amersham Life Sciences, Arlington Heights, IL) 

following the manufacturer's instructions. 

 

Genetic analysis 

The propositus and his parents underwent genetic analysis with their written informed 

consent. DNA and RNA were extracted from whole blood with Qiagen extraction kits 

following the manufacturer's instructions. The IRAK4 coding sequence and intron-exon 

junctions were sequenced in the patient and his parents (PCR conditions and primers are 

available on request), using an ABI sequencing kit (Applera, Foster City, CA) and a 3130xl 

DNA sequencer (Applera). cDNA was analyzed after reverse transcription of the patient’s 

RNA by PCR using sets of primers located in various exons (Ex6F cDNA: CTA CTG AAG 

AAC TGA AAC AGC AGT TTG A; Ex7F cDNA: GTT TAC ATG CCT AAT GGT TCA 
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TTG C, Ex11R cDNA: CGA CAT TGG CTA GCA CCA GAG TA). Forward primers were 

6-FAM-labelled. Allele-specific amplification of cDNA was performed using modified 

oligonucleotides (the 3’ end nucleotide is one LNA molecule from Proligo) (Ex10R LNA_G: 

TAT CTA GCA ATA ACT GAG GTT CAC; Ex10R LNA_A: TAT CTA GCA ATA ACT 

GAG GTT CAT ). Analysis of the fluorescent PCR products was done with a 310 DNA 

sequencer (Applera). 

 

Statistical analysis 

Data are reported as means ± SEM. Comparisons were based on ANOVA and Tukey’s 

posthoc test, using Prism 3.0 software (Graph Pad Software). 
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Results 

 

IRAK4 mutations 

The patient’s disease was characterized by recurrent infections due to extracellular pyogenic 

bacteria. Standard immunological studies gave normal results and major PMN defects (i.e. 

chronic granulomatous disease) were ruled out. As inherited IRAK-4 deficiency has been 

associated with recurrent infections (14-22), we analyzed the IRAK4 gene in our patient. 

DNA sequencing revealed three mutations: one missense mutation resulting in the 

substitution of arginine by cystein at position 12 (c. 34 C>T; p.Arg12Cys), a second missense 

mutation at position 391 (c. 1170 G>A; p.Arg391His), and an intronic mutation at position + 

5 of intron 7 (G>T) (designated c.831 +5 G>T) (Figure 1, A and B). Analysis of DNA from 

the two parents showed that c. 34 C>T; p.Arg12Cys was inherited from the father, along with 

p.Arg391His, whereas c.831 +5 G>T was inherited from the mother (Figure 1A). Polyphen 

software (http://tux.embl-heidelberg.de/ramensky/polyphen.cgi) and SIFT software 

(http://blocks.fhcrc.org/sift/SIFT.html) both predicted a benign effect of the p.Arg391His 

substitution and detrimental effect of the p.Arg12Cys mutation. Indeed, the p.Arg12Cys 

mutation involves a highly conserved residue that is located in the external region of the death 

domain of the protein (Figure 1C). P.Arg391His affects a non conserved amino acid residue 

of the IRAK-4 kinase domain and is located near a previously described polymorphism 

(rs4251583, p. His390Arg). In addition, the p.Arg391His mutation does not alter mRNA 

splicing (data not shown). Although we cannot rule out the possibility that the presence of the 

two mutations on the same paternal allele has a detrimental effect on the protein function, our 

findings make it more likely that only p.Arg12Cys is deleterious and that p.Arg391His is a 

rare neutral variant. 
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RNA from the patient was further studied to assess the potential consequence of the c.831 +5 

G>T mutation. For this purpose, primers were designed in exons 6 and 11 and PCR products 

from the patient’s cDNA were analyzed onto ABI310 (Figure 2A). The presence of an 

abnormal band revealed that the intronic mutation resulted in a splice defect leading to the 

skipping of exon 7 and a predicted stop codon at position 249. Sequencing of the shortened 

PCR band confirmed the abnormal exon 6-8 junction (Figure 2B). The observation of a 

relative abundance of a shortened mRNA without exon 7 as compared with full-length mRNA 

(see figure 2) argued against marked mRNA nonsense-mediated decay and could thus 

theoretically lead to the production of a truncated protein ending at position 248 

(p.Cys240MetfsX8). 

The possibility that residual full-length RNA molecules were produced from the maternal 

allele was excluded by taking advantage of the patient’s heterozygosity for the p.Arg391His 

variant in exon 10. cDNA from the patient was amplified using LNA modified primers with a 

C or a T at the 3’ end (thus specific for the wild-type allele G, ex10R LNA_G, or for the 

paternal allele A, ex10R LNA_A, figure 3A). Maternal mRNA molecules were theoretically 

specifically amplified using ex10R LNA_G and paternally derived mRNA, using ex10R 

LNA_A. The specificity of the LNA primers was confirmed using the ex7F and ex10 LNA 

primers as shown in figure 3B. PCR amplification was only observed with the ex7F and ex10 

LNA_G primers in the control (homozygous for the wild-type allele, c.1170 G/G), whereas 

PCR amplification was positive in the patient using primers ex7F and ex10 LNA_A and 

negative using primers ex7F and ex10 LNA_G. These results confirmed that full-length 

mRNA molecules (containing exon 7) were exclusively produced from the paternal allele. 

They were confirmed by using Ex6F – ex10R LNA_G, that amplified only exon 7-truncated 

mRNA, and full-length mRNA molecules using Ex6F – ex10R LNA_A (Figure 3B). Together 
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these data confirmed that full-length mRNA molecules were exclusively produced from the 

paternal allele and thus carried the [p.Arg12Cys and p.Arg391His] mutations. 

 

Presence of a non functional IRAK-4 protein  

As expected, a band corresponding to an IRAK-4 protein of apparently normal molecular 

weight was detected by western blotting of the patient’s PMN; no shortened protein was 

observed (Figure 1D). As the first step of IRAK-4 activity is the phosphorylation of IRAK-1 

(29), we studied the functionality of IRAK-4 protein by analyzing the phospho-IRAK-1 

content of intact PMN treated with TLR agonists in whole blood, by means of flow cytometry 

with a mouse anti-human phospho-IRAK-1 Ab. Incubation of whole blood from healthy 

controls with TLR agonists for 5 minutes significantly increased IRAK-1 phosphorylation as 

compared to PBS (Table I). In contrast, pretreatment of the patient’s PMN with all the TLR 

agonists, including the TLR9 agonist, did not modify IRAK-1 phosphorylation as compared 

to PBS. This result suggested that IRAK-4 was non functional. 

 

Impaired PMN adhesion molecule expression and ROS production in response to IL-18 and 

TLR agonists, except for TLR9 

PMN dysfunctions have been reported in IRAK-4 deficiencies (15), especially in response to 

LPS (TLR4), contrasting with normal responses to TNF. We therefore analyzed the effect of a 

broad range of TLR agonists on adhesion molecule expression and ROS production by PMN. 

CD11b expression by resting patient’s PMN was normal, in keeping with normal chemotaxis 

and with the absence of LAD (not shown). In controls, incubation of whole-blood samples 

with TNFα, GM-CSF, IL-18 and the following TLR agonists: LPS (TLR4), MALP-2 

(TLR2/6), Pam3CSK4 (TLR1/2), R-848 (TLR7/8) and CpG-DNA (TLR9) induced a 

significant increase in CD11b expression (Figure 4A) and a significant decrease in L-selectin 
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expression (Figure 4B) related to activation-induced shedding of this molecule (30). In the 

patient, TNFα and GM-CSF stimulation induced normal CD11b expression and normal L-

selectin shedding at the PMN surface as compared to PBS-treated samples. In contrast, after 

treatment of patient’s samples with IL-18 and the following TLR agonists: LPS (TLR4), 

MALP-2 (TLR2/6), Pam3CSK4 (TLR1/2) and R-848 (TLR7/8), no significant increase in 

CD11b expression was observed as compared with the sample incubated with PBS; In 

addition, L-selectin was still detectable at the PMN surface, reflecting a defect in the shedding 

of this molecule. Surprisingly, however, the response to CpG-DNA (TLR9) was conserved 

(Figure 4, A and B).  

In controls, pretreatment of whole blood with TNFα, GM-CSF, IL-18 or with the 

various TLR agonists, followed by stimulation with fMLP, a structural analog of bacterial 

metabolic products, strongly increased ROS production (Figure 4C). A similar increase in 

ROS production was also observed in the patient’s PMN after pretreatment with TNFα or 

GM-CSF and stimulation with fMLP, ruling out defective priming of the phagocyte oxidative 

burst (31). This priming effect on the fMLP-stimulated PMN oxidative burst, which was also 

observed after treatment with CpG-DNA, was no longer detectable after incubation with the 

other TLR agonists or IL-18 (Figure 4C).  

Although the effect of TLR agonists on adhesion molecule expression and ROS 

production by monocytes is far lower than with PMN, the patient’s monocytes showed a 

pattern of responses similar to that of his PMN, with altered responses to TLR agonists except 

for CpG-DNA (not shown).  
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Impaired prolongation of PMN survival by IL-18 and TLR agonists, except for TLR9 

As PMN are usually very short-lived immune cells, prolongation of their lifespan by 

proinflammatory mediators is critical for their efficacy against pathogens (32). In keeping 

with previous reports (4, 33, 34), treatment of control PMN for 8 hours with GM-CSF, IL-18 

and TLR agonists induced ~ 50 to 90% inhibition of PMN apoptosis in whole blood (total 

annexin V+ cells); similar levels of inhibition were found in the early (annexin V+/7AAD- 

cells) and late stage (annexin V+/7AAD+ cells) of PMN apoptosis (not shown). In contrast, 

neither IL-18 nor LPS (TLR4), MALP-2 (TLR2/6), Pam3CSK4 (TLR1/2) and R-848 

(TLR7/8) were able to inhibit the patient’s PMN apoptosis (percentage inhibition of PMN 

apoptosis ~ 0%), while GM-CSF induced a normal prolongation of PMN survival. In keeping 

with the results for adhesion molecule expression and ROS production, the effect of CpG-

DNA (TLR9) on the patient’s PMN apoptosis was conserved (Figure 4D).  

We recently reported that the TLR-induced delay in PMN apoptosis was associated 

with modulation of Bcl-2 family members (4), with an increased level of the anti-apoptotic 

protein Mcl-1 and increased phosphorylation of the proapoptotic protein Bad, which have 

been reported to inhibit apoptosis (35). In our patient, while CpG-DNA (TLR9) induced a 

normal increase in Mcl-1 and phospho-Bad content, no modulation of either of these two 

proteins was observed after stimulation with the other TLR agonists, as compared to samples 

incubated with PBS (Table II). 

 

Impaired cytokine production by PMN and monocytes in response to IL-18, IL-1 and all TLR 

agonists. 

In keeping with previous data on patients with IRAK-4 deficiency (15, 16), we found strongly 

impaired pro-inflammatory cytokine (IL-8) production in the supernatant of the patient’s 

H
A

L author m
anuscript    inserm

-00179394, version 1



 

 18 

whole-blood samples cultured with all TLR agonists, including CpG-DNA (Figure 5A). 

Similar results were observed for IL-6, IL-1β and TNFα production (not shown). 

As cytokine production by whole blood cells mainly reflects synthesis by monocytes, 

the patient’s monocytes and PMN were isolated and highly purified in order to analyze the 

individual response of the two cellular subpopulations to TLR agonists, and especially to 

CpG-DNA (TLR9). As expected, IL-8 production by control monocytes incubated with TLR 

agonists was far higher than that of control PMN. Neither monocytes (Figure 5B) nor PMN 

(Figure 5C) were able to produce significant amounts of IL-8 in response to LPS (TLR4), 

MALP-2 (TLR2/6), Pam3CSK4 (TLR1/2) nor R-848 (TLR7/8). IL-8 production by the 

patient’s PMN and monocytes in response to CpG-DNA was also strongly diminished as 

compared to that of cells from a healthy control. 

Finally, the parents’ PMN exhibited normal responses (adhesion molecule expression, 

ROS production, delayed apoptosis, cytokine production) to all TLR agonists (not shown). 

 

Involvement of direct stimulation of the PI3K pathway in the preserved PMN responses to 

TLR9 

CpG-DNA induced normal responses by the patient’s PMN in terms of survival, adhesion 

molecule expression and ROS production, despite the lack of functional IRAK-4. This 

strongly suggested that an alternative pathway, independent of the classic TLR9/IRAK-4 

pathway, was involved in TLR9 signaling. We therefore examined the effects of various 

kinase inhibitors on L-selectin and CD11b expression at the PMN surface, as well as on PMN 

apoptosis in whole blood incubated with CpG-DNA. These inhibitors were used at optimal 

concentrations previously determined in whole blood (4). Pretreatment with inhibitors of 

conventional protein kinase C (GF109203X: 5 µM), PKCδ  kinase (rottlerin: 10 µM) and 

tyrosine kinase (genistein: 100 µM) had no effect on CpG-DNA-induced responses (not 
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shown). In contrast, pretreatment of the patient’s whole blood with PI3K inhibitors 

(wortmannin and LY2940002) suppressed the effect of CpG-DNA on PMN responses. CpG-

DNA-induced shedding of L-selectin led to a significant decrease in L-selectin expression at 

the PMN surface as compared to PBS-treated samples (Figure 6A); this decrease was totally 

abolished after preincubation of the patient’s PMN with PI3K inhibitors (the MFI of the 

sample incubated with PI3K inhibitors + CpG-DNA was similar to that observed after 

treatment with PBS alone) (Figure 6A). CpG-DNA-induced modulation of L-selectin 

expression was also significantly reduced after preincubation with PD98059 (a ERK1/2 

kinase inhibitor) or SB203580 (a p38MAPK inhibitor). Similarly, the CpG-DNA-induced 

increase in CD11b expression (reflected by the increase in stimulation index) (Figure 6B) was 

significantly reduced after pre-incubation with PI3K inhibitors as well as with ERK1/2 kinase 

and p38MAPK inhibitors.  

Finally, in keeping with previous data (4), the CpG-DNA-induced increase in the percentage 

of cell survival (annexin V-/7-AAD- cells) was significantly reduced after preincubation of 

control samples with PI3K inhibitors and the NF-κB inhibitor SN50, while MAPKinase 

inhibitors did not affect PMN apoptosis (Figure 6C). In the patient’s PMN, the inhibitory 

effect of PI3K inhibitors was conserved while the NF-κB inhibitor SN50, which strongly 

suppressed CpG-DNA-induced survival of control PMN, had no effect on TLR9-induced 

survival of the patient’s PMN.  

The PI3K inhibitor-induced reduction in PMN responses was also observed in healthy 

controls but at a lower level than in the patient (Figure 6, A, B and C). This result suggested a 

critical role of the direct TLR9/PI3K pathway in the patient’s PMN responses. 

The effect of ERK1/2 kinase and p38MAPK inhibitors on CpG-DNA-induced modulation of 

adhesion molecule expression observed in control and the patient’s PMN strongly suggested 

the involvement of these kinases downstream of TLR9 activation. We therefore studied the 
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phospho-ERKK1/2 and phospho-p38MAPK contents of intact PMN treated in whole blood, 

by means of flow cytometry. As shown in Figure 7, incubation of whole blood from controls 

and the patient with CpG-DNA significantly increased ERK1/2 and p38MAPK 

phosphorylation after 10 min as compared to PBS. This effect was significantly reduced by 

preincubation with PI3K inhibitors. Total ERK1/2 and p38MAPK content, measured in the 

same conditions, was not modified by treatment with CpG-DNA (data not shown). 
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Discussion 

We describe an inherited IRAK-4 deficiency in a patient with compound heterozygosity 

generating a non functional IRAK-4 protein. PMN functional responses (adhesion molecule 

expression, ROS production, survival and pro-inflammatory cytokine production) to MALP-

2, Pam3CSK4, LPS, and R-848, which engage TLR2/6, TLR1/2, TLR4 and TLR7/8, 

respectively, were strongly impaired, as were PMN responses to IL-18 (whose receptor shares 

the same intracytoplasmic TIR domain). In contrast, the patient’s PMN responses to CpG-

DNA (TLR9) were normal, except for cytokine production, suggesting the existence, in 

parallel to the MyD88/IRAK-4-dependent pathway, of a distinct TLR9-induced transduction 

pathway regulating adhesion molecule expression, ROS production and survival.  

The patient’s PMN exhibited an impaired response to several agonists of the IL-1R 

family, and especially TLRs, while a normal response to other stimuli, including TNF, was 

observed. These results suggest that the patient has a defect in the common TIR signalling 

pathway, upstream of TRAF-6 and downstream of individual TIR membrane receptors. 

IRAK4 gene analysis showed two compound heterozygous mutations in our patient. The 

maternally inherited mutation at position + 5 of intron 7 (G>T) was predicted to result in a 

protein of 248 amino acids, truncated of a large part of the kinase domain. However, no 

shortened band was observed on western blots with a polyclonal Ab directed against the 

whole IRAK-4 protein. These results suggest that the truncated protein resulting from the 

maternal mutation is degraded as exon 7 skipped mRNA molecules were not subject to drastic 

nonsense mediated decay. The two paternally inherited missense mutations, located in the 

death domain (p.Arg12Cys) and in the kinase domain of IRAK-4 (p.Arg391His), did not 

interfere with IRAK-4 synthesis: IRAK-4 protein was detected in the patient’s PMN by 

western blot. However, none of the TLR agonists increased IRAK-1 phosphorylation, further 

demonstrating the non function of IRAK-4 protein. These results suggest that the p.Arg12Cys 
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missense mutation of the paternal allele may hamper protein-protein interactions via the death 

domain in the TIR pathway. Indeed, the p.arg12Cys mutation involves a residue that is 

located at the surface of the protein; this domain is thought to interact with the different 

ligands of IRAK-4 such as MyD88. This residue is highly conserved through evolution in 

IRAK-4 orthologous proteins including human, Mus musculus, Bos taurus, Gallus gallus, 

Xenopus tropicalis, Danio rerio and Euprymna scolopes (Supplementary data available on 

request) but is not conserved in paralogues of the IRAK family, suggesting that it participates 

to the specificity of interaction. It is therefore most likely that the substitution of this 

positively charged residue (arginine) by a neutral one (cystein) interferes either with the 

conformation of the IRAK-4 death domain or with the interaction of IRAK-4 with its 

partners, preventing the assembly of an active signaling complex following TLR activation. 

P.Arg391His, located in cis of the p.Arg12Cys substitution, was predicted to be benign with 

two software programs based on structural and amino acid conservation, and had no effect on 

mRNA splicing. A deleterious effect is thus unlikely, but a synergistic deleterious effect of 

the two missense mutations could not be excluded. The non function of IRAK-4 protein in our 

patient was also confirmed by the absence of significant IKK phosphorylation, which results 

from TLR pathway activation (not shown). 

TLR9-induced responses, i.e. adhesion molecule expression, ROS production and 

survival, were normal in the patient’s PMN, while cytokine production was lower than with 

control PMN. This suggests that different pathways may be involved in these functions; in 

particular, the IRAK-4 dependent pathway is necessary for TLR9-induced cytokine 

production, while other functions might use independent pathways. PI3Ks have been reported 

to enhance nuclear translocation of NF-κB through phosphorylation and activation of IκB-

kinase and activation of MAPK, especially in TLR2-stimulated PMN (13); nevertheless, it is 

not known whether MyD88/IRAK-4 complexes are required for this pathway. We clearly 
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found that PI3K inhibitors (wortmannin and LY2940002) totally suppressed the effect of 

CpG-DNA on adhesion molecule expression and survival of our patient’s PMN. These results 

suggest that TLR9 may be directly linked to PI3K, while the MyD88/IRAK-4 dependent 

pathway may be required for PI3K activation through the other TLRs. Such direct PI3K 

activation has been described for TLR2 in a human monocytic cell line (36).  

The lipid products of PI3K – mainly phosphatidylinositol 3,4,5-triphosphate – induce 

translocation of Akt/PKB to the plasma membrane, where it is phosphorylated and activated 

by phosphatidyl-inositol 3,4,5-phosphate-dependent kinase (PDK1) (37). This pathway has 

been forwarded as a major mediator downstream of PI3K (38). In particular, Akt activation 

induces modulation of Bcl-2 family proteins such as Mcl-1 and phospho-Bad (39, 40), and 

could therefore be involved in the inhibitory effect of CpG-DNA on our patient’s PMN 

apoptosis. In addition, it has been reported that class I PI3K catalytic subunits can lead to 

phosphorylation of ERK1/2 and p38MAPK (9, 10, 41, 42); activation of these signaling 

pathways has been implicated in the upregulation of CD11b expression (43, 44) and L-

selectin shedding (45, 46) after PMN treatment with various inflammatory stimuli. In keeping 

with these data, we demonstrated that CpG-DNA-induced modulation of CD11b and L-

selectin on the surface of our patient’s PMN is partially inhibited by pharmacological 

inhibitors of ERK1/2 and p38MAPK; furthermore, we found a CpG-DNA-induced increase in 

phosphorylation of ERK1/2 and p38MAPK in the patient’s PMN, which was reduced by 

PI3K inhibitors. These findings strongly suggest that IRAK-4-independent TLR9-induced 

PI3K activation leads to MAPK recruitment. As CpG-DNA has no direct effect on ROS 

production, the use of kinase inhibitors did not allow us to analyse the involvement of MAPK 

in the priming effect of CpG-DNA on the PMN oxidative burst in response to fMLP. 

Nevertheless, PI3K products have also been reported to exert their effects on the PMN 
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oxidative burst by activating downstream protein kinases such as Akt, which may directly 

phosphorylate components of the oxidase complex (47). 

Taken together, our results suggest that activation of class I PI3K (PI3K (I) – 

PDK1/Akt/PKB) through TLR9, and subsequent recruitment of MAPK, could be an 

alternative pathway to the IRAK/IKK/NF-κB pathway involved in PMN adhesion, oxidative 

burst, and prolonged survival, which are major components of PMN functional activity. A 

schematic representation of the different pathways involved in PMN functions is proposed in 

Figure 8. Nevertheless, we cannot formally exclude the involvement of other, unidentified 

signalling pathways leading to CpG-DNA-induced PMN responses. In particular, there is 

evidence of a TLR9-independent pathway leading to downstream PI3K activation and CD11b 

upregulation in response to bacterial CpG-containing DNA in murine neutrophils. (44, 48). 

This pathway described in human PMN by Alvarez et al is MyD88-dependent and leads to 

IRAK-1 phosphorylation, suggesting the involvement of IRAK-4 in subsequent PI3K 

activation (44). However, we cannot formally exclude the possibility that the IRAK-4-

independent activation of PI3K observed in our patient after CpG-DNA stimulation may be 

related to the existence of TLR9-independent mechanisms, thus implicating non-CpG 

molecular motifs in synthetic oligonucleotides.  

IRAK-4-deficient patients suffer from pyogenic infections but are resistant to viruses, 

fungi and parasites, as well as many other bacteria. It has been speculated that cell-surface 

TLRs rapidly sense bacterial infections by recognizing bacterial cell wall constituents in the 

extracellular medium. In contrast, several lines of evidence suggest that molecular recognition 

of CpG-DNA occurs inside the cells (49). TLR9 might enter the phagosome from the 

endoplasmic reticulum (50) and bind bacterial DNA released into the phagosome following 

bactericidal processes. In addition, TLR9 was recently implicated in host defenses against 

intracellular pathogens (51, 52). Further studies are necessary to elucidate the role of direct 
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PI3K activation by TLR9 in the phagosome, relative to cell surface activation of the 

TLRs/IRAK-4-dependent pathway in defenses against microorganisms, and especially 

intracellular pathogens. Nevertheless, we clearly observed that CpG-DNA induced normal 

PMN functions in terms of adhesion molecule expression and survival in our IRAK4-deficient 

patient, suggesting that the IRAK-4 dependent pathway may be compensated for by the 

TLR9-dependent IRAK-4-independent pathway. This may account, at least in part, for the 

observed clinical improvement with age. 

In conclusion, this study provides the first description of persistent TLR9-induced 

responses, critically involved in anti-microbial defenses, by PMN from a patient with 

inherited IRAK-4 deficiency. These results strongly suggest the existence of a TLR9 

alternative pathway leading to PI3K activation independently of the classical MyD88/IRAK-4 

pathway. This may explain the control of infections due to microorganisms other than 

pyogenic bacteria by PMN in patients with inherited IRAK-4 deficiency. Finally, our study 

emphasizes the importance of “lessons of nature” in understanding the role of the TLR in 

human defenses. 
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Footnotes 

 

1 Adress correspondence and reprint requests to: 

Carole Elbim, INSERM U773, Faculté Xavier Bichat, 16 rue Henri Huchard, 75877 Paris 

Cedex 18, France.  

Phone: 33 1 44 85 62 06; Fax: 33 1 44 85 62 07. E-mail: carole.elbim@bch.aphp.fr 

 

2 Non standard abbreviations: IRAK: interleukin-1 receptor associated kinase; PMN: 

polymorphonuclear neutrophil; TIR: Toll-IL-1 receptor; TRAF6: tumor necrosis factor 

receptor-associated factor 6; LAD: leucocyte adhesion deficiency; HE: hydroethidin; fMLP: 

N-formyl-methionyl-leucyl-phenylalanine; APC: allophycocyanin; 7-AAD: 7-amino-

actinomycin D; 
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Figure legends 

 

FIGURE 1. Genetic analysis of IRAK4 gene and protein expression in the patient 

A, Schematic representation of the IRAK4 gene and alleles in the patient. Sequencing 

chromatograms obtained in our patient are shown. 

B, Schematic representation of IRAK-4 protein, with the death domain and kinase domain. 

The positions of the mutations found in the patient are indicated. 

C, Schematic representation of the IRAK-4 death domain (Protein Data Bank accession code 

2A9I). This ribbon diagram was generated with PyMOL (DeLano Scientific, 

www.pymol.org). The Arg12 is shown as full surface amino-acid residue. 

D, Expression of IRAK-4 by Western blotting 

A total of 2.5x106 cell equivalents were loaded in each well. Following SDS-PAGE, the 

proteins were transferred to nitrocellulose membranes and incubated with anti-human IRAK-4 

Ab at 1/500 dilution overnight. The Western blots were revealed as described in Materials and 

Methods.  

 

FIGURE 2. Mutation + 5 G>T in intron 7 induces exon 7 skipping 

A, PCR amplification products using ex6F cDNA and ex11R cDNA primers and cDNA from 

a control and the patient were analysed onto ABI310 DNA sequencer. A normal PCR product 

size (647 pb) and a truncated one (532 pb) was observed in our patient.  

B, Sequencing of the shortened band was performed using ex6F cDNA and ex11R cDNA non 

fluorescent primers. 
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FIGURE 3. Full length mRNA molecules are exclusively produced from the paternal allele. 

Allele specific PCR was performed using two different reverse LNA primers. Ex10R LNA_G 

primer matches the wild type allele (c.1170 G allele) whereas Ex10R LNA_A primer is 

specific of the variant allele (c.1170 A allele). The paternal mRNA contained the A allele and 

the maternal mRNA the G allele. The control used in this experiment was homozygous for the 

G allele. Fluorescent products obtained after PCR amplification of cDNA from the patient or 

the control were then analysed on a ABI310 DNA sequencer. Expected PCR product sizes are 

indicated. The 416-bp peak observed with the Ex6F-Ex10R LNA_G set of primers 

corresponds to the exon 7-skipped form of mRNA. 
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FIGURE 4. Impaired PMN functions in response to IL-18 and TLR agonists, except for 

TLR9 

A and B, Adhesion molecule expression at the PMN surface: whole-blood samples were 

incubated at 37°C for 1 hour with PBS, TNFα (100 U/ml), GM-CSF (1000 pg/ml), IL-18 

(500 ng/ml) or with the following TLR agonists: LPS (10 ng/ml) (TLR4), MALP-2 (10 

ng/ml) (TLR2/6), Pam3CSK4 (500 ng/ml) (TLR1/2), R-848 (10 µg/ml) (TLR7/8), or CpG-

DNA (100 µg/ml) (TLR9). Samples were then stained with PE-anti-CD11b and purified anti-

L-selectin antibodies at 4°C for 30 minutes.  

Results are expressed as mean fluorescence intensity (MFI). 

* Significantly different from sample incubated with PBS (p<0.05). 

C, PMN oxidative burst: whole-blood samples were pretreated with HE for 15 minutes at 

37°C and then incubated with TNFα, GM-CSF, IL-18 or TLR agonists as described above, 

followed by fMLP stimulation (10-6 M, 5 minutes).  

Results are expressed as a stimulation index (ratio of the mean fluorescence intensity of 

stimulated cells to that of unstimulated cells). 

* Significantly different from the sample incubated with PBS (stimulation index=1) (p<0.05). 

D, PMN apoptosis: whole-blood samples were incubated in 24-well tissue cultures plates at 

37°C with 5% CO2 for 8 hours with PBS, GM-CSF, IL-18 or TLR agonists as described 

above. PMN were identified by using a FITC-anti-CD15 Ab. Apoptosis was quantified by 

staining with APC-annexin V and 7-AAD as described in Materials and Methods. 

Results are expressed as the percentage inhibition of PMN apoptosis [1 – (% of total annexin 

V+ PMNs in stimulated sample/% of total annexin V+ PMN in PBS-treated sample)] x 100. 

* Significantly different from the sample incubated with PBS (percentage inhibition of 

apoptosis=0) (p<0.05). 

Panel A to D: three independent experiments, each with a different healthy control. 
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FIGURE 5. Impaired cytokine production by blood cells in response to TLR agonists, IL-1β 

and IL-18. 

Whole-blood samples (Panel A), isolated monocytes (5x105/ml) (Panel B), and highly 

purified PMN (5x106/ml) (Panel C) were incubated for 18 hours with PMA-ionomycin (10-7M 

and 10-5M), PMA (10-7M), IL-1β (50 ng/ml), IL-18 (500 ng/ml) or TLR agonists as described 

in the legend of figure 4. 

IL-8 production was measured by using the human inflammatory cytokine cytometric bead 

array (CBA) kit. 

* Significantly different from the sample incubated with PBS (p<0.05) (n=3, each experiment 

performed with a different healthy control). 
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FIGURE 6. Involvement of the putative IRAK-4-independent PI3K signalling pathway in the 

persistent PMN response to TLR9. 

A and B, Effect of kinase inhibitors on CpG-induced modulation of adhesion molecule 

expression at the PMN surface: whole-blood samples were pretreated at 37°C with PBS, PI3K 

inhibitors (wortmannin: 2500 nM; LY2940002: 25 µM), MEK1/2 inhibitor (PD98059: 50 

µM) or p38MAPK inhibitor (SB203580: 25 µM) for 15 minutes and then with PBS or CpG-

DNA for 1 hour. L-selectin and CD11b expression at the PMN surface were then studied as 

described in the legend of figure 4. Results are expressed in MFI (L-selectin expression) and 

as a stimulation index (CD11b expression: ratio of the MFI of CpG-DNA-stimulated cells to 

that of unstimulated cells). 

C, Effect of an NF-κB inhibitor (SN50) and kinase inhibitors on CpG-DNA-induced PMN 

survival.  

Whole-blood samples were pretreated in 24-well tissue culture plates at 37°C in 5% CO2/air 

with PBS, SN50 (100 µg/ml), PI3K inhibitors (wortmannin: 2500 nM; LY2940002: 25 µM), 

MEK1/2 inhibitor (PD98059: 50 µM) or p38MAPK inhibitor (SB203580: 25 µM) for 1 hour. 

Samples were then incubated with PBS or CpG-DNA for 8 hours. Survival was quantified as 

described in the legend of figure 4. Results are expressed as the percentage of viable cells 

(annexin V-/7-AAD- cells). 

* Significantly different from the CpG-DNA-stimulated sample incubated with PBS alone 

instead of kinase inhibitors (p<0.05) (n=3, each experiment performed with a different healthy 

control). 
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FIGURE 7. Effect of CpG-DNA on intracellular ERK1/2 and p38MAPK phosphorylation. 

Whole-blood samples were preincubated at 37°C in a water bath with PBS or PI3K inhibitors 

(wortmannin: 2500 nM; LY2940002: 25 µM) for 15 minutes and then with PBS or CpG-

DNA (100 µg/ml) for 10 min. Phospho-p38MAPK and phospho-ERK1/2 contents were then 

measured by flow cytometry on methanol-permeabilized cells as described in Materials and 

Methods. 

Results are expressed as the mean fluorescence intensity (MFI). Values obtained with an 

irrelevant Ab of the same isotype were subtracted. 

Values are means ± SEM (n=3, each experiment was performed with a different healthy 

control).  

* Significantly different from samples incubated with PBS alone (p<0.05). 

 

FIGURE 8. Scheme of CpG-DNA/TLR9-mediated cellular signalling in PMN. 

IRAK-4 dependent pathway. Recruitment of the TIR domain activates IRAK-4-TRAF6-

TAK1 complex formation. This leads to the activation of both MAPKs and IKK complexes, 

culminating in upregulation of transcription factors, including NF-κB. NF-κB activation leads 

to pro-inflammatory cytokine production and delays apoptosis. MAPK activation may be 

involved in the modulation of adhesion molecule expression at the PMN surface and in 

increased ROS production by primed PMN.  

Alternative IRAK-4-independent pathway. Activation of class I PI3K (PI3K (I) – PD-

K1/Akt/PKB) through TLR9 could be an alternative to the IRAK/IKK/NF-κB pathway. Its 

activation could lead to 1) delayed apoptosis through independent modulation of Bcl-2 family 

proteins, and 2) recruitment of MAPKs involved in PMN adhesion and the oxidative burst. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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