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A SAS macro for parametric and semiparametric

mixture cure models

Fabien Corbière, Pierre Joly

EMI E0338 Biostatistique, Institut de Santé Publique et Développement, Université

Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.

Abstract : Cure models have been developed to analyze failure time data with a

cured fraction. For such data, standard survival models are usually not appropriate

because they do not account for the possibility of cure. Mixture cure models as-

sume that the studied population is a mixture of susceptible individuals, who may

experience the event of interest, and non-susceptible individuals that will never ex-

perience it. The aim of this paper is to propose a SAS macro to estimate parametric

and semiparametric mixture cure models with covariates. The cure fraction can

be modelled by various binary regression models. Parametric and semiparametric

models can be used to model the survival of uncured individuals. The maximization

of the likelihood function is performed using SAS PROC NLMIXED for parametric

models and through an EM algorithm for the Cox’s proportional hazards mixture

cure model. Indications and limitations of the proposed macro are discussed and an

example in the field of cancer clinical trials is shown.
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1 Introduction

Models for survival analysis typically assume that everybody in the study popula-

tion is susceptible to the event of interest and will eventually experience this event

if the follow-up is sufficiently long. In recent years, there has been a increasing

interest in modelling survival data with long term survivors. Such data may arise

from clinical trials, in which, even after an extended follow-up, no further events of

interest are observed. Some people in the population may be considered as cured

or non-susceptible (cured). Failing to account for such cured subjects would lead

to incorrect inferences. Moreover researchers may be interested in estimating the

cured fraction.

Mixture cure models assume that the studied population is a mixture of sus-

ceptible (uncured) individuals, that may experience the event of interest, and non-

susceptible (cured) individuals, that will never experience it [1]. This approach

allows to estimate simultaneously whether the event of interest will occur, which

is called incidence, and when it will occur, given that it can occur, which is called

latency.

Let U be the indicator denoting an individual is susceptible (U = 1) or non

susceptible (U = 0) to the event of interest and T is a nonnegative random variable

denoting the failure time of interest, defined only when U = 1. The mixture cure

model is given by

S(t|x, z) = π(z)S(t|U =1, x) + 1 − π(z) (1)

where S(t|x, z) is the unconditional survival function of T for the entire population,

S(t|U =1, x) = P (T >t|U =1, x) is the survival function for susceptible individuals
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given a covariate vector x = (x1, . . . , xp)
′, and π(z) = P (U =1|z) is the probability

of being susceptible given a covariate vector z = (z1, . . . , zq)
′, which may include the

same covariates as x. The survival function of cured patients can be set to one for

all finite values of t because they will never experience the event of interest. Note

that S(t|x, z) → 1 − π(z) as t → ∞. When π(zi) = 1 for all zi, i.e. when there is

no cured fraction, the mixture cure model reduces to the standard survival model.

Various parametric and semiparametric specifications of S(t|U =1) have been pro-

posed, leading to parametric and semiparametric mixture cure models [2].

In the next section, a brief description of parametric and semiparametric mixture

cure models is presented as well as computational methodology. The macro and its

requirements are described in Section 3 and a simulation study is shown in Section4.

In Section 4 an illustrative example is provided.

2 Computational methods and theory

2.1 Parametric and semiparametric mixture cure models

The effect of z on the probability of π(z) can be modelled by the use of binary

regression models, with logit link

logit
(

π(z)
)

= β0 + β1z1 + · · · + βqzq = β′z

where β0 is the intercept and β is the vector of regression parameters associated to

z. Other regression models include the probit link

Φ−1
(

π(z)
)

= β′z
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where Φ is the distribution function of a standard normal distribution, and the

complementary log-log link

log
(

− log
(

1 − π(z)
))

= β′z

The conditional latency distribution S(t|U =1) can take the form of parametric

or semiparametric distributions. Among the parametric models, exponential (EXP),

Weibull (WB), lognormal (LN) and loglogistic (LG) are commonly used to model

survival data. After reparametrization [3], these distributions can be expressed as

S(t|U =1) =







































exp [− exp(log t − µ)] , exponential;

exp
[

− exp( log t−µ

σ
)
]

, Weibull;

1 − Φ( log t−µ

σ
), lognormal;

[

1 + exp( log t−µ

σ
)
]−1

, loglogistic;

(2)

Covariates can be included by parameterizing µ such as µ = γ ′x, where γ

represents the vector of unknown regression parameters. These models are also

known as parametric accelerated failure time (AFT) mixture cure models [4]. Since

x acts multiplicatively on the scale parameter µ, it accelerates or decelerates the

failure time of susceptible individuals.

In proportional hazards (PH) models, the conditional distribution of T is mod-

elled by

S(t|U = 1, x) = S0(t|U =1)exp(γ′ x)

= exp

(

− exp(γ ′x)

∫ t

0

λ0(v|U = 1)dv

)

(3)

where S0(t|U =1) and λ0(t|U = 1) are the baseline conditional survival and hazard

functions respectively. The conditional cumulative hazard function is Λ(t|U =1) =
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Λ0(t|U = 1) exp(γ ′x), where Λ0(t|U = 1) =
∫ t

0
λ0(v|U = 1)dv. If S0(t|U = 1) is left

arbitrary, the model is defined as the Cox’s proportional hazards mixture cure model

[5]. Note that the Weibull (and exponential) models are both AFT and PH models.

Through the vectors of regression parameters β and γ, parametric and semi-

parametric mixture cure models are able to separate the covariate effects on the

incidence and the latency.

2.2 Likelihood

Suppose the data are of the form (ti, δi, xi, zi), i = 1, . . . , n, where δi is the censoring

indicator with δi = 1 if ti is uncensored and δi = 0 otherwise. The likelihood

contribution for individual i is πi(zi)f(ti|U = 1, xi) for δi = 1 and (1 − πi(zi)) +

πi(zi)S(ti|U =1, xi) for δi = 0, where f(.) = S(.)λ(.) is the conditional probability

density function of T . The observed full likelihood is then given by

L(γ, β) =
n

∏

i=1

{

πi(zi)f(ti|U =1, xi)
}δi

×
{

(1 − πi(zi)) + πi(zi)S(ti|U =1, xi)
}1−δi

(4)

When no cured fraction is assumed, i.e. π(zi) = 1 for all zi, the likelihood

function (4) reduces to the likelihood of the standard survival model.

2.3 Estimation procedures

This section presents a brief description of the procedures used to estimate the

parameters by maximizing the likelihood (4). A more detailed presentation can be

found in Peng and Dear [6] and Sy and Taylor [7].
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2.3.1 Maximization of the likelihood function

To estimate γ, we must specify the failure time distribution of uncured subjects.

For parametric mixture cure models, f(.|U = 1) and S(.|U = 1) can be defined by

a few unknown parameters in (4). Therefore, maximum likelihood estimates are

obtained via usual optimization methods as the Newton-Raphson method (PROC

NLMIXED [8]). Asymptotic standard errors are obtained by inverting the Fisher’s

information matrix of second order derivatives of log(L).

Unlike in the standard Cox’s proportional hazard, where little information is lost

by eliminating S0(t), one cannot eliminate S0(t|U =1) in the Cox’ PH mixture cure

model without losing information about β. The EM algorithm provides a simple

and efficient way to estimate separately β, γ and S0(t|U =1, xi).

From the introduction, U is the random variable denoting an individual is sus-

ceptible (U = 1) or non susceptible (U = 0). It follows that, if δi = 1 then ui = 1,

and if δi = 0 then ui is not observed, where ui is the value taken by the random

variable Ui. Given the ui’s, the complete-data full log-likelihood (4) is the sum of

two independent components, lI , which depends only on β, and lS, which depends

only on γ and Λ0 where

lI(β; u) = log
n

∏

i=1

π(zi)
ui (1 − π(zi))

1−ui (5)

and

lS(γ, Λ0; u) = log
n

∏

i=1

λ(t|U =1, xi)
δiui S(t|U =1, xi)

ui (6)

with u the vector of ui values. The EM algorithm starts with initial values β(0), γ(0)

and S
(0)
0 (t|U = 1). The E step in the (r)th iteration calculates the expectation of
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the complete log-likelihood function with respect to u, conditional on the observed

data and β(r),γ(r) and S
(r)
0 (t|U = 1), the estimates of β, γ and S0(t|U = 1) at the

rth iteration. This is given by following conditional expectation

y
(r)
i = E

{

ui|β
(r), γ(r), S

(r)
0 (t|U =1)

}

= δi + (1 − δi)
π(r)(zi)S

(r)(t|U =1, xi)

1 − π(r)(zi) + π(r)(zi)S(r)(t|U =1, xi)
(7)

which is the rth estimator of the probability of the ith individual being susceptible.

Given y
(r)
i the M step in the (r+1)th iteration maximizes the expected complete log-

likelihood function with respect to β and γ to obtain β(r+1), γ(r+1) and S
(r+1)
0 (t|U =

1). The algorithm iterates until convergence on estimates of β, γ and S0(t|U =1).

Peng and Dear [6] and Sy and Taylor [7] proposed a Cox’s partial-likelihood-type

method to estimate γ semiparametrically without specifying λ0(t|U = 1). For this

method (6) is approximated by

k
∑

j=1



γ ′s(j) − dj log





∑

i∈Rj

ui exp(γ ′xi)







 (8)

where k is the number of distinct uncensored failures times, dj is the number of

uncensored observations at tj, s(j) is the sum of covariate vectors associated with

the uncensored observations at tj and Rj is the risk set at tj.

Note that (5) is the log-likelihood function of a binary regression model, and

that (6) is similarly the log-likelihood function of the standard Cox’s PH model,

with the addition of the offset variable log(ui). Therefore, the M step of the EM

algorithm is equivalent to the separated maximization of lI and lS with standard

regression models for binary variables (PROC LOGISTIC) and failure time data

(PROC PHREG), respectively.
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2.3.2 Estimation of the conditional baseline survival function in semi-

parametric models

The estimation of S0(t|U = 1) is of concern here, because it is needed in (7). Two

nonparametric methods are discussed in Peng and Dear [6] and Sy and Taylor [7].

The first one is based on a profile likelihood estimate of Λ0(t|U =1), similar to the

Breslow’s likelihood for the standard Cox’s PH model [9]. The second one is derived

from the product limit estimator (PLE) after Kalbfleisch and Prentice [10].

In order to obtain a good estimation for γ and β it is important for Ŝ0(t|U =1)

to approach 0 as t → ∞. However the estimates from the Breslow or the PLE meth-

ods do not approach zero as t → ∞ when there are censored survival times after

tk, where tk is the last observed failure time. Setting Ŝ0(t|U =1) = 0 for all t ≥ tk

allows for a proper distribution function for susceptible individuals and avoid iden-

tifiability problems [11, 12]. However this zero-tail constraint implies that indi-

viduals with survival times greater than tk are all considered as non susceptible

or cured, which may appear to be a strong assumption. Peng [13] proposed that

Ŝ0(t|U = 1) decreases from Ŝ0(tk +0|U = 1) to zero smoothly for all t > tk and con-

sidered the exponential and Weibull distribution functions to complete the tail of

the conditional baseline survival function. For the exponential distribution function

Ŝ0(t|U =1) = exp(−ζ̂t) for t > tk, where ζ̂ satisfies exp(−ζ̂t) = Ŝ0(tk+0|U =1). For

the Weibull distribution function, Ŝ0(t|U =1) = exp(−(ζ̂t)ρ̂) for t > tk, where ζ̂ and

ρ̂ are the maximum likelihood estimates based on all observations.
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2.3.3 Variance estimation in semiparametric models

The standard errors of estimated parameters are not directly available, because of

the EM algorithm. The variance of γ̂ is particularly difficult to compute, because it

involves S0(t|U = 1) trough ui. Multiple imputation and bootstrap methods have

been proposed to estimate the observed information matrix of γ̂ [6, 14]. However,

simulations studies (not shown here) indicated that the variance estimated by in-

verting the Fisher’s information matrix of second derivatives when convergence in

parameter estimates and likelihood is attained may perform quite well. Nonparamet-

ric bootstrap methods [15, 16] are implemented in the proposed macro. Resampling

from the original dataset is performed through PROC MULLTEST with the BOOT-

STRAP option [17]. Computation of bootstrap confidence intervals follows the same

conventions of %JACKBOOT macro (http://support.sas.com/ctx/samples/index.jsp?sid=479).

3 Program description

3.1 Required parameters

The SAS macro, called PSPMCM, has the basic function of fitting parametric or

semiparametric mixture cure models for individual data. The parameters and their

description are summurized in table 1.

The dataset (DATA) is assumed to be entered with one record per individual,

with the failure/censoring time (TIME), the censoring indicator (CENSCOD), and

covariate vector (VAR). For categorical variables and second or higher order inter-

actions, dummy variables have to be created in a previous data step. In the VAR

statement, the name of covariates are separated by blanks. Each variable is followed,
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into brackets, by the option I, S or IS, which indicates whether it is included as a

covariate in the incidence part only (I), the survival part only (S), or both of them

(IS). In addition, when plots of survival functions are requested (see below), the

values at which the survival estimates are plotted are specified after a comma, as

shown in the example given in table 1. Other required statements to specify the

model are:

INCPART: to model the incidence part of the model, the user can choose between

binary regression models with the logit (LOGIT), probit (PROBIT) or complemen-

tary log log (CLOGLOG) links. By default the logistic regression model (LOGIT)

is assumed.

SURVPART: specifies the form of the conditional baseline survival function. Para-

metric models including exponential (EXP), weibull (WEIB), loglogistic (LLOG)

and lognormal (LOGN), and the semiparametric Cox’s proportional hazards model

(COX) are available.

ALPHA: sets the significance level used for the confidence limits for the hazard ra-

tios and odd’s ratios. The value must be between 0 and 1. The default value is 0.05,

which results in the calculation of a 95% confidence interval.

BASELINE: when set to Y, indicates that the conditional baseline survival function

estimate Ŝ0(t|U =1), and parameter estimates β̂, γ̂ and µ̂, σ̂ (for parametric mod-

els) are written to the BASELINE dataset. If bootstrap resampling is requested for

the Cox mixture cure model (see below), the BASELINE T dataset will moreover

contain the estimates for all bootstrap replicates. The default value is N (no out-

put).

SPLOT : when set to Y, the estimated conditional survival curve Ŝ0(t|U =1, xi, zi)
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and marginal survival curve Ŝ0(t|xi, zi) for individuals with covariate vectors xi, zi

are plotted. The values of xi and zi at which the survival function estimates are

computed are specified for each covariate after a comma in the VAR statement. The

default value is N.

PLOTFIT: when set to Y, the macro computes for each stratum defined by the co-

variate vectors xi and zi the observed (empirical) marginal survival curve S(obs)(t|xi, zi)

which is the kaplan-Meier estimate for the whole stratum (including right censored

subjects). The plots of (S(obs)(t|xi, zi), Ŝ(t|xi, zi)) versus t is a visual tool to ex-

amine the goodness of the model prediction. The correlation coefficient between

S(obs)(t|xi, zi) and Ŝ(t|xi, zi) is also computed for each stratum and provides an ap-

propriate measure of the goodness of fit [18]. P-P plots of the KM estimates versus

the fitted values are also plotted. The default value is N.

When the Cox PH mixture cure model is requested, additional options are avail-

able:

SU0MET: indicates whether the Breslow-type method (CH) or the product limit es-

timator (PL) is utilized to estimate the conditional baseline survival function. The

default value is PL.

TAIL : indicates whether a constraint or a tail completion method is used to esti-

mate Ŝ0(t|U = 1). The option TAIL=ZERO specifies that the zero tail constraint

is utilized (i.e. Ŝ0(t|U = 1) = 0 for t > tk). ETAIL or WTAIL specify that the

exponential and Weibull tail completion methods are used, respectively. NONE in-

dicates that no tail constraint is used, but identifiability and convergence problems

may rise with this option. The default value is ZERO.
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MAXITER: is the maximum number of iterations to perform. If convergence is

not attained the displayed output and all output data sets created by the procedure

contain results that are based on the last maximum likelihood iteration. The default

value is MAXITER=200.

CONVCRIT: sets the convergence criterion. The default value is 10−5. The itera-

tions are considered to have converged when the maximum relative change in the

parameters and likelihood estimates between iteration steps is less than the value

specified.

FAST: when set to Y, parameter estimates and their standard errors (computed by

inverting the matrix of second derivatives when convergence is attained) are written

to the FAST INC and FAST SURV datasets respectively. Although the standard

errors may be underestimated [19], they may be of concern, since they do not require

extensive bootstrap computation. The default value is Y.

The following options are available when bootstrap confidence intervals are re-

quested for the Cox’s mixture cure model:

BOOTSTRAP: when set to Y, indicates that non-parametric resampling with re-

placement from the original data set is performed. The default value is N.

NSAMPLE: is the number of bootstrap replicates that are produced by PROC

MULLTEST.

STRATA: identifies a single variable to use as a stratification variable in PROC

MULLTEST. Stratified resampling may better mimic the observed data.

BOOTMET: specifies the type of bootstrap confidence intervals to compute. These

include the percentile (PTCL), hybrid method (HYB), normalized bias corrected
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(BOOTN), bias corrected (BC) and accelerated bias corrected (BCA) confidence

intervals. Jackknife after bootstrap (JACK) is also available. The option BOOT-

MET=ALL indicates that all methods are requested.

GESTIMATE: when set to Y, Q-Q plots and bar charts of the distribution of pa-

rameter estimates over the bootstrap replicates are produced. This allows the user

to check graphically the asymptotic normal distribution of parameter estimates and

thus to check the validity of the different bootstrap confidence intervals. If the

distribution is overdispersed relative to the normal distribution, the validity of the

percentile based confidence interval is questionable.

4 Simulation study

In this study, data are generated from a logistic-Weibull mixture cure model, where

π(z) = exp(β0)/[1 + exp(β0 + β1z)], S(t|U = 1, z) = exp[−(λt)ρ exp(γ1z). The co-

variate z is fixed by design and is binary. We set λ = 0.5 and ρ = 1. Censoring

times are generated according to the uniform distribution U[0,15]. The results given

below are based on n=200 with 500 replications.

Table 2 presents the estimated biases and MSE from the logistic-Weibull and

logistic-Cox PH mixture cure models of three regression parameters β0, β1 and γ1

based on simulated data for two different configurations. The first one corresponds

to π(z) = 0.5 that is 50% of the population is cured. In this setting, the covariate

z has no effect neither on incidence (β1 = 0) nor on latency (γ1 = 0). The second

configuration corresponds to π(z = 0) = 0.8 and π(z = 1) = 0.6, meaning that

20% of the population is cured in one group and 40% in the other. It can be seen

that point estimates have little bias. We also simulated a case with a continuous
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covariate, and similarly there are not substantial departures from the simulated

values.

5 Application

The macro is applied to the melanoma data from the Eastern Cooperative Oncology

Group (ECOG) phase III clinical trial e1684 [20]. The dataset can be downloaded

at http://merlot.stat.uconn.edu/∼mhchen/survbook. Our purpose here is not to

perform a detailed analysis, but rather to illustrate the use of the PPSMCM macro.

An extensive analysis of this dataset is provided in [21, 22]. Briefly, the aim of e1684

clinical trial was to evaluate high dose interferon alpha-2b (IFN) regimen against

placebo as postoperative adjuvant therapy. After deleting missing informations a

total of n = 284 are used in the analysis. Only three covariates are included here,

both in the incidence and latency parts. These covariates are treatment (0, control

group ; 1 IFN group), gender (0 for male, 1 for female) and age, which is continuous

and centered to the mean. The response variable is taken to be the relapse-free

survival (RFS) in years. The Weibull and Cox PH mixture cure models are applied

to the data. The cured fraction is modelled by a logistic regression model. For

the Cox PH mixture model the zero tail constraint option is specified to compute

the conditional baseline survival function estimate. The bootstrap resampling is

stratified on the treatment variable, which is the variable of interest. The number

of bootstrap replicates is set to 3000 and all the bootstrap confidence intervals

computation methods are requested as well as the plot the of the distribution of

parameter estimates. The measures of goodness of fit are also requested.

For the Cox mixture cure model, the macro is invoked by the following statement:

15

H
A

L author m
anuscript    inserm

-00177046, version 1



%pspmcm( DATA= e1684, CENSCOD= fcensor, TIME= RFS,

VAR= treatment(I S,1) gender(I S,.) age (I S,.),

INCPART=logit, SURVPART= Cox, TAIL= zero , SU0MET= pl,

MAXITER= 200, CONVCRIT= 1e-5, ALPHA= 0.05, FAST= Y,

BOOTSTRAP= Y, NSAMPLE= 3000, STRATA= treatment,

BOOTMET= ALL, GESTIMATE= Y,

PLOTFIT= Y)

run;

The Kaplan-Meier (KM) plot of the survival function estimate for each treatment

group is shown in figure 1, together with the estimates from the Weibull and Cox

PH mixture cure models. The KM survival function estimate levels off at the right

tail and exhibits a long and stable plateau, which ensures the applicability of the

mixture cure model approach. The three plots are nearly identical, which allows

to think that the model adequacy is good. The correlation coefficients between the

KM estimates and the fitted values indicate a good fit for both treatment groups for

the Cox mixture cure model (r=0.9971 for both groups). From the Weibull mixture

cure model, the fit is better for the treatment group (r=0.9984) than for the control

group (r=0.9860).

The parameter estimates from the Weibull and Cox PH mixture cure model are

quite similar (table 3). Moreover, the standard errors from the Cox PH mixture

model estimated by using the inverse of the Hessian matrix at convergence of pa-

rameter estimates and likelihood are quite similar to those obtained from the Weibull

mixture model.

The results indicate that the treatment effect is significant in the incidence (lo-

16

H
A

L author m
anuscript    inserm

-00177046, version 1



gistic) part, despite a low significance level (p=0.040 for the Weibull model and

p=0.034 for the Cox PH model), but not in the latency part. This means that

the treatment increases the cured fraction, but do not delay the relapse in uncured

patients. No other covariate has significant effect, neither on incidence, nor latency.

Invoking the model with the treatment as the only covariate leads to cured

fraction estimations of 22.4 % (95% confidence interval: 19.1 - 26.1) for the control

group and 33.5 % (95 % CI: 23.7 - 44.7) for the IFN group from the Cox PH mixture

model. The estimated cured fractions from the Weibull mixture model are 24.2 %

(95 % CI: 20.7 - 28.1) for the control group and 35.4% (95 % CI: 25.5 - 46.8) for the

IFN group.

Applying the standard Weibull and Cox PH survival models (table 4), would lead

to conclude that the treatment had a significant effect on the survival. These models,

however, do not account for the possibility of cure and may lead to misinterpretation

of covariate effects.

Figure 2 shows the Q-Q plots for the treatment covariate from the logistic-Cox

PH mixture cure model over the 3000 bootstrap replicates. The distribution from

the logistic part is overdispersed relative to the normal distribution. Thus, the bias

corrected and accelerated bootstrap confidence intervals for parameter estimates is

preferred and reported in table 3. These confidence intervals are slightly larger than

those obtained using the variance of parameter estimates. The effect of treatment

on incidence is no longer significant (approximated p-value: 0.078).
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6 Discussion

We propose a simple SAS macro to estimate parametric and semiparametric mixture

cure models for individual data. The proposed SAS macro makes use of standard re-

gression procedures available in the SAS/STAT package since SAS version 7 (PROC

NLMIXED is not available in older versions). A limitation of our program is that

time dependant variables are not handled, because in this case PROC PHREG does

not provide the baseline survival function.

Parametric mixture cure models are simpler to implement than the semiparamet-

ric Cox mixture cure model since they do not require the EM algorithm. However

fully-parametric mixture models may not be flexible enough when analyzing bio-

logical data, since they involve strong assumptions about the survival distribution

function of uncured subjects. A generalized F mixture model has been proposed

[27] which makes less distributional assumptions, but computational difficulties may

arise.

Alternatively, data can be analyzed utilizing statistical models that account for

heterogeneity among individuals. These models, also known as frailty models, differ

from cure models in that they assume all individuals eventually experience the event

of interest with varying risk that are greater than zero [23,24]. The proportion of

individuals considered to be cured in the former models are generally considered as

having a low risk of experiencing the event in the latter models. The mixture cure

model is a special case of a multiplicative frailty model, in which the hazard for an

individual, conditional on U , can be written as λ(t|U, x) = Uλ(t|U = 1, x). As a

frailty variable, U is not entirely observable since an individual becomes labelled as

U = 1 if an event is observed. Usually frailties are assumed to follow a distribu-
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tion as the gamma, inverse Gaussian or positive stable distribution. These frailty

distributions do not allow individuals to have zero risks, hence the standard frailty

models do not account for a cured proportion. As an extension of the paramet-

ric family, Aalen [25] considered a compound Poisson distribution, which allows a

positive probability for the risk to be zero. However these models only account for

heterogeneity among individuals in the latency part but not in the incidence one.

Parametric mixture cure models with random effects have recently been proposed

[26], but the choice of the frailties’ distribution and of their variance matrix may be

an important issue.

As stressed by many others [10, 28] there are potential problems in applying the

mixture cure model in cases where it may not be adequately justified. The use of

such models should be restricted to problems in which there are strong biological

evidences of the presence of a cured fraction. Another element of caution is that

of sufficient follow-up. The levelling off of the Kaplan-Meier curve of the marginal

survival function to nonzero proportions, the presence of a long and stable plateau

together with a heavy censoring at the tail may also provide graphical evidences of

the presence of non-susceptible subjects to ensure the applicability of the mixture

cure models [29].

7 Availability

The SAS macro PSPMCM is available to the public at no charge at http://www.isped.u-

bordeaux2.fr/recherche/biostats/FR-biostats-accueil.htm♯ programmes. A simulated

dataset is also provided to illustrate the program.
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Table 1: Parameters required by the SAS macro PSPMCM.

Parameter Description

DATA SAS data set name to fit the mixture cure model

ID Subject identification

CENSCOD Censoring status (1=event, 0=censored)

TIME Failure/censoring time

VAR ex : GENDER(I S,0) AGE(S,10). List of covariates with indicator

for incidence (I) or survival (S) and value for survival functions plots

LINK Link function for incidence regression model

MODEL Conditional survival function specification

ALPHA Significance level for confidence interval

BASELINE Y for output of the conditional baseline survival function

SPLOT Y for plots of the conditional and marginal survival functions

PLOTFIT Y for goodness of fit measures

SU0MET Breslow’s or PL method to compute of Ŝ0(t|U =1)

TAIL Tail completion method (ZERO, ETAIL, WTAIL, NONE)

MAXITER Maximum number of iterations for the EM algorithm

CONVCRIT convergence criterium.

FAST Y for output at convergence, N otherwise

BOOTSTRAP Y for bootstrap methods computation, N otherwise

NSAMPLE Number of replicates for bootstrap computation

STRATA Name of the variable for stratified bootstrap resampling

BOOTMET Type of bootstrap confidence intervals

GESTIMATE Y for bar charts and Q-Q plots of parameter estimates
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Table 2: Simulation results on biases and MSE of regression parameters.

True values of (β0, β1, γ1)

(0,0,0) (1.3863,-1,-1)

Parameter Method Biases MSE Biases MSE

β̂0 Weibull mixture 0.0034 0.0194 0.0175 0.0345

Cox’s PH mixture -0.0019 0.0193 0.0157 0.0337

β̂1 Weibull mixture -0.0216 0.0419 0.0296 0.0628

Cox’ PH mixture -0.0227 0.0412 0.0301 0.0610

γ̂1 Weibull mixture -0.0070 0.0057 -0.0075 0.0211

Cox’s PH mixture -0.0107 0.0065 -0.0160 0.0226
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Table 3 : Estimates (standard errors) for the ECOG e1684 data set from the Weibull

and Cox’s PH mixture cure models.

Weibull mixture model Cox PH mixture model

Estimate (SE)a Estimate (SE)b BCA 95% CIc

LOGISTIC MODEL

Intercept 1.197 (0.239) 1.298 (0.236) 0.788 ; 2.312

Treatment: control -0.565 (0.272)d -0.574 (0.271)d -1.328 ; 0.057

Gender: male -0.061 (0.275) -0.082 (0.274) -0.812 ; 0.613

Age (per year) 0.014 (0.010) 0.018 (0.010) -0.007 ; 0.062

SURVIVAL MODEL

Treatment: control -0.104 (0.159) -0.149 (0.144) -0.500 ; 0.192

Gender: male 0.131 (0.152) 0.106 (0.147) -0.268 ; 0.471

Age (per year) -0.007 (0.006) -0.007 (0.005) -0.021 ; 0.006

Intercept (Weibull) -0.285 (0.316) - -

shape (Weibull) 1.088 (0.063) - -

a Standard errors obtained using the inverse of the Hessian matrix.

b Standard errors obtained using the inverse of the Hessian matrix at convergence

of parameters for the estimates and likelihood.

c Bias corrected accelerated bootstrap confidence interval from 3000 replicates.

d p-value < 0.05.
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Table 4: Estimates (standard errors) for the ECOG e1684 data set from the standard

Weibull and Cox PH models.

Standard Weibull model Standard Cox PH model

Estimate (SE)a Estimate (SE)a

Treatment: control -0.375 (0.144)a -0.360 (0.144)a

Gender: male 0.001 (0.148) -0.018 (0.147)

Age (per year) -0.007 (0.005) 0.005 (0.005)

Intercept (Weibull) -0.614 (0.115) -

shape (Weibull) 0.586 (0.035) -

a p-value < 0.05
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