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A Latent Process Model for Dementia and

Psychometric Tests

Abstract

We jointly model longitudinal values of a psychometric test and

diagnosis of dementia. The model is based on a continuous-time la-

tent process representing cognitive ability. The link between the latent

process and the observations is modeled in two phases. Intermediate

variables are noisy observations of the latent process; scores of the

psychometric test and diagnosis of dementia are obtained by catego-

rizing these intermediate variables. We propose maximum likelihood

inference for this model and we propose algorithms for performing this

task. We estimated the parameters of such a model using the data of

the five-year follow-up of the PAQUID study. In particular this anal-

ysis yielded interesting results about the effect of educational level on

both latent cognitive ability and specific performance in the mini men-

tal test examination. The predictive ability of the model is illustrated

by predicting diagnosis of dementia at the eight-year follow-up of the

PAQUID study based on the information from the first five years.

Key words: latent process, Brownian motion, joint model, ordinal data, mul-

tivariate data, dementia, Alzheimer’s disease, prediction.
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1 Introduction

Alzheimer’s disease is clinically characterized by a progressive decline of cog-

nitive abilities and is the main cause of dementia. The progressive nature

of the disease has two important consequences for modeling. First it is not

possible to say that the disease starts at a particular moment. Diagnosis is

made at the time of the neurologist’s examination but this does not mean

that the disease started at this precise moment, nor even at any precise

moment before examination. The second consequence is that psychometric

tests which measure cognitive abilities can provide important information

regarding the progression of a pathological process which may lead to a diag-

nosis of Alzheimer’s disease or dementia. It is therefore interesting to devise

models which link the two types of information (diagnosis of dementia and

psychometric tests) with three main objectives: to better understand this

link, to increase the power for detecting risk factors, to predict dementia

using previous observations of psychometric test scores.

The problem can be tackled through joint modeling of an event (onset of

dementia) and a longitudinal marker (scores of a psychometric test). Joint

modeling of CD4 cell counts and onset of AIDS or death has been proposed

by Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997). Concerning

dementia a model has been proposed by Jacqmin-Gadda, Commenges and

Dartigues (2005), with the specific aim of estimating a change-point in the

regime of cognitive decline. Approaches based on a stochastic process frame-

work are particularly well suited to grasp the dynamics of diseases. Hender-

son, Diggle and Dobson (2000) proposed a model in which a latent process
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acts as a time-dependent variable in a proportional hazards model. Other ap-

proaches to joint modeling represent the event as the crossing of a barrier by

the latent process (Whitmore, Crowder and Lawless, 1998; Lee, DeGruttola

and Schoenfeld, 2000). This approach was developed by Hashemi, Jacqmin-

Gadda and Commenges (2003) and applied to joint modeling of dementia

and a psychometric test: in this model the latent process was interpreted as

representing cognitive ability. The present paper proposes an extension of

this work with important differences which make the model much more flex-

ible, and thus more usable; in particular, for technical reasons, the Hashemi-

Jacqmin-Gadda-Commenges model was restricted to linear time-trends for

the latent process.

We propose a new model which enables the diagnosis of dementia and

scores on a psychometric test to be analyzed together. The model looks

particularly non-standard for dementia because we do not model onset of

dementia but diagnosis of dementia at the time of visit. This is in fact more

realistic (although interval-censoring was treated in the Hashemi-Jacqmin-

Gadda-Commenges model) because onset of dementia is an abstraction; cog-

nitive decline is in fact most often progressive. Thus our basic model is that

a neurologist diagnoses dementia if the subject has a latent process below a

certain threshold at the time of visit. As for scores on the psychometric test,

we consider a grid of threshold values cm, such that the subject has score m

if his latent process falls between cm and cm+1 at the time of the visit. This

is a refined model compared with previous work, which treats ordinal scores

as continuous. With this approach, both diagnosis of dementia and score

on the psychometric test are categorized observations of the latent process.
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This is reminiscent of probit models for ordinal data (McCullagh and Nelder,

1989; Chib and Greenberg, 1998), but here the underlying latent process al-

lows us to capture the dynamics of the phenomenon under study. Our model

is in fact slightly more complicated than the above description, as will be

described later.

In section 2 we present a general form of the model which could be applied

to contexts other than cerebral aging. In section 3 identifiability is studied

and the likelihood is derived. In section 4 we describe the specific model

used for dementia and the Mini Mental Score Examination: we begin by

describing the PAQUID study, a large cohort study on aging which provides

the data we used; then we describe the model, present a small simulation

and give results, particularly on the predictive ability of the model. We end

with a short conclusion.

2 Model and observations

2.1 Outline of the model

We propose a general model for multidimensional longitudinal data based on

a latent process. The observation of type k for subject i at time tij will be

denoted Y k
ij (in our application we will use observations of two types: k = 1:

diagnosis of dementia, k = 2: a psychometric test). As in Dunson (2003)

we propose a hierarchical structure where the observations Y k
ij are possibly

coarsening transformations of latent variables θk
ij, and these latent variables

are related to common latent elements.

The common latent element in our model is a latent process Λi(t) which

is defined in continuous time (in contrast with Dunson’s model). In our
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application it is natural to suppose that, at any time t, not just measurement

times, subjects have a certain cognitive ability quantitatively represented

by Λi(t) . Our approach allows unequally spaced observations which may

differ from subject to subject. The model for the latent process, driven by a

Brownian motion, yields a natural correlation structure for the intermediate

latent variables θk
ij, without introducing additional parameters which would

have to be estimated.

Another feature of our model is that it may be non-linear in the parame-

ters. In the next section we present the model in its most general form that

can be easily treated with our approach because it preserves the normality of

the θk
ij. Finally the model is a kind of multivariate probit model (Chib and

Greenberg, 1998): it has a more direct interpretation than assuming that the

θk
ij are related to the canonical parameters of a distribution in the exponen-

tial family, and it is related to threshold models already used by Hashemi,

Jacqmin-Gadda and Commenges (2003) in this application. Moreover it leads

to simpler numerical integrals.

Because of the central role of the latent process in our model, we will start

by describing it, explaining afterward how it can be observed by specifying

what we call “observation equations”.

2.2 Latent process

For each subject i we introduce Λi = (Λi(t))t≥0, a continuous-time stochastic

latent process; in our application Λi(t) will represent the global cognitive

ability of subject i at time t. This latent process is modeled as a function of
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explanatory variables as:

Λi(t) = f(β, xi(t)) + F (γ, zi(t))ai + Wi(t), (1)

where Wi = (Wi(t))t≥0 is a standard Brownian motion. The q-vector of

random effects ai has a multivariate normal distribution: ai ∼ N (0, A); ai

and Wi are independent and the sets (ai, i = 1, . . . , n) and (Wi, i = 1, . . . , n)

are sets of independent random vectors and processes; the functions f(., .):

Rp × Rl → R and F (., .): Rp × Rl → Rq are differentiable and possibly

non-linear; β and γ are vectors of coefficients (some of which may be in-

terpreted as regression coefficients, others of which are used to parameterize

the non-linearity) and xi(t) and zi(t) are vectors of time dependent covariates

including t itself.

A linear model for the latent process Λi(t) = xi(t)
T β + zi(t)

T ai + Wi(t),

is a particular case of model (1). Note that in a linear model there is no

parameter γ.

In the application we might consider the non-linear model: Λi(t) = β1 +

β2xi2 + (β3 + β4xi2)xi1(t)
β5 + ai1 + Wi(t), where xi1(t) = t is time itself,

xi2 represents educational level. This model is non-linear in both time and

the parameter β5. Introducing this parameter provides more flexibility in

modeling changes over time.

2.3 Observation equations.

We consider that the values of “tests” at different time points are indirect

observations of the latent process; in our application the “tests” include both

psychometric tests and diagnosis of dementia. We model the link between

the latent process and the tests in two phases: first we introduce, for subject
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i, intermediate random variables θk
ij which can be seen as potential mea-

surements for each test k = 1, . . . , K of Λi(tij); secondly we represent the

values of the tests as functions of these intermediate variables. The reason

for differentiating these two phases is that the θk
ij are linear in Λi(tij) and

have normal distributions while the test functions may be non-linear and

discontinuous. The times tij will be treated as deterministic. They might be

random but under the condition that the mechanism leading to incomplete

data is ignorable, a condition under which the likelihood treating these times

as fixed leads to the same inference as the correct likelihood. We make the

same assumption for possibly missing data.

2.3.1 Definition of θk
ij.

The intermediate variables for subject i and for test k are defined as:

θk
ij = Λi(tij) + gk(βk, xk

i (tij)) + Gk(γk, zk
i (tij))d

k
i + εk

ij, (2)

for j = 1, . . . , ni, where gk(., .) and Gk(., .) are analogous to f(., .) and F (., .)

in the definition of the latent process but are specific to the kth test; dk
i is

a rk-random vector with normal distribution: dk
i ∼ N (0, Dk); the measure-

ment errors εk
ij are identically independently distributed (i.i.d) variables with

normal distributions: εk
ij ∼ N (0, σ2

εk), for all j. The triple (Λi(tij), d
k
i , ε

k
ij) is

a set of independent variables for any choice of i, j, k.

A linear model for the intermediate variables θk
ij = Λi(tij) + xk

i (tij)
T βk +

zk
i (tij)

T dk
i + εk

ij is a particular case of model (2).
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2.3.2 Link between θk
ij and the data: the test functions

For subject i, we denote Y k
ij the random variable representing the observation

of the kth test on the occasion of the jth visit at time tij. We will consider

the cases of ordinal (including binary) longitudinal data. We consider a test

k for which Mk ordered values are possible (m ∈ [0,Mk − 1]). Observation of

Y k
ij = m provides the information that θk

ij lies between two thresholds, that is,

Y k
ij = m if and only if ck

m ≤ θk
ij < ck

m+1, with c0 = −∞ and cMk
= +∞. The

test function (which is the function of θk
ij that equals Y k

ij ) is in this case a step

function. The cut-off points ck
m are not known and must be parameterized or

estimated directly according to the number of possible values Mk. Generally

we shall represent ck
m as a function of parameters ηk, the dimension of which

may be less than Mk − 1 in order to obtain a more parsimonious model:

ck
m = τ k(m, ηk),∀m ∈ [1,Mk − 1], where τ k(.; ηk) is a monotone function.

Binary data are simply a special case of ordinal data for which we only

need one cut-off point, ηk
0 for instance. For a binary test, Y k

ij = 1{θk
ij≥ηk

0
}.

3 Likelihood Inference

To establish the likelihood we will first study the distribution of the interme-

diate variables. Then we establish the likelihood for the case where the tests

are ordinal variables as in our application.

3.1 Joint distribution of the intermediate variables

We shall study the distribution of the Kni vector Θi = (θk
ij; k = 1 . . . , K; j =

1, . . . , ni). It is to be noted that in equations (1) and (2) linearity in the

random effects is assumed: this requirement is important to remain in a
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Gaussian framework; that is to say Θi ∼ N (µi, Σi). Thus computing the

distribution of Θi comes down to computing its mean vector µi and variance

covariance matrix Σi. The expectation can easily be computed since we have:

E(θk
ij) = f(β, xi(tij)) + gk(βk, xk

i (tij))

The variance of Θi is the sum of the variance coming from the latent

process Σi,Λ, the variance of the test specific random effects Σid and the

variance of the noise term Σiε:

Σi = ΣiΛ+Σid+Σiε =







Σ0
iΛ . . . Σ0

iΛ
...

. . .
...

Σ0
iΛ . . . Σ0

iΛ






+







Σid1 0 0

0
. . . 0

0 0 ΣidK






+







σ2
ε1Ini

0 0

0
. . . 0

0 0 σ2
εKIni






,

where Σ0
iΛ = Fi

T A Fi + Γi, and Γi is the covariance matrix associated with

the Brownian motion:

Γi =











ti1 ti1 . . . ti1
ti1 ti2 . . . ti2
...

...
. . .

ti1 ti2 tini











,

and Fi =
(

F (β, zi(ti1)), . . . , F (β, zi(tini
))

)

, a q × ni-matrix, and where Σk
id =

Gk

i

T
Dk Gk

i
, with Gk

i
=

(

Gk(γk, zk
i (ti1)), . . . , G

k(γk, zk
i (tini

))
)

, a rk × ni ma-

trix.

3.2 Identifiability

Clearly there must be some constraints on the parameters to ensure identi-

fiability. A thorough analysis is beyond the scope of this paper, but we give

some insight. We can distinguish three sets of parameters: β = (β, βk, k =

1, . . . , K), γ = (γ, A, γk, Dk, σ2
k, k = 1, . . . , K) and η = (ηk, k = 1 . . . , , K)
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and the whole set of parameters is α = (β,γ,η). We consider the case of the

linear model for the sake of simplicity; in the linear model there is no param-

eter γ nor γk. Clearly in order that β and γ be identifiable from observation

of the Y k
ij they should be identifiable from the observation of θk

ij.

Let us now look at sufficient conditions for this. In the linear model there

is a matrix A such that E(Θ) = Aβ. A necessary and sufficient condition

for identifiability of β is r(A) = dim(β), where r(A) is the rank of A:

this happens if and only if the columns of A are linearly independent. A

necessary condition for that is K
∑

ni ≥ dim(β). A sufficient condition of

identifiability of β is:

C1: (i) there is no collinearity of the explanatory variables ; (ii) there are

no explanatory variables for one of the equations of the intermediate variable.

Point (i) is common in all linear models. That C1 is sufficient for identi-

fiability of β can be seen from the structure of the A matrix.

Similarly for the identifiability of γ we consider the condition:

C2: (i) There is no random effect for one of the equations of the inter-

mediate variable; (ii) all the matrices FiF
T
i are not equal.

For instance if there is no random effect for test k we have: varγ(θk
i ) =

F T
i AFi +Γi +σεkIni

. If there was non-identifiability there would exist γ ′ 6= γ

such that varγ ′(θk
ij) = varγ(θk

ij), which would entail: F T
i (A′−A)Fi = (σ′

εk −

σεk)Ini
. However the rank of the left-hand side is q while the rank of the

right-hand side matrix is ni. So unless ni = q for all i, this equality holds

only if A′ = A and σ′
εk = σεk . If ni = q for all i, we could solve the equation

to find (A′ − A) as a function of Fi leading to the additional requirement

that FiF
T
i be the same for all i.
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As for the identifiability of the whole set of parameters from the observa-

tion of the Y k
ij it is difficult to prove a sufficient condition. There is at least

an obvious non-identifiability case that can be detected, and thus avoided.

For fixed γ the distribution of the Y k
ij depends only on the ck

l − Eβ(θk
ij) for

l = 1, . . . ,Mk−1, k = 1, . . . , K. If the model for the cut-off points makes

it possible to find η′k such that: ck
l (η

′k) = ck
l (η

k) + ∆ for l = 1, . . . , Mk−1,

k = 1, . . . , K and if there is an intercept (β1) in the equation of the latent

process, then the distribution of the Y k
ij specified by α′, where α′ is defined

by η′, β′
1 = β1 +∆ and the other parameters equal to those of α, is the same

as that specified by α. To avoid this non-identifiability case we may for in-

stance give a fixed value to one cut-off value or the intercept β1, a condition

we call “C3”.

In practice we recommend that conditions C1, C2 and C3 be applied, or

analogous conditions since these are particular cases of constraints that may

be put on the three levels of the model.

3.3 Likelihood

We will first establish the individual contribution to the likelihood Li(α).

for any subject i. We denote by yk
ij the (realized) observation relative to the

kth test on the occasion of the jth visit at time tij, a realization of Y k
ij . Li is

the probability according to the model of the observed trajectory, that is:

Li(α) = P [Y 1
i1 = y1

i1, . . . , Y
1
ini

= y1
ini

, . . . , Y K
i1 = yK

i1 , . . . , Y K
ini

= yK
ini

]

We will now define the sets over which integration will be required. Let
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Ck
ij be the interval relative to observation yk

ij and intermediate variable θk
ij.

Ck
ij = [ck

yk
ij
, ck

yk
ij+1]

If we define Ci the orthant concerning subject i, Ci =
ni,K

⊗
j=1,k=1

Ck
ij, we

obtain for the entire path concerning subject i

Li(α) = P [Y k
ij = yk

ij, j = 1, . . . , ni; k = 1, . . . , K] = P [Θi ∈ Ci]

As Θi ∼ N (µi, Σi), we just need to integrate the multivariate normal

probability density function φ(µi,Σi) over the Ci sets:

Li(α) =

∫

· · ·

∫

Ci

φ(µi,Σi)(u)du.

Missing values cause no problem because if value at test k at time tij is

missing, the integration set Ck
ij for this observation becomes ] −∞, +∞[, so

this simply decreases the multiplicity of the integral by one. It is possible to

include a truncation condition by writing a conditional likelihood. See the ap-

plication section (4.3) for an illustration. Independence over subjects makes

it possible to obtain the likelihood of the sample as L(α) =
∏n

i=1 Li(α).

3.4 Maximization algorithm

The likelihood is difficult to compute since each Li involves a multiple in-

tegral, which has to be computed numerically (see Evans and Swartz, 2000,

for a review). However, an advantage of our model is that the integrals that

we have to compute are integrals of normal multivariate densities. Efficient

techniques exist for this task: in particular the algorithms proposed by Genz

(1992) allow us to compute such integrals up to a multiplicity of 20. The
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multiplicity of the integral for computing Li is Kni. For instance in our

application we have K = 2 and ni = 4, which leads to a multiplicity of 8, a

feasible problem with the Genz algorithm.

Maximum likelihood estimators can be obtained by using quasi-Newton

algorithms. We have considered a Marquardt algorithm (Marquardt, 1963)

and an algorithm used by Heddeker and Gibbons (1994) and Todem, Kim and

Lesaffre (2007), in which the Hessian of the log-likelihood is replaced by the

estimated variance matrix of the score. This algorithm has been further stud-

ied and called “Robust-variance scoring” (RVS) algorithm by Commenges et

al. ( arXiv:math.ST/0610402, http://arxiv.org/abs/math/0610402). An ad-

vantage of the RVS algorithm is that it needs only first derivatives of the

log-likelihood, and the standard errors are obtained from the estimated vari-

ance matrix of the score at the maximum. Our experience shows that the

RVS algorithm is more than twice as fast as the Marquardt algorithm in our

problem.

4 Application

4.1 The PAQUID study and the studied sample

The proposed approach was applied to the joint modeling of diagnosis of de-

mentia and a psychometric test, the Mini Mental State Examination (MMSE)

(Folstein et al. 1975), using the data of the PAQUID cohort.

The PAQUID program on cerebral aging is based on a large cohort ran-

domly selected in a population of subjects aged 65 years or older, living at

home in two administrative areas of southwest France (Gironde and Dor-

dogne). Our analysis bears on the first eight years of the follow-up of this
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study. In addition to the initial visit, subjects were seen approximately after

one, three, five and eight years in Gironde and after three, five and eight

years in Dordogne; the successive visits are denoted by T0, T1, T3, T5 and

T8. At each visit the MMSE was measured and diagnosis of dementia was

made by neurologists, based on the DSMIII-R criteria (for details see Leten-

neur et al., 1999). We will use the first five years to fit the model and the

eight-year follow-up to assess the predictive ability of our model.

Our sample was composed only of women who were not demented at

the initial visit. It is safer to analyze men and women separately because

the dynamics of aging seems to be quite different between the genders (see

Commenges et al., 2004). Because there are more women than men in the

PAQUID sample we chose to focus on women. We introduced the condition

of being non-demented at the initial visit because it is doubtful that the

PAQUID sample is representative of the whole population (demented and

non-demented): demented subjects are often institutionalized. The condi-

tion of being non-demented at entrance must be taken into account in the

likelihood (see section 4.3). At the initial visit there were five cases which,

although not diagnosed as demented, obtained a MMSE score of zero (this

can be seen in Figure 1): these subjects had cognitive impairment due to

causes other than dementia (stroke, psychiatric illness); we have chosen to

keep them in the sample.

We thought that the evolution of cognitive ability may be strongly af-

fected by dementia and it was not our aim to describe this evolution; in

consequence, further observations of the MMSE after diagnosis of dementia

were not taken into account. This artificial right-censoring is ignorable: the
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reason is that it is done on the basis of an observed variable included in the

model and this can be proved using results of Commenges and Gégout-Petit

(2005).

Finally, our study sample was composed of 2131 women aged 65 years

or older and who were not demented at the initial visit. During the 5-

year follow-up we had 5622 observations of the MMSE. We had also 5742

assessments of the demented status; among them, 126 were diagnoses of

dementia.

4.2 The model applied to the PAQUID sample

4.2.1 The explanatory variables

The different components of the model we developed may depend on educa-

tional level and a variable indicating whether the test was administered for

the first time (to take into account a possible practice effect): educational

level has been shown to be a risk factor of dementia (Letenneur et al., 1999)

and a practice effect of the MMSE has been found (Jacqmin-Gadda et al.,

1997). Moreover, there has been debate about the necessity of correcting the

MMSE for educational level in order to determine cognitive impairment, a

prognostic factor of dementia.

The most difficult problem is to define what time is in our model. Since

we wish to relate cognitive decline to age it is natural to determine a time-

scale for each subject closely related to age. We could consider that the time

that is relevant for a subject is the time elapsed since her birth, that is, age.

However, in this model we do not wish to model the evolution of cognitive

ability from birth (we would have to develop a much more complicated model)
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but only the decline of cognitive ability from an age at which we think that

this phenomenon may start for a non-negligible fraction of the population.

We took as origin the age of 65 for the two following reasons: (i) we have

observations from age 65, making it awkward to take a later origin, which

would lead to negative times: particularly in a non-stationary (due to the

Brownian motion) and non-time-homogeneous (due to the non-linearity in t)

model this would not make sense; (ii) we have tried earlier time origins but

this yielded lower likelihoods.

Educational level is represented by the binary variable that we will denote

by Edi so that Edi = 1 if subject i has obtained a primary school diploma

and 0 if not. Practice effect, denoted by Prai, is defined as: Prai(t) = 1 for

t ≤ ti1 and Prai(t) = 0 for t > ti1.

For clarity of interpretation we will describe the model directly in terms

of t, Edi and Prai(t) rather than using the general notations.

4.2.2 The latent process

In this application of our model, the latent process represents cognitive abil-

ity: diagnosis of dementia and MMSE will be considered as indirect mea-

surements of this. The latent process is defined by equation (1) in which we

specify f(., .) as:

f(β, xi(t)) = (β1 + β2Edi) + (β3 + β4Edi)t
β5 .

As for the function F (., .) we tried:

F (γ, zi(t))ai =
(

1, tγ1

)

(

a1,i

a2,i

)

= a1,i + a2,it
γ1 . It was natural to assume

γ1 = β5, that is, there is a vector of random effects ai of size q = 2 bearing on

the intercept β1 and the slope β3. However the algorithm failed to converge
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when we tried to estimate the two variance parameters and the correlation

coefficient of the two random effects, probably due to the presence of the

Brownian motion. The algorithm converged if we assumed a diagonal vari-

ance matrix for ai: A =

(

σ2
a1

0
0 σ2

a2

)

. We also tried a simpler model with

only one random effect obtained with the F (γ, zi(t))ai = ai; since this simpler

model gave nearly the same result, we present this simpler model hereafter.

For this model the latent process is defined as:

Λi(t) = (β1 + β2Edi) + (β3 + β4Edi)t
β5 + a1,i + W i(t). (3)

4.2.3 Observation equations.

In this application, we jointly model the diagnosis of dementia and the MMSE

score, so that K = 2: the first “test” (k=1) is diagnosis of dementia and this

is a binary variable; the second “test” (k=2) is the MMSE which has 31

values. The specification of the equations for the intermediary variables is

guided by interpretability and identifiability issues.

We have introduced a random effect in the model of the intermediate

variable θ1
ij for diagnosis (k = 1). In formula (2) we took g1

i (β
1, x1

i (tij)) = 0

and G1
i (γ

1, z1
i (tij)) = 1; there was one random effect d1

i ∼ N(0, σ2
d1). This

random effect makes it possible that subjects with a low latent process are not

diagnosed as demented; this may happen because some subjects have always

had low cognitive ability not linked to a neurodegenerative process. We did

not introduce additional error term, that is to say σ2
ε1 = 0, nor explanatory

variables (thus satisfying condition C1 in section 3.2). Thus the intermediate

variable for dementia is:

θ1
ij = Λi(tij) + d1

i . (4)
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To relate this variable to the diagnosis of dementia (which means defining

the “test function”) we just need one cut-off value given by the parameter

η0: Y 1
ij = 1 if and only if θ1

ij ≤ η0. Our notation here for the parameters η

differs slightly from the general case: we use η0 for dementia and η1, η2 and

η3 for the MMSE, the meaning of which is explained below.

As for the MMSE (k = 2) we took into account both the practice effect

and the specific impact of educational level on MMSE. The practice effect is

only located on the first visit (j = 1) and we introduced an interaction with

educational level (meaning that the practice effect may not be the same for

subjects with or without a primary school diploma). Thus in formula (2)

we took g2
i (β, xi(tij)) = β2

1Edi + β2
2Prai(tij) + β2

3Edi × Prai(tij). No specific

random effect was introduced in the MMSE equation (condition C2), so

G2
i (γ

2, xi(tij)) = 0. There was, however, an error term of variance σ2
ε2 . Thus,

the intermediate variable for MMSE was:

θ2
ij = Λi(tij) + β2

1Edi + β2
2Prai(tij) + β2

3Edi × Prai(tij) + ε2
ij. (5)

MMSE takes values between 0 and 30, so we have M2 = 31. It is judicious

to use a model for the family of cut-off points c2
m = τ 2(m, η) which is more

parsimonious than considering all the cut-off values as parameters. We have

c2
M2

= +∞ and c2
0 = −∞ and for satisfying condition C3 we fixed c2

M2−1

arbitrarily at the value c2
M2−1 = 40. There is no reason that the MMSE scale

be linear with respect to the latent process scale so we used the following

model yielding unequally spaced cut-off points: c2
m = 40− η1(M2 − 1−m)η2 .

We limited this power model to m ∈ [1,M2 − 3] and we gave an independent

parameter η3 for c2
M2−2, which made it possible to improve the fit as compared
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to extending the above model up to M2 − 2. Thus our model for the test

function for MMSE involves three parameters: η1, η2 and η3.

4.3 The likelihood for the application

We computed the likelihood according to section 2. We also had to include

the selection condition mentioned in section 4.1: since only non-demented

subjects were included, the likelihood is conditional on {θ1
i1 > η0} (the event

that subject i is not diagnosed as demented at initial visit ti1); the conditional

likelihood for subject i is Li/P (θ1
i1 > η0). We obtain from the model: θ1

i1 ∼

N
(

f(β, xi(ti1)) , Σi(1, 1)
)

, so that we have:

P (θ1
i1 > η0) = Φ

(f(β, xi(ti1)) − η0
√

σ2
a1

+ ti1 + σ2
d1

)

.

The likelihood was maximized using the RVS algorithm described in sec-

tion 3.3.

4.4 A Simulation

In order to demonstrate the ability of our algorithm to maximize such a

complex likelihood we tried it on a simulated data set. We generated a sample

of size n = 2131 with the same age distribution at the initial visit and the

same proportion of educated and non-educated subjects as in the real data

sample from the PAQUID study. We generated 4 visits as in the real data set,

the initial visit and visits after one, three and five years. The values of the 16

parameters were taken equal to the values estimated in the real data set. We

took as starting values: β2 = β3 = β4 = β2
1 = β2

2 = β2
3 = 0; β1 = 38.5; β5 = 1;

η0 = 30; η1 = η2 = 1; η3 = 39; σa1
= 10−5; σd1 = σε2 = 10. The algorithm
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converged in 19 iterations. The results are given in Table 1. We see that the

estimated values are reasonably close to the target values and that the .95

confidence intervals include these values. The algorithm converged toward

the same point from different starting values. We also verified the quality of

the inverse Hessian for giving estimates of the variances of the estimators of

the parameters by checking a reasonable agreement between some Wald tests

and likelihood ratio tests. On the whole, the algorithm seems to be reliable.

4.5 Model estimated from the PAQUID data

The values of the parameters estimated from the PAQUID sample are shown

in Table 2. As expected there is a significant mean trend of decrease of

global cognitive ability (see β3) with a shape not far from a quadratic form

(see β5). There is a significant heterogeneity around the intercept (see σa1
).

The significant random effect for dementia (σd1) means that some subjects

are not diagnosed demented at repeated visits in spite of low cognitive ability.

The value of 0.58 for parameter η2 indicates that a difference of one

point of MMSE corresponds to a larger difference in cognitive ability for high

cognitive level than for a low one; in other words, the sensitivity of MMSE

is better for low levels than for high levels; this is graphically illustrated in

Figure 2 which displays a grid of the cut-off values making it clear that a

larger difference in latent process (or rather intermediate variable) values is

necessary to make one point of difference for the MMSE for higher rather

than for lower levels. This is reminiscent of the mixed linear model applied

by Jacqmin-Gadda et al. (1997) to the square-root of 30 minus MMSE (in

fact the number of errors).
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In order to assess the degree of realism of our model for the MMSE we

computed the expected numbers of subjects having score m at the MMSE

at T0: this was achieved by computing for each subject the probability of

having score m and summing the 2131 probabilities. The computation of

these probabilities was carried out with the estimated model, taking into

account the ages, educational levels and the practice effect, as well as the

different variability terms and the use of formulas similar to that used for

the prediction in section 4.6. Figure 1 compares the histograms of observed

MMSE scores with the histogram of expected numbers; it can be seen that

they are quite similar. There is a slight discrepancy at scores 22 and 21:

this artefact is due to the screening design for diagnosing dementia in the

PAQUID study at T0 which used the threshold 24 and which probably led

interviewers to put 22 or 21 rather than 24 for some subjects (to trigger the

visit of a neurologist).

We can make an approximate link between the threshold for dementia

η0 and values at the MMSE. Taking zero values for the random effect for

dementia and errors for the MMSE, the value of the threshold approximately

corresponds to MMSE= 19 and MMSE= 21 for low and high educational

levels respectively. (The value 19 is found as follows. For a subject with a

low educational level we have from (6): θ2
ij = Λi(tij) and E(θ1

ij) = Λi(tij);

thus if we consider subjects for which E(θ1
ij) = η0 they have θ2

ij = η0; the

corresponding value m0 of the MMSE score satisfies the equation η0 = 40 −

η1(30 − m0)
η2).

Our model allows us to distinguish the effect of educational level on the

latent cognitive ability on the one hand and on the MMSE score on the other.
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Educational level has a significant effect (β2) on the intercept of the cognitive

ability process, but not on the slope (β4); there is a highly significant effect

of educational level (β2
1) for the MMSE. To sum up, (because of the positive

β2
2) subjects with a high educational level tend to have a higher MMSE than

subjects with a low educational level, for the same value of the latent process

(true cognitive ability), leading to a diagnosis of the former as demented

at higher MMSE levels than the latter; on the other hand (because of the

positive β2) subjects with a high educational level tend to have a higher value

of the latent process than subjects with a low educational level, leading to a

lower rate of diagnosis of dementia for the former as compared to the latter.

Finally, there is a significant effect of practice effect (β2
2)(subjects have a

lower MMSE at the first visit than expected); the interaction of practice

with educational level (β2
3) is not significant.

Several features of these results can be best illustrated by a graph. Figure

2 shows, in the latent process scale, both the grid of the cut-off values for the

MMSE (horizontal dotted lines) and the threshold for diagnosis of dementia

(the horizontal crosses line at η0 = 24.41). It also shows the expected value

of the latent process of cognitive ability for subjects with a low and a high

educational level (the curve for low educational level starts at the value of

the intercept β1 = 32.90). The curves are approximately parallel and the

curve for low educational level below; this explains that a larger incidence of

dementia has been observed in this group (Letenneur et al., 1999). We can

see that the decline of this expected value is very slow near the age of 65 and

accelerates for older ages for both low and high educational levels. This is

rather in agreement with normative values which have been established in the

22

H
A

L author m
anuscript    inserm

-00177033, version 1



United States (Crum et al., 1993) and in France (Lechevallier-Michel et al.,

2004) although the results can not be compared directly: one main difference

is that normative values exclude demented subjects; another difference is that

we model the practice effect. Figure 2 also shows the dispersion for the values

of the latent process by showing a region in which 95% of the values for low

educated subjects lie at each age. The lowest bound curve (dashed line)

crosses the threshold value (around 75) and so, it is graphically apparent

that a growing number will be diagnosed as demented with older age.

Moreover Figure 2 illustrates the effect of educational level on values of

the MMSE (for a given value of the latent process), as well as the practice ef-

fect on MMSE scores. It shows the expected values of intermediate variables

for MMSE (θ2
ij) for subjects with low and high educational levels entering

at 75 in the study and seen one, three, five and eight years after. In our

model these expected values are equal to the expected value of the latent

process for subjects with a low educational level (the stars) except for the

first visit where the value is lower due to the practice effect: this is because

if Edi = 0 and Prai = 0 we have from formula (5) θ2
ij = Λi(tij) + ε2

ij, so

that E(θ2
ij) = E[Λi(tij)]. As already mentioned, there is a grid indicating the

values of the MMSE obtained as a function of the intermediate variable. For

instance a subject with a low educational level who has her intermediate vari-

ables equal to the expectations and entering at 75 at T0 would have MMSE

values 24, 25, 25, 24 and 23 at T0, T1, T3, T5 and T8 respectively. The ex-

pectations of the intermediate variables for subjects with a high educational

level are higher than the expected value of the latent process for the same

time. The results illustrated in this figure, contribute to the debate regard-
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ing the possible correction of the MMSE to take the educational level into

account and regarding the effect of educational level on dementia. It appears

that educational level has an effect on global cognitive ability (our latent

process), and thus on dementia, but also has a specific effect on MMSE.

4.6 Prediction of dementia diagnosis

The model may be used for predicting diagnosis of dementia for subject i at

time ti,ni+1, given the MMSE values at the successive visits (1, . . . , ni) and

given that subject i has not been diagnosed as demented up to visit ni. The

information that we have up to visit ni is summarized by the event Θi ∈ Ci.

The probability that subject i is diagnosed as demented at ti,ni+1 is

pi = P [θ1
i,ni+1 ≤ η0|Θi ∈ Ci] =

P [(θ1
i,ni+1 ≤ η0) ∩ (Θi ∈ Ci)]

P [Θi ∈ Ci]
.

This expression is not affected by the condition of not being diagnosed as

demented up to visit ni as the corrective conditional probability cancels out

in the ratio. In order to compute the numerator we need the joint distribution

of θ1
i,ni+1 and Θi. This is a normal distribution with expectation:

µ∗
i =

(

µi

E[θ1
i,ni+1]

)

=

(

µi

f(β, xi(ti,ni+1))

)

,

and variance matrix Σ∗
i formed by the block Σi augmented by the correlation

between θ1
i,ni+1 and Θi and the variance of θ1

i,ni+1. These are given by:

cov(θ1
i,ni+1, θ

1
ij) = σ2

a1
+ tij + σ2

d, for j = 1, . . . , ni + 1;

cov(θ1
i,ni+1, θ

2
ij) = σ2

a1
+ tij, for j = 1, . . . , ni.

We selected subjects who had not been diagnosed as demented up to

visit T5 and who had been seen at T8: N = 1187 subjects satisfied these
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criteria. We computed their individual probabilities pi of being diagnosed

demented at visit T8, using the values of the parameters θ estimated from

the follow-up up to five years. One aim was to predict the number Nd of

subjects diagnosed as demented at T8: a natural predictor is the expectation

of Nd (conditional on information up to T5) which is
∑N

i=1 pi. We found

N̂d = 46.6. A predictive interval can be computed using the fact that varNd =
∑N

i=1 pi(1− pi) and treating Nd as approximately normal; we found that the

95% predictive interval was [34.1; 59.2]. We observed 56 new diagnoses at

T8, a number inside the predictive interval.

Another way to assess the predictive ability of our model for diagnosis

of dementia at T8 was to consider the pi’s as quantitative values on which

a classification as positive or negative could be made according to a cut-off

value, as in the theory of diagnostic tests. Sensitivity and specificity can be

computed for each cut-off value and the ROC curve relates sensitivities and

specificities for the different cut-off values. Figure 3 gives the ROC curve for

our prediction of dementia diagnosis. In particular, the area under the ROC

curve is a summary measure of performance of the test. The area under the

ROC curve of our model is 0.82, a rather good value.

5 Conclusion

We have developed a general model for multivariate longitudinal ordinal data.

The reviewers insisted on the need for a thorough study of identifiability in

this model. Such a study is challenging: we have given reasonable condi-

tions to avoid unidentifiability, which are satisfied by the model used in the

application. Moreover the simulation study shows that in the region of the
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parameter space considered there is practical identifiability for the model

used.

The model could be easily extended to include continuous data: we could

use for test k a continuous function hk(.) : Y k
ij = hk(θ

k
ij). Such a test function

could be chosen in a family of functions depending on a parameter ηk. For

instance Proust et al. (2006) in an analogous problem have chosen the family

of beta cumulative distribution functions indexed by two parameters.

When modeling cerebral aging one would also have to model death: joint

modeling of dementia and death has been achieved by the use of an illness-

death model (Joly et al., 2002; Commenges et al., 2004) but cognitive ability

was not modeled. It is not possible to rigorously treat the joint occurrence

of diagnosis of dementia, psychometric tests and death with existing mod-

els. However, approximate inference can be made by considering death as

censoring, as has been done in this paper.

Our model is useful for jointly modeling psychometric tests and diagnosis

of dementia but could be applied to other epidemiological contexts.
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Table 1: A simulation mimicking the PAQUID study example.

Parameters Targets Estimates St. Dev.
β1 32.90 32.51 0.36
β2 2.34 3.09 0.46
β3 -0.022 -0.017 0.006
β4 0.0013 0.02 0.13
β5 1.84 1.91 0.10
β2

1 1.69 1.41 0.35
β2

2 -1.65 -1.53 0.15
β2

3 0.29 0.25 0.17
η0 24.41 24.38 0.60
η1 3.93 3.94 0.16
η2 0.58 0.58 0.01
η3 36.64 36.52 0.15
σa1

2.04 2.10 0.21
σd1 2.68 2.49 0.18
σε2 2.55 2.59 0.11
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Table 2: Results from the analysis of the five-year follow-up of the PAQUID
study

Parameters Estimates St. Dev.
β1: intercept for Λ 32.90 0.41
β2: effect of education on intercept 2.34 0.55
β3: slope of Λ -0.022 0.008
β4: effect of education on slope 0.0013 0.0018
β5: power of t 1.84 0.11
β2

1 : effect of education on MMSE 1.69 0.45
β2

2 : practice effect for MMSE -1.65 0.17
β2

3 : interaction education x practice effect 0.29 0.20
η0: threshold for dementia 24.41 0.65
η1: multiplicative factor for the cut-off model of MMSE 3.93 0.19
η2: power for the cut-off model of MMSE 0.58 0.006
η3: value of c29 36.64 0.17
σa1

: variance of the random effect for intercept 2.04 0.21
σd1 : variance of the random effect for dementia 2.68 0.20
σε2 : variance of error in the intermediate equations for MMSE 2.55 0.13
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Figure 1: Histogram of the MMSE score at the initial visit. Black: observed
histogram; grey: expected numbers.

32

H
A

L author m
anuscript    inserm

-00177033, version 1



65 70 75 80 85
22

24

26

28

30

32

34

36

38

40

42

MMSE=30

MMSE=29

MMSE=28

MMSE=27

MMSE=26

MMSE=25

MMSE=24

MMSE=23

age in year

Figure 2: Mean evolution of the latent process based on the follow-up of
five years in the PAQUID study for low (dashed line) and high (plain line)
educational level; the band (delimited by the dashed lines) shows a region
where 95% of the values for low educated subjects lie; horizontal line with
crosses is the threshold value for dementia; expected intermediate variables
for subjects of low (stars) and high (open circles) educational level entering at
75 years in the study and seen at T0, T1, T3, T5 and T8; the grid shows the
values of the MMSE obtained for specific values of the intermediate variable.
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Figure 3: ROC curve showing the ability of the model to predict dementia
at the eight-year visit based on the follow-up of five years in the PAQUID
study
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