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Lossy image compression techniques allow arbitrarily high compression rates but at

the price of poor image quality. We applied maximum likelihood difference scaling

to evaluate image quality of nine images, each compressed via vector quantization

to 10 different levels, within two different color spaces, RGB and CIE 1976 L*a*b*.

In L*a*b* space, images could be compressed on average by 32% more than in

RGB space, with little additional loss in quality. Further compression led to marked

perceptual changes. Our approach permits a rapid, direct measurement of the

consequences of image compression for human observers. c© 2007 Optical Society

of America

OCIS codes: 100.0110, 333.0330, 330.1690, 330.4060, 330.5020, 330.5510

1. Introduction

Vector Quantization (VQ) methods [1] allow arbitrary compression of digital images. They

are widely employed in encoding video [2,3]. These methods share a common structure. The

image is divided into pixel blocks and these blocks are approximated by a smaller set of

images drawn from a fixed code book. The number of bits needed to specify the original code

block is replaced by the typically smaller number of bits needed to specify its corresponding

code. The compression rate is the ratio of the file size of the uncompressed image over the

size for the compressed image, denoted γ. The compression rate is varied by decreasing the

size of the codebook but typically at the cost of increasing the discrepancy between a given

block and the code which replaces it [1, 4].

In this article, we describe a novel method, Maximum Likelihood Difference Scaling
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(MLDS), for estimating supra-threshold differences across a range of images. We apply

it to the problem of assessing the perceptual effects of image compression with VQ meth-

ods. The MLDS method, described below, is based on simple, forced-choice judgments and

requires remarkably few trials to obtain quantitative estimates of the effects of any degree

of image compression.

In Figure 1, we illustrate the effects of different rates, γ, of VQ compression on a sample

image. There is an evident tradeoff between compression rate and perceived image quality.

An optimal compression method would maximize compression while minimizing “subjective

perceptual distortion.”

MLDS [5] provides a method for quantifying super-threshold perceptual differences be-

tween pairs of images in Figure 1. On each trial the observer saw four images, such as

depicted in Figures 2, taken from the series in Figure 1. In the example, the top left image

is compressed by a factor of 6, and the image to its right by a factor of 15; the bottom

left by a factor of 18 and the image to its right by a factor of 27. The right image in the

upper pair is compressed 2.5 more than the left while the right image in the lower pair is

only 1.5 times more compressed than the corresponding left image. The observer is asked to

compare the upper pair of images to the lower and to judge whether the perceptual change

is greater in the upper pair or in the lower. The difference scale is based on 210 judgments of

the kind illustrated in Figure 2, with different choices of quadruples of images on each trial.

We explain how we fit the resulting data and derive difference scales in detail in the next

section, but first we describe how to interpret the difference scale based on the observer’s

judgments.
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An example of a difference scale taken from our experiment is shown in Figure 3. The

horizontal scale marks degree of compression and the vertical scale, labeled Difference Scale

Value, is based on the observer’s judgments. The curve is “J-shaped,” with a shallow plateau

from 0% to 15% followed by a steep climb. The image compression algorithm has little effect

on the difference scale values when γ ≤ 12; the difference scale is flat or nearly so. Above

that point, however, small changes in γ result in progressively larger increases in the scaled

differences between images. So long as γ ≤ 12, the benefits of image compression come with

very little change in perceived image quality. Of course, the results of the difference scaling

do not tell us whether the observer prefers the uncompressed image (γ = 1) to the most

compressed image (γ = 30). It does tell us that, up to a compression rate of 12, the observer

sees little change in the images and, above this point, he sees marked change.

In the next section we describe MLDS. While we focus on VQ compression methods

in this article, the methods and analyses we present are readily applicable to evaluating

image quality for any compression scheme or method that leads to progressive distortion

of images. In particular, it is well-adapted to situations in which the range of compression

rates is high and the loss of quality is severe. MLDS has been applied in other domains

including perception of surface gloss [6] and face discrimination [7].

We evaluate two applications of VQ that differ in choice of color space. The color spaces

considered are RGB and CIE 1976 L*a*b* [8, pp 166–169]. A previous analysis of JPEG-

compressed images found that images encoded and compressed in L*a*b* space exhibited

less degradation of image quality than the same images encoded and compressed to the

same degree in RGB space [9]. By use of MLDS we can explicitly quantify the effect of
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choice of color space in applications of VQ.

1.A. Maximum Likelihood Difference Scaling

In this section we develop the model of the observer’s judgments in the psychophysical

task on which MLDS is based. In each experimental condition, the experimenter selected a

particular base image I1 and compression method. We describe the experimental conditions

in detail in the Methods section below. The experimenter then selects N compression levels

γ1 < γ2 < . . . < γN where γ1 = 1 . He or she then prepares N images I1, . . . , IN where Ij

for j > 1 is I1 compressed by a factor of γj (See Figure 1).

On each trial the experimenter presented an observer with quadruples (Ia, Ib; Ic, Id), and

asked him to judge which pair, Ia, Ib or Ic, Id, exhibited the larger perceptual difference.

It will prove convenient to replace (Ia, Ib; Ic, Id) by the simpler notation (a, b; c, d). Over

the course of the experiment, the observer saw many different quadruples, a subset of

non-overlapping quadruples. We used the set of all possible non-overlapping quadruples

a < b < c < d for N stimuli, but this choice is not critical to the method [5]. By restricting

the set of quadruples in this way, we avoided the possibility that two of the images presented

to the subject would be identical.

In our experiments, the number of distinct compression levels was always N = 10 and

except for the first (uncompressed) level, equally spaced on the compression scale. The

observer completed P = 210 trials in each condition, permitting a judgment for each non-

overlapping quadruple once. On half of the forced-choice trials, chosen at random, the pairs

were presented in the order (a, b; c, d) and on the other half, (c, d; a, b) .
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The experimenter estimated scale values ψ1, ψ2, . . . , ψN corresponding to the stimuli,

I1, . . . , IN , as follows. Given a quadruple, (a, b; c, d), on a single trial, one might assume

that the observer would consistently judge Ia, Ib to be further apart than Ic, Id precisely

when,

|ψb − ψa| > |ψd − ψc| (1)

that is, the difference scale values predict judgment of perceptual difference and human

judgments of these differences never vary from trial to trial.

However, it is unlikely that human observers would be so reliable in judgment as to

satisfy the criterion just given, particularly if the differences |ψb − ψa| and |ψd − ψc| are

close. Maloney & Yang [5] proposed a model of difference judgment that allowed the observer

to exhibit some stochastic variation in judgment. Let Lab = |ψb − ψa| denote the unsigned

length of the interval (Ia, Ib) . The proposed decision model is an equal-variance Gaussian

signal detection model [11] where the signal is the difference in the lengths of the intervals,

δ(a, b; c, d) = Lcd − Lab = |ψd − ψc| − |ψb − ψa| (2)

We assume that, if δ is positive, the observer chooses the second interval as larger, and

when it is not positive, the first. When the magnitude of δ is small relative to the Gaussian

standard deviation, σ, we expect the observer, presented with the same stimuli, to give

different, apparently inconsistent judgments. To summarize, the decision variable employed

by the observer is assumed to be

∆(a, b; c, d) = δ(a, b; c, d) + ε = Lcd − Lab + ε (3)

where ε is a Gaussian random variable with mean zero and standard deviation σ > 0; given
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the quadruple, (a, b; c, d) the observer selects the pair Ic, Id precisely when,

∆(a, b; c, d) > 0. (4)

In each experimental condition the observer completes P trials, each based on a quadruple

qk =
(
ak, bk; ck, dk

)
, k = 1, P . The observer’s response is coded as Rk = 0 (the difference of

the first pair is judged larger) or Rk = 1 (second pair judged larger). We fit the parameters

Ψ = (ψ1, ψ2, . . . , ψN ) and σ by maximizing the likelihood,

L(Ψ, σ) =
P∏

k=1

Φ

δ
(
qk

)
σ

1−Rk 1− Φ

δ
(
qk

)
σ

Rk

, (5)

where Φ(x) denotes the cumulative distribution function of the Gaussian with mean 0 and

variance 1 and δ
(
qk

)
= ∆

(
ak, b,; ck, dk

)
was defined in Equation 2. The details of the

fitting procedure are described in Maloney & Yang [5].

At first glance, it would appear that the stochastic difference scaling model just presented

has N + 1, free parameters: ψ1, . . . , ψN together with the standard deviation of the error

term, σ. However, any linear transformation of the ψ1, . . . , ψN together with a corresponding

scaling results in a set of parameters that predicts exactly the same performance as the

original parameters. Without any loss of generality, we can set ψ1 = 0 and ψN = 1, leaving

us with the N − 1 free parameters, ψ2, . . . , ψN−1 and σ. When scale values are normalized

in this way, we describe them as standard scales. We fitted parameter values by direct

numerical optimization as described below.
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2. Methods

2.A. Observers.

Two observers participated in the experiment. One was a co-author, and the other was

unaware of the purpose of the experiment. The data from each observer were not analyzed

until all experimental conditions had been completed. Both had normal color vision (as

assessed using Ishihara Plates) and normal acuity (20/20 on a Snellen Chart).

2.B. Apparatus.

Color images were displayed on a SUN CRT display driven by a GC14/SX graphics card

with a spatial resolution of 1152 by 900 pixels and a color depth of 24 bits. A gamma

correction table was used to display color images with precise control of the luminance,

color and contrast. The gamma correction table was determined using a photometer as

described previously [10]. On each trial the observer saw a 2 x 2 array of images (similar to

in Figure 3) displayed in a 15 cm x 15 cm area centered on the display screen. The viewing

distance was 50 cm, and the display subtended 17.1 degrees of visual angle.

2.C. Conditions.

The nine images used are shown in uncompressed form in Figure 4. These images include a

variety of subject matter and differ in distribution of spatial and chromatic detail.

2.D. Compression Methods

We used two compression methods that differed only in the choice of color encoding (color

space). The color spaces were RGB and L*a*b*. The RGB color space is simply the gamma-
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corrected intensities (gun excitations) of the CRT monitor used. The CIE 1976 L*a*b* color

space was an attempt to develop a uniform color space by non-linear transformations of the

CIE 1931 xyY color space. For a fixed luminance L*, MacAdam ellipses transformed to this

space are approximately circles of equal radius, but discrepancies remain [8, pp. 166-169].

For our purposes, L*a*b* represents a color representation method that was constructed to

capture important aspects of human color discrimination.

The set of nine images, were each VQ-based compressed to ten different levels ranging

from γ = 1 (uncompressed) to γ = 30 (compression by a factor of 30) and within each of

the color spaces.

2.E. Procedure.

On each trial the observer saw four images corresponding to a quadruple (a, b; c, d) arranged

in a 2x2 array as in Figure 3. The pair a, b appeared on the top or bottom with equal

probability. For each trial, the observer reported his response to the question: Which pair

of images (top or bottom) shows the greater perceptual difference? The observer completed

210 trials in each of the 18 = 2x9 conditions of the experiment. Neither observer reported

any difficulty in carrying out the task. Each session of 210 trials required about 15 minutes

to complete.

3. Analysis and Results

We fit the MLDS model to each observer’s data for each image in each color space condition,

using a numerical optimization method to maximize likelihood as defined in Equation 5,

employing multiple starting points to minimize the possibility of encountering local minima.
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All computations were carried out in the statistical language R [13] using the optim function.

In Appendix A we show that optimization of Equation 5 can be recast as a Generalized

Linear Model (GLM) fit with an inverse Gaussian (probit) linking function [12]. We have

integrated the functions necessary to perform these fits using either approach in an R

package (MLDS) available from the Comprehensive R Archive Network (CRAN, accessible

from http://www.r-project.org/) or from the corresponding author.

We first plot the differences scales for each image and both observers (Figure 5). The

error bars shown (±1 SD) were estimated by a Bootstrap procedure [14] as described in

Maloney & Yang [5, p. 577]. In brief, given an observer’s fitted probability of response for any

experimental condition, we repeatedly simulated the observer’s performance on the trials in

that condition and fit the simulated data just as we fit the observer’s original data. The error

bars correspond to the standard deviations at each compression level of 10000 repetitions of

this process for an observer in each experimental condition. Each plot contains the difference

scale for RGB (dashed, red) and for L*a*b* (solid, black). The difference scales for images

compressed in the L*a*b* space are J-shaped, consisting of a roughly linear plateau followed

by a region of roughly linear increase (“the cliff”). To estimate where the plateau and cliff

meet, we fit a 4-parameter model consisting of two lines with different slopes which we

refer to as a J-function. The J-function model has slope a1 from 0 to a breakpoint B (“the

plateau”), slope a2 from B to the end of the scale (“the cliff”) and intercept parameter a3:

ψ(γ) = a1γ + a3, γ ≤ B

= a2 (γ −B) + a1B + a3, γ > B

(6)

The four fitted parameters of the J-functions are a1, a2, a3, B. B is an estimate of the end
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of the plateau, the point where any further compression leads to a change in slope of the

difference scale (“the cliff”). These values are tabulated for each observer separately in

Table 1. The fitted J-functions for the L*a*b* data are shown as solid lines in Figure 6. For

the RGB data, we repeated the analysis and the fitted J-functions are plotted in Figure 6

as dashed lines and the fitted parameters displayed in Table 2. Except for image “autumn”

in the RGB space, the values of a1 are consistently smaller than the corresponding values

for a2, justifying the labels “plateau” and “cliff”. In the case of “RGB/autumn”, the trend

is reversed with an initial steep segment followed by a shallow segment. In effect, the initial

plateau is absent and the breakpoint should be at 0, not at the high value fit to the data that

indicates a different phenomenon, which is the leveling off of quality loss at high compression

rates for this condition. We discuss the results for this image in more detail below.

We report the ratio a2/a1 as a measure of the change between plateau and cliff. The value

β = a1B + a3, the height of the estimated difference scale at the break point is reported as

well. The values of the ratio a2/a1, except in the two cases noted above, are consistently

large, indicating that the “cliff” region is indeed steeper than the “plateau” for all images

and observers. The value of β is an index of how much of the difference scale (0–1) is taken

up by the plateau. Overall the J-functions for RGB space were above those for L*a*b* space

indicating that the perceptual differences in RGB were consistently greater in the early part

of the compression range than those for the L*a*b*. We tested the hypothesis that a1 = 0

(that the plateau is flat) for both color spaces across all observers and images by comparing

mean squared errors and could not reject it (F (40, 216) = 1.336; p = 0.100).

We compared the breakpoint values in Figure 5 across the two color spaces pairing the
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difference scale values for each image and observer. The difference was statistically signif-

icant (t17 = 5.0721; p < 0.0001, two-tailed), and the sign of the difference indicated the

breakpoints to be at higher compression rates for the L*a*b* space. Elimination of the

image “autumn” from the above analyses did not affect the conclusions drawns from any of

the tests reported above.

3.A. Color space comparisons.

In Figure 6, we plot the data of Figure 5 averaged across observers (Figure 6a) and across

color spaces (Figure 6b). There is evident agreement between the two observers in both

Figure 5 and in Figure 6a and, as just noted, the fitted J-functions for both observers had

no plateau for the same image, autumn, and color space in Figure 6. In Figure 6b, we see

that compression in L*a*b* space results in a longer and shallower plateau.

4. Summary and Discussion

We applied a psychophysical method, maximum likelihood difference scaling (MLDS [5]) to

evaluate the perceptual changes in images with increasing compression rates, γ, ranging from

1 (no compression) to 30. On each trial observers saw two pairs of images (as in Figure 2) We

denoted the two pairs as a quadruple (a, b, ; c, d) with pairs (a, b) and (c, d). The observer was

instructed to select the pair that had the greater perceived difference. Over the course of the

experiment, the observer often saw pairs that were obviously different. That is, image a was

evidently different from image b and image c evidently different from image d. However, the

observer’s task was not to discriminate the two images in each pair but to order the perceived

magnitude of super-threshold perceptual differences. The task underlying MLDS then is not
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discrimination of images but rather direct comparison of super-threshold differences. MLDS

differs from image quality methods based on just noticeable differences (e.g., [9, 15]) in the

judgment required of the observer.

We fit the data by maximum likelihood methods to derive a difference scale. The use of

maximum likelihood methods is desirable since it permits the experimenter to test nested

hypotheses formulated in terms of simple parametric models. In an appendix we show

that MLDS can be treated as an example of the Generalized Linear Model [12] and this

connection opens up possible analyses using standard GLM packages.

The fitted scale values summarize the relative magnitudes of super-threshold perceptual

differences. The comparison of super-threshold differences is well-suited to measuring the

perceptual differences introduced by VQ compression. We found that the fitted difference

scales for both color spaces that we considered had a characteristic shape for both observers

and nearly all images that we referred to as a J-function. It consisted of a shallow plateau

followed by a steep climb (“cliff”) and the extent of plateau region measured the degree of

compression that could be tolerated with little or no perceptual difference. We could not

reject the hypothesis that the plateaus had zero slope.

The images compressed in L*a*b* could be compressed roughly 12 to 15-fold with little

or no perceived change. In contrast, the images compressed in RGB color space had smaller

plateaus and for one image, autumn (Figure 4), no detectable plateau. In effect, for this

one image and color space, any substantial degree of compression led to evident perceptual

change. The image autumn is a natural scene in which luminance and chromatic differences

occur at a fine scale. It is possible that RGB-encoding (which does not separate luminance
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from chromatic information) is particularly susceptible to compression-related image quality

losses for this type of image. We note that the image labeled detail is a magnified sub-region

of autumn and its scale shows a similar trend. The fitted equation does generate two slopes,

but the first segment of the RGB curves is only slightly less steep than the second segment.

The color space L*a*b* is an example of an approximately uniform color space, designed

so that equally-discriminable lights are represented by points that are roughly equally far

apart in Euclidean distance [8, pp 166–169]. The LBG algorithm that we used in selecting a

code book for VQ compression uses Euclidean distance in color space to evaluate the match

between pixel blocks and their encodings. It is therefore not completely surprising that an

encoding based on a color space designed to represent more faithfully chromatic differences

would exhibit less perceptual distortion. We emphasize that the MLDS results presented

here clearly capture and quantify the differences in image quality due to choice of color

space for every image and for both observers.

There is no a priori reason to believe that a metric, like L*a*b*, based on small color

differences between simple stimuli would generalize to a situation concerning super-threshold

color differences in complex images. However, the fact that it corresponds to a more nearly

orthogonal coding of spectral information in an image is likely to be of importance in

permitting an optimal compression rate [16].

The MLDS method proposed by Maloney & Yang [5] makes use of direct comparison of

perceptual differences of image pairs. Observers can readily make such direct comparisons

and, by avoiding the use of image quality rating scales, the MLDS method avoids known

problems associated with how humans use rating scales [17–21]. Shepard, in particular,
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argued that absolute judgments are highly variable while ratio or difference judgments are

less so. It is plausible that image quality ratings, based on absolute judgments, would be

less reliable than difference judgments (or difference of difference judgments).

It is possible to estimate difference scales given numerical ratings of the magnitude of

each pair in a quadruple [22]. However, to do so, the experimenter must develop a model of

how the rater/observer generates a numerical rating. In the form proposed by Maloney &

Yang, the observer’s task is simply a series of forced-choice judgments that can be modeled

as Bernoulli random variables. Maloney & Yang [5] also showed that difference scaling is

remarkably robust to failures of distributional assumptions.

One last point is that the MLDS scales estimated here were based on only 210 forced-

choice judgments per scale. Each difference scale was estimated from data collected in about

15 minutes. The ease of collection of significant amounts of data is another advantage of

MLDS.

Appendix A: Maximum Likelihood Difference Scaling as GLM

The maximum likelihood estimation in Equation 5 can be rewritten as a Generalized Linear

Model (GLM) [12]. Since GLM packages are widely available, the reader may find it useful

to fit difference scaling models in this way.

We first describe the GLM and then show in detail how to recast difference scaling as a

GLM. As in the main text, there are N images I1, . . . , IN that are obtained by compressing

a base image I1 by factors γ1 < γ2 < . . . < γN , respectively with γ1 = 1. The observer is

asked to look at pairs of pairs of images, Ia, Ib and Ic, Id and select the pair that exhibits the
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greater perceptual difference. Each judgment corresponds to a quadruple (a, b, ; c, d) and,

over the course of the experiment, the observer judges a subset of all possible quadruples,

possibly with repetitions. The difference scaling model assumes that the observer’s responses

are based on differences between subjective scale values ψ1 ≤ ψ2 ≤ . . . ≤ ψN : the observer

judges the quadruple (a, b, ; c, d) by forming the difference

δ = |ψd − ψc| − |ψb − ψa|

∆ = δ + ε, (A1)

where ε is Gaussian with mean 0. In the main text we set the standard deviation of ε to be

σ, another free parameter describing the subject. Here we will set the standard deviation

to be 1 as this choice will prove convenient in formulating difference scaling as a GLM.

In the main, text we noted that we could add a constant to all of the ψ1 ≤ ψ2 ≤ . . . ≤ ψN

without changing the observer’s judgments, and so we can set ψ1 = 0 without loss of

generality. We, also, noted that we could scale all of the ψ values by a common positive

constant so long as we also scaled σ. As a consequence we could set ψN = 1. Since we

have fixed σ to be 1 here, we will not do this; ψN will be estimated from the data, and its

maximum likelihood estimate will prove to be equal to that of σ−1 .

We order the entries in the quadruples so that we can omit the absolute value signs in

Equation 2 and it becomes

δ = ψd − ψc − ψb + ψa

∆ = δ + ε, (A2)

The observer bases his or her judgment on ∆ = δ+ ε where ε is Gaussian with mean 0 and
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standard deviation 1. The observer therefore selects the second pair (c, d) with probability

Φ (δ).

Let Ψ̃ = (ψ2, . . . , ψN )T , the column vector of the ψ values with ψ1 = 0 omitted. We

define a design matrix M with N − 1 columns and one row for every quadruple (a, b; c, d)).

If none of the values a, b, c, d is 1, we set the a, b, c, dth entry in the row to +1,-1,-1,+1

respectively (these are the coefficients of the corresponding entries in Equation A2). All of

the remaining entries are set to 0. If any of a, b, c, d are 1, we ignore it. For example, we

show a few quadruples and the corresponding rows of the design matrix when N = 10. Note

that the design matrix has only 9 columns and that the first column corresponds to ψ2 not

ψ1 = 0: 

1 3; 5 7

7 9; 4 5

1 6; 7 8

3 4; 9 10





0 −1 0 −1 0 1 0 0 0

0 0 1 −1 0 −1 0 1 0

0 0 0 0 −1 −1 1 0 0

0 1 −1 0 0 0 0 −1 1


In many statistical packages, such as R, it may be easier to create a design matrix with N

columns, the first one corresponding to ψ1 and then to strip this column from the design

matrix.

Then we can write in matrix form

δ = MΨ̃, (A3)

where δ is a column vector of differences δ, one for each trial. As in the main text, let Φ(x)

denote the cumulative distribution function of a Gaussian random variable with mean 0
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and standard deviation 1. Then we can write

p = Φ(δ) (A4)

as a column vector of probabilities of selecting the second interval on each trial. If we denote

the responses of the observer as a column vector R of 0s and 1s where 1 denotes second

interval chosen, then

P [R = 1] = Φ(MΨ̃) (A5)

or in terms of the expected values of the binary responses,

E[R] = Φ(MΨ̃) (A6)

which we rewrite as

Φ−1 (E[R]) = δ = MΨ̃ (A7)

Equation A7 is in the form of a Generalized Linear Model [12]. In the present case, the

responses of the observer can be modeled as Bernoulli random variables. The expected value

of the response, δ, is related to the linear predictors through a nonlinear function, η(·), that

is the inverse cumulative distribution function of the Gaussian. Equation A7 is a form of

probit analysis, a special case of the GLM. The GLM estimates are maximum likelihood

estimates.

Thus we may use GLM to estimate the maximum likelihood estimates Ψ̃ =
(
ψ̂2, . . . , ψ̂N

)
and, together with ψ1 = 0 we have maximum likelihood estimates of the scale values. These

form a difference scale where σ = 1 by assumption and ψ̂N is not normalized to 1. As noted

above, ψ̂N = σ̂−1 and as a last step we can normalize the scale by dividing
(
ψ1, ψ̂2, . . . , ψ̂N

)
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by ψ̂N and setting σ̂ = 1/ψ̂N . The justification for these last steps is the invariance of

maximum likelihood estimation under reparameterization [25, pp, 284–286].

Since the estimates in the main text were also maximum likelihood estimates of these same

parameters, the two sets of estimates should agree within numerical error. We compared

solutions using direct optimization (optim() in R) and GLM fits (glm() function in R) and

found good agreement. Of course, the GLM package is simply optimizing likelihood by

numerical methods and, where the two methods disagree, one or the other (or both!) of the

methods must have found a local maximum that is not the global maximum.

In the statistical and computing environment R, there is a choice between five built-in

link functions for the binomial family, including the logit, probit and cauchit (based on

the Cauchy distribution). As of R version 2.4.0, it has become simple for the user to define

additional links. In many circumstances, the choice of link is not critical, since over the rising

part of these functions, they are quite similar. The difference scaling procedure, however,

generates many responses at the tails, i.e., easily discriminable differences and may be more

sensitive to the choice of link.
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d’Informatique Graphique et d’Ingénierie de la Vision. We made extensive use of the ggplot

package in R [23] and thank Hadley Wickham for his helpful responses to all of our questions.

In addition, we thank Vincent Lozano for aid in image conversion. Part of the work described

19

H
A

L author m
anuscript    inserm

-00175755, version 1
H

A
L author m

anuscript    inserm
-00175755, version 1



here was presented at the European Conference on Visual Perception, 98 [24].

References

1. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression (Kluwer Aca-

demic Publishing, 1991).

2. I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-

generation Multimedia (Wiley, West Sussex, UK, 2003).

3. M. Flierl and B. Girod, Video Coding with Superimposed Motion-Compensated Signals:

Applications to H.264 and Beyond (Kluwer Academic Publishers, Dordrecht, 2004).

4. R. M. Gray, “Vector Quantization,” EEE ASSP Magazine 1, 4–29 (1984).

5. L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J Vis 3(8),

573–585 (2003). URL http://www.journalofvision.org/3/8/5.

6. G. Obein G, K. Knoblauch,, and F. Viénot, “Difference Scaling of Gloss: Non-
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List of Figure Captions

Fig 1. (Color online) The effects of VQ compression. The original image (0% compression)

is shown after VQ compression using a codebook based on the LBG algorithm applied to

the image encoded in the color space L*a*b* (see text). Larger compressions lead to evident

decreases in image quality.

Fig 2. (Color online) An example of a single difference scaling trial. On each trial, the

observer sees two pairs of images and judges which pair (upper or lower) has the greater

perceived difference. The upper pair corresponds to images compressed by factors of 6

(left)and 15 (right)), the lower pair to images compressed by factors of 18 (left) and 27

(right).

Fig 3. Example of a difference scale. On the horizontal scale we plot degree of image com-

pression γ and on the vertical we plot difference scale values derived from a psychophysical

procedure, Maximum Likelihood Difference Scaling [5]. The difference scale values are esti-

mates based on the observer’s judgments of super-threshold perceptual differences between

the images portrayed in Figure 1. See text. Compression rates up to a factor of 12–15 re-

sult in little perceived difference. Above a factor of 15, the difference scale values increase

markedly with increased compression rate.

Fig 4. (Color online) Images. The nine images used in the experiments are shown with

mnemonic labels. For each image and each color space RGB and L*a*b*, we estimated a

difference scale based on each observer’s judgments.

Fig 5. (Color online) Difference scales for each image and observer. The difference scales

for each image and observer are shown. The image labels correspond to those of Figure 4.
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Observers’ initials are indicated in the right hand labels for each row of panels. In each

plot we show the scale corresponding to the VQ compression based on the RGB color space

(dashed, red) and separately the scale values based on the L*a*b* color space (solid, black)

The confidence intervals shown (±1 SD) were estimated by a Bootstrap procedure [14] as

described in Maloney & Yang [5]. The fitted lines are J-functions, defined in the text.

Fig 6. Summary results. (a). The difference scales in Figure 5 averaged across all images

and both color spaces, separately for each of the two observers. Average observer results

are in good agreement (b) The difference scales in Figure 5 averaged across all images and

both observers separately for each color space.
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1:1 6:1 9:1 12:1 15:1

18:1 21:1 24:1 27:1 30:1

Fig. 1. ((Color online) The effects of VQ compression. The original image (0% com-

pression) is shown after VQ compression using a codebook based on the LBG al-

gorithm applied to the image encoded in the color space L*a*b* (see text). Larger

compressions lead to evident decreases in image quality.
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Fig. 2. On each trial, the observer sees two pairs of images and judges which pair

(upper or lower) has the greater perceived difference. The upper pair corresponds

to images compressed by factors of 6 (left)and 15 (right)), the lower pair to images

compressed by factors of 18 (left) and 27 (right).
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Fig. 3. Example of a difference scale. On the horizontal scale we plot degree of

image compression γ and on the vertical we plot difference scale values derived

from a psychophysical procedure, Maximum Likelihood Difference Scaling [5]. The

difference scale values are estimates based on the observer’s judgments of super-

threshold perceptual differences between the images portrayed in Figure 1. See text.

Compression rates up to a factor of 12–15 result in little perceived difference. Above a

factor of 15, the difference scale values increase markedly with increased compression

rate.
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autumn clown cloth

detail football lena

mandrill apples tahiti

Fig. 4. (Color online) Images. The nine images used in the experiments are shown,

with mnemonic labels. For each image and each color space RGB and L*a*b*, we

estimated a difference scale based on each observer’s judgments.
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Fig. 5. (Color online) Difference scales for each image and observer. The difference

scales for each image and observer are shown. The image labels correspond to those

of Figure 4. Observers’ initials are indicated in the right hand labels for each row

of panels. In each plot we show the scale corresponding to the VQ compression

based on the RGB color space (dashed, red) and separately the scale values based

on the L*a*b* color space (solid, black) The confidence intervals shown (±1 SD)

were estimated by a Bootstrap procedure [14] as described in Maloney & Yang [5].

The fitted lines are J-functions, defined in the text.
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Figure 6

Fig. 6. Summary results. (a). The difference scales in Figure 5 averaged across

all images and both color spaces, separately for each of the two observers. Average

observer results are in good agreement (b) The difference scales in Figure 5 averaged

across all images and both observers separately for each color space.
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Table 1. Estimated parameters for “J-functions” fit to perceptual scales for images

in L*a*b* Color Space.

Observer Image a1 a2 a3 B a2/a1 β

CC autumn 0.011 0.053 −0.328 15.3 4.7 0.165

PYB autumn 0.003 0.059 −0.440 15.5 22.8 0.041

CC clown 0.008 0.051 −0.264 12.0 6.2 0.094

PYB clown 0.007 0.058 −0.430 15.5 8.2 0.077

CC cloth 0.012 0.185 −2.313 25.9 16.0 0.232

PYB cloth 0.001 0.065 −0.553 17.5 45.2 0.024

CC detail 0.001 0.067 −0.532 15.9 61.2 0.014

PYB detail 0.006 0.080 −0.777 20.2 12.9 0.095

CC football 0.003 0.056 −0.353 13.1 17.5 0.032

PYB football 0.003 0.100 −1.021 20.7 33.0 0.046

CC lena 0.018 0.056 −0.381 16.7 3.1 0.238

PYB lena 0.011 0.080 −0.745 20.3 7.1 0.180

CC mandrill 0.014 0.057 −0.409 16.3 4.2 0.166

PYB mandrill 0.010 0.051 −0.194 9.0 5.3 0.079

CC apples 0.001 0.062 −0.429 13.9 77.2 0.009

PYB apples 0.001 0.072 −0.609 17.0 65.8 0.014

CC tahiti 0.000 0.063 −0.439 14.0 443.3 0.002

PYB tahiti 0.000 0.067 −0.513 15.5 414.0 0.003
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Table 2. Estimated parameters for “J-functions” fit to perceptual scales for images

in RGB Color Space.

Observer Image a1 a2 a3 B a2/a1 β

CC autumn 0.049 0.017 0.225 17.4 0.4 0.798

PYB autumn 0.047 0.001 0.453 22.3 0.0 0.992

CC clown 0.007 0.046 −0.173 8.6 6.4 0.055

PYB clown 0.002 0.045 −0.190 8.9 18.9 0.019

CC cloth 0.000 0.059 −0.363 12.4 416.2 0.002

PYB cloth 0.000 0.052 −0.224 8.7 109.5 0.004

CC detail 0.021 0.051 −0.230 13.7 2.5 0.262

PYB detail 0.016 0.047 −0.166 10.5 2.9 0.165

CC football 0.000 0.059 −0.317 10.9 182.6 0.003

PYB football 0.002 0.075 −0.614 16.5 49.8 0.018

CC lena 0.001 0.054 −0.285 10.7 88.9 0.006

PYB lena 0.010 0.054 −0.284 12.6 5.3 0.121

CC mandrill 0.000 0.043 −0.144 6.7 171.2 0.001

PYB mandrill 0.009 0.044 −0.176 9.9 4.7 0.089

CC apples 0.004 0.068 −0.457 14.2 16.5 0.053

PYB apples 0.009 0.055 −0.385 15.5 6.4 0.109

CC tahiti 0.000 0.055 −0.318 11.7 224.1 0.003

PYB tahiti −0.001 0.060 −0.368 12.9 −79.4 0.012
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