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AbstrACt
Autophagy is inhibited by TOR-dependent signaling. Interruption of signalling by 

rapamycin is known to stimulate autophagy, both in mammalian cells and in yeast. 
However, inactivation of TOR by AMPK has yielded controversial results in the literature 
with regard to its effect on autophagy: activation of autophagy in yeast but inhibition in 
hepatocytes. In a recent study, carried out with hepatocytes, HT-29 cells, and HeLa cells, 
the possible role of AMPK in the control of mammalian autophagy was reexamined. The 
data suggest that in mammalian cells, as in yeast, AMPK is required for autophagy.

After	 the	original	observation	 in	1995	that	amino	acids	can	simultanously	 stimulate	
mTOR-dependent	 signaling	 and	 inhibit	 autophagy	 in	hepatocytes,1	 it	 is	now	generally	
accepted	that	the	TOR	pathway	controls	autophagy	not	only	in	mammalian	cells	but	also	
in	yeast,	and	 interruption	of	 signaling	by	rapamycin	stimulates	autophagy.2	Apart	 from	
being	a	sensor	of	amino	acids,	mTOR	can	also	sense	changes	in	the	cellular	energy	state	
via	AMP-activated	protein	kinase	(AMPK)	as	was	simultaneously	reported	a	few	years	ago	
by	several	groups,	including	our	own.3	Activation	of	AMPK	inhibits	mTOR-dependent	
signaling	 and	 inhibits	 protein	 synthesis,3	which	 is	 consistent	with	AMPK’s	 function	of	
switching	off	ATP-dependent	processes.4

Inhibition	 of	 mTOR	 by	 AMPK,	 like	 that	 caused	 by	 addition	 of	 rapamycin,2,5	 is	
expected	 to	 increase	 autophagy	 (Fig.	 1).	 However,	 the	 literature	 on	 this	 issue	 has	 been	
controversial.	In	yeast,	activation	of	AMPK	stimulates	autophagy.6	By	contrast,	activation	
of	AMPK	by	addition	of	the	cell-permeable	nucleotide	analogue	AICAriboside	(AICAR)	
in	hepatocytes	strongly	inhibits	autophagy.7,8

Because	 autophagy	 is	 accelerated	 when	 cells	 have	 insufficient	 oxidizable	 substrate	 at	
their	disposal,	inhibition	of	autophagy	by	AMPK	activation	under	these	conditions	was,	
however,	considered	to	be	counterproductive.5

Using	different	mammalian	cell	types,	we	have	therefore	reexamined	the	possible	role	
of	AMPK	in	 the	control	of	autophagy,	and	 the	new	data9	 indicate	 that	AMPK,	 like	 in	
yeast,	is	required	for	autophagy.

The	 strategy	 we	 followed	 was	 straightforward	 and	 simple.	 We	 first	 repeated,	 and	
confirmed,	 the	 results	 obtained	 by	 Samari	 and	 Seglen8	 with	 hepatocytes	 showing	 that	
AICAR	 strongly	 inhibited	 flux	 through	 the	 autophagic	 pathway,	 measured	 as	 3-meth-
yladenine-sensitive	 proteolysis.	 Unexpectedly,	 activation	 of	 AMPK	 by	 the	 anti-diabetic	
agent	metformin	appeared	to	be	much	less	effective	in	inhibiting	autophagy,	even	though	
metformin	(2	mM)	was	more	potent	in	activating	AMPK	in	comparison	with	AICAR	at	
the	low	concentration	of	AICAR	used	in	our	experiments	(250	mM).	The	small	residual	
inhibition	of	autophagy	by	metformin	could	be	ascribed	to	the	significant	fall	(40%)	in	
cellular	ATP	levels	under	these	conditions,	and	a	large	decrease	in	ATP	is	known	to	inhibit	
autophagy	 because,	 after	 all,	 autophagy	 is	 a	 complicated	 membrane-flow-dependent	
process	which	does	require	input	of	ATP.10	Subsequently	we	discovered	that,	like	AICAR	
which	 activates	 AMPK,	 pharmacological	 inhibition	 of	 AMPK	 by	 compound	 C11	 also	
inhibited	autophagy.	An	effect	of	compound	C	on	the	lysosomal	pH	could	be	ruled	out.	
Inhibition	of	autophagy	by	both	AICAR	and	compound	C	was	also	observed	in	HT-29	
cells	and	HeLa	cells.9

The	 fact	 that	 the	 AMPK	 inhibitor	 compound	 C	 strongly	 inhibited	 autophagy	
suggested	that	AMPK,	rather	than	inhibiting	autophagy	is	in	fact	required	for	autophagy,	
a	situation	similar	to	that	in	yeast.6	This	was	supported	by	experiments	with	HT-29	cells	
and	HeLa	cells	showing	that	transfection	of	these	cells	with	a	gene	encoding	a	dominant	
negative	form	of	the	enzyme	(AMPKDN)	completely	inhibited	3-methyladenine-sensitive	
proteolysis.	By	contrast,	transfection	with	constitutively	active	AMPKCA	did	not	affect	the	
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rate	of	autophagy	under	these	conditions.	Surprisingly,	AMPKCA	did	
not	activate	autophagy	in	the	presence	of	amino	acids;	this	may	be	
explained	by	the	fact	that	amino	acids	can	also	inhibit	autophagy	by	
mTOR-independent	mechanisms.5

These	experiments	led	us	to	conclude	that	AMPK	is	essential	for	
autophagy	and	that,	apparently,	basal	activity	of	AMPK	is	sufficient	
for	autophagy.	Because	the	AMPK	kinase	LKB1	is	lacking	in	HeLa	
cells12	 these	data	 also	 suggested	 to	us	 that,	 apparently,	AMPK	can	
also	be	phosphorylated	by	another	upstream	kinase.	A	possible	candi-
date	is	calmodulin-dependent	protein	kinase	kinase	(CaMKK).13,14

We	also	concluded	that	the	inhibition	of	autophagy	by	AICAR	is	
not	related	to	its	ability	to	activate	AMPK.	There	is	evidence	in	the	
literature	that	AICAR	(or	rather	ZMP,	its	phosphorylation	product),	
in	analogy	with	3-methyladenine,	may	 inhibit	phosphatidylinositol	
3-kinase	 (see	Ref.	 9	 and	 citations	 therein)	 and	 thus	 interferes	with	
autophagy	 through	 inhibition	 of	 the	 class	 III	 enzyme	 which	 is	
required	for	autophagy	(see	Fig.	1).2,5	Another	spin-off	of	our	studies	
was	the	 finding	that	phosphorylation	of	AICAR	to	ZMP,	and	thus	
its	ability	to	phosphorylate	and	activate	AMPK,	was	greatly	reduced	
in	 the	 presence	 of	 amino	 acids.	These	 observations	 underscore	 the	
warning15	that	variations	in	the	activity	of	AMPK	in	the	presence	of	
AICAR	are	not	always	due	to	direct	effects	on	AMPK.

The	conclusion	 that	AMPK	 is	 essential	 for	 autophagy	 is	 in	 line	
with	recent	data	showing	that	activation	of	the	tumor	suppressor	p53	
inhibits	mTOR	activity	through	activation	of	AMPK,	a	phenomenon	
that	 is	 accompanied	 by	 increased	 autophagy,	 of	 mitochondria	 in	
particular.16	The	data	are	also	in	agreement	with	the	requirement	of	
autophagy	for	eukaryotic	elongation	factor	2-kinase	(eEF-2	kinase),17	
which	is	known	to	be	activated	by	AMPK.18

Interestingly,	in	many	cases	where	AMPK	can	be	expected	to	be	
activated	 autophagy	 is	 known	 to	 be	 increased	 (although	 this	 rela-
tion	was	not	 considered).	For	 example,	 autophagy	 is	 stimulated	 in	
tumor	 cells	 when	 present	 in	 a	 hypoxic	 environment.19	 Recently,	
it	 has	 been	 shown	 that	 the	 activation	 of	 AMPK	 by	 low-oxygen	
conditions	is	involved	to	maintain	energy	homeostasis	in	a	hypoxic	
environment.20	Thus,	 the	 activation	of	AMPK,	 together	with	HIF	
(hypoxic-inducible	 factor)-dependent	 signaling	 that	 also	 impinges	
on	the	mTOR	pathway	(reviewed	in	ref.	21),	can	contribute	to	the	
stimulation	of	autophagy	in	tumor	cells	 in	a	hypoxic	environment.	
Moreover,	apoptotic	stimuli,	which	result	in	increased	mitochondrial	
permeability	and	decreased	mitochondral	membrane	potential,	target	
these	 mitochondria	 for	 autophagic	 degradation.22,23	 Inhibition	 of	
mitochondrial	 ATP	 synthesis	 with	 oligomycin	 in	 insect	 cells	 was	

shown	to	promote	massive	autophagy	of	mitochondria.24	Likewise,	
in	cerebral	ischaemia	(mitochondrial)	autophagy	is	triggered.25

In	this	context,	the	association	of	mTOR	with	the	mitochondrial	
outer	 membrane	 is	 noteworthy,26,27	 because	 a	 considerable	 part		
of	 cellular	 adenylate	 kinase	 is	 located	 in	 the	 mitochondrial	 inter-
membrane	space.	mTOR	is	therefore	ideally	located	to	sense	changes		
in	 the	 ATP/AMP	 ratio3	 and	 to	 control	 autophagy	 of	 individual	
mitochondria.

Although	we	have	not	tested	this	ourselves,9	these	various	studies	
make	 it	 tempting	 to	 speculate	 that	 AMPK	 may	 be	 required	 for	
autophagy	of	mitochondria	 in	particular.	 In	 this	 regard,	 the	 locali-
zation	 of	 AMPK	 becomes	 relevant,	 too.	 However,	 the	 subcellular	
localization	of	AMPK	is	uncertain,	but	a	mitochondrial	localization	
has	not	been	ruled	out.28
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