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Abstract 
Context: The Melanin Concentrating Hormone Receptor 2 (MCHR2) is a G protein-coupled 

receptor for MCH, a neuropeptide that plays important role in feeding behaviors. MCHR2

maps on chromosome 6q16.3, in a susceptibility locus for childhood obesity. Objective: The 

aim of this study was to investigate the association between MCHR2 variation and human 

obesity. Design: Case control and family-based studies were performed. Participants: 141 

obese children and 24 non-obese adult subjects were sequenced and case-control analyses 

were conducted using 628 severely obese children and 1,401 controls. Results: Eleven Single 

Nucleotide Polymorphisms (SNPs) were identified. We showed nominal association between 

-38,245 ATG A/G SNP (p=0.03, 95%CI=[1.02-1.34], OR=1.17), A76A T/C SNP (p=0.03, 

95%CI=[0.58-0.97], OR=0.75) and childhood obesity. Analysis of 645 trios with childhood 

obesity supported further the A76A T/C association, showing an over-transmission to obese 

children of the at risk T allele (59.0%, p=0.01), especially in children with most severe forms 

of obesity (Zscore of BMI>4) (67.0%, p=0.003). The A76A at risk T allele was also 

associated with overeating during meal (p=0.02) in an additional group of 102 non-obese 

children. None of MCHR2 variants, including the A76A SNP, showed association with adult 

severe obesity, although a trend for association of the T allele of this variant with food 

disinhibition (p=0.06) and higher hunger (p=0.09) was found. This variant was not associated 

with childhood obesity in an independent case-control study including 1,573 subjects 

(p=0.98). Moreover, the A76A SNP did not explain the linkage on the 6q locus. Conclusions: 

Our results altogether suggest that MCHR2 is not a major contributor to polygenic obesity and 

support a modest effect of the A76A SNP on food intake abnormalities in childhood. 
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If the current epidemic of obesity clearly reflects the environmental and behavior changes 

during the past half-century, genetic background remains important especially in the severe 

forms of obesity, as assessed by ethnic (1), familial (2, 3) or linkage (4) studies. We 

previously identified in the French population, a linkage with childhood obesity on 

chromosome 6q16.3-q24.2 with a Lod score of 4.06 (5). Recently, we reported that variation 

in ENPP1 (Ectonucleotide Pyrophosphatase Phosphodiesterase1) partly contributed to the 

observed linkage (6). Indeed, if we remove the 15 affected sibling pairs from a total of 135 

sibling pairs sharing the ENPP1 at risk haplotype, the Multipoint Lod Score drops from 4.06 

to 1.6 at marker D6S287 and a new maximal score of 2.63 is obtained 16 Mb centromeric to 

the original linkage peak, at marker D6S301 (6).  

MCHR2 is an obvious candidate gene lying under this new peak. The orphan G-coupled 

protein Melanin-Concentrating Hormone Receptor 2 (MCHR2) consists in 340 amino acids 

with a coding sequence distributed over 6 exons (7-9) and showing 38% homology with the 

Melanin-Concentrating Hormone Receptor 1 (MCHR1) (10). MCHR2 displays high-affinity 

binding to MCH (11), which is known to increase food intake and body weight in rodents 

after its central administration (12-14). MCH acts as a functional antagonist of the α-MSH 

(alpha-Melanocyte-Stimulating Hormone), in a complex central network involving the 

melanocortin pathways (15). MCH overexpression leads to obesity and insulin resistance in 

mice (16). In contrast, mice that lack the MCH gene or targeted inactivation of MCH gene in 

neurons cause a phenotype of leanness as a consequence of hypophagia and increased 

metabolic rate (17). Expression of MCHR2 is restricted to several regions in the brain, 

including the arcuate nucleus and the ventral medial nucleus, areas involved in regulation of 

food intake (18). Consistently, these two nucleus have been recently implicated in mediating 

the MCH effect via activation or inhibition of feeding circuits (19).  
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Tan et al. showed that functional expression of the MCHR2 gene is not conserved during the 

evolution. In contrast to MCHR1, the functional MCHR2 is only expressed in humans, 

primates and carnivores but not in rodents (10). Thus, little is known about the physiological 

role of MCHR2 and human genetics offers unique opportunity to evaluate the contribution of 

this receptor to appetite regulation and associated diseases in humans. This paper investigates 

the implication of variation in MCHR2 in polygenic and monogenic forms of childhood 

obesity and its related quantitative and eating disorders traits.

RESEARCH DESIGN AND METHODS 

Population used for association studies 

Association studies with childhood and adulthood obesity were performed for variants with 

Minor Allele Frequency (MAF) ≥ 5% using a set of 628 unrelated obese children chosen from 

the cohort of 849 obese children available (Male/Female=402/447, age=10.7±3.60 years, 

BMI=28.84±6.56 kg/m2, Z score of BMI=4.16±1.32), 696 unrelated class III obese adults 

(Male/Female=176/520, mean age=45.95±12.06, BMI=47.69±7.22 kg/m2) and 1,401 

nonobese normoglycemic adults (Male/Female=564/837, age=41.32±15.07, BMI=22.42±2.31 

kg/m2). The study protocol was approved by all local ethic committees and an informed 

consent was obtained from each subject before participating in the study.

Obese children cohort 

The pool of obese children used for case/control analysis was constituted of a first set of 424 

unrelated obese children collected from 424 pedigrees with at least one obese child at the 

CNRS – UMR8090 Unit in Lille, and at the Jeanne de Flandres Hospital in Lille, a second set 

of 93 unrelated obese children recruited at the Children’s Hospital, Toulouse, a third set of 24 
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unrelated obese children recruited through the “Fleurbaix-Laventie Ville Santé” study and a 

fourth set of 87 unrelated children collected from the Trousseau Hospital. We genotyped the 

A76A T/C SNP in 148 additional obese children collected at the CNRS UMR8090 and in 439 

obese children collected at the Saint Vincent de Paul hospital. Children with a BMI greater 

than the 97th percentile for age and sex reported on the tables of Rolland-Cachera et al. (20) 

(French general population) were defined as obese as recommended by the European 

Childhood Obesity Group (ECOG) (21).  

Obese adults cohort 

The class III obese adult subgroup was constituted by 696 class III obese adults collected at 

the Department of Nutrition of the Hôtel Dieu Hospital in Paris or at the CNRS-Institut 

Pasteur Unit in Lille. Class III obesity status was defined as BMI ≥ 40 kg/m2 in adults.  

Control adults cohort 

The same adult control group was used for both association studies in obese children and 

adults as this group had a longer environmental exposure and still remains non obese. This 

group consisted in 1,401 nonobese (BMI < 27 kg/m²) normoglycemic (fasting glycemia < 

5.56 mmol/l) French Caucasian adults pooled from four separate studies; 360 unrelated 

nonobese and nondiabetic subjects were recruited at the CNRS- Institut Pasteur Unit in Lille, 

235 were recruited by the “Fleurbaix-Laventie Ville Santé” study (22), 396 from the 

HAGUENEAU study (23) and 410 from the SUVIMAX study (24). Absence of stratification 

among all the different studied cohorts was verified using 26 neutral polymorphic markers 

disseminated across the genome (data not shown). We genotyped the A76A T/C SNP in 986 

additional lean adult subjects (BMI < 27 kg/m²) issued from the SUVIMAX cohort. The 

genetic study was approved by the ethical committee’s of Hôtel Dieu Hospital in Paris and 

Centre Hospitalier Régional Universitaire de Lille. 

H
A

L author m
anuscript    inserm

-00175264, version 1



6

We used 424 pedigrees with childhood obesity (645 childhood obesity trios - two parents and 

one obese child) and 102 non obese childhood trios (BMI < 97th percentile for gender and 

age) and 158 pedigrees with adulthood obesity including 514 individuals (303 obese, 72 

overweight and 139 lean) for Transmission Disequilibrium Test (TDT) analysis for obesity 

status and eating behavior traits.  

Eating behavior traits 

Food behavior in obese adults was assessed by the TFEQ (Three Factor Eating Questionnaire) 

(25), which evaluates the cognitive restraint of eating, disinhibition, and hunger. Scores for 

the TFEQ were available for 500 class III obese patients with familial history of obesity. 

Because the TFEQ is not a validated questionnaire in children, food intake behavior in 102 

young non obese children (46 girls and 56 boys; BMI < 97th percentile for gender and age) 

was assessed by an in-house questionnaire administrated by a trained physician. Seven 

questions were asked. Two questions were related to food intake behavior during a meal 

(presence or absence of hyperphagia and rapidity of food ingestion) and between meals 

(presence or absence of snacking).  

Sequencing and genotyping 

The screening of the MCHR2 gene was done using overlapping PCR fragments that cover all 

exons of the MCHR2 gene, exon/intron junctions, and a part of the putative promoter and the 

3’UTR (UnTranslated Region). Primer details and PCR optimization conditions are available 

from the authors. PCR amplifications were inspected for single bands of expected sizes on 

agarose gels before purification with Montage PCR384 Multiscreen® S384PCR (Millipore). 

Sequencing was performed using the automated ABI Prism 3730 DNA sequencer in 

combination with the Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied 

Biosystems) and purification Sequencing reaction with MultiScreen® SEQ384 filter plates 

(Millipore). 
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To cover the intronic regions of the MCHR2 gene, genotypes of nine intronic SNPs have been 

extracted from a whole-genome association search performed in 325 obese children and 425 

control subjects (unpublished results), using DNA pooling strategy, as detailed elsewhere 

(26). Genotyping was performed by labeling genomic DNA and hybridizing it to Illumina 

Infinium Human1 and Hap300 BeadArrays, which interrogated 109,365 and 317,503 SNPs, 

respectively. The nine SNPs were in Hardy-Weinberg equilibrium (p>0.01) in both case and 

control subjects. 

The four SNPs with a MAF of >5% were then genotyped in all case and control groups using 

direct sequencing for -38,245 ATG A/G and -38,244 ATG T/C and Light-Cycler/Typer 

technology (Roche) for -26,780 ATG C/T  and A76A T/C. Genotyping error rates calculated 

from duplicate genotypes of 250 individuals were 0% for -38,245 ATG A/G, -26,780 ATG 

C/T, A76A T/C, and 0.9 % for -38,244 ATG T/C. No recurrent mendelian inconsistencies 

were detected in the 608 pedigrees for the two analyzed SNPs (-38,245 ATG A/G, A76A T/C) 

using the PEDCHECK 1.1 program. 

Statistical analysis 

Tests for deviation from Hardy-Weinberg Equilibrium (HWE) and for association were 

performed with the De Finetti program (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl). All SNPs were 

in HWE. We compared all cases against all control individuals as well as class III obese 

adults and obese children separately against the control group. These analyses were done by 

comparing allelic frequencies of the SNPs between cases and controls. Analysis of variance 

and T-test were performed for the studying of quantitative traits in obese and control adults. 

Haplotype frequencies were determined and were compared between groups with the 

UNPHASED software http://www.mrc-bsu.cam.ac.uk/personal/frank/. Familial analysis on 

binary and quantitative traits were performed by the TDTPHASE and QPDTPHASE methods 

implemented in the UNPHASED software. In order to evaluate the effect of the T at risk 
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allele of the A76A variant on linkage, we used the Genotype IBD Sharing Test (GIST) 

procedure. SPSS 10.1 software was used for general statistical analysis.

Results 

Screening of the gene 

All exons of the MCHR2 gene, exon/intron junctions, 870 bp of the putative promoter and 

1,095 bp in the 3’UTR were sequenced in 47 obese children from families with evidence for 

linkage of childhood obesity to 6q, 94 obese children with early obesity onset (Z score of 

BMI>4.5, obesity onset before 5 years old), and in 24 non obese normoglycemic adults. We 

identified six SNPs in the promoter region, one non synonymous mutation, two synonymous 

mutations and two SNPs in the 3’ UTR (Figure 1 and 2). Among these SNPs, three were 

frequent (-38,245 ATG A/G, -38,244 ATG T/C and A76A T/C) with minor allele frequencies 

> 5% and Linkage Disequilibrium analysis (LD) showed that these SNPs were in incomplete 

LD (R2 <0.8). Therefore, the three SNPs were selected to be typed in all our samples 

(Appendix Figure 1). 

The eight remaining rare variants including the non synonymous variant R152Q G/A (minor 

allele frequencies < 5%, Table1) were found in both obese and control subjects. These results 

ruled out a potential implication of these variants in monogenic forms of obesity in our studied 

population.

Association studies of frequent SNPs with childhood obesity 

Case/Control analysis was performed for the three SNPs in 2,029 French Caucasians (628 

unrelated obese children and 1,401 normoglycemic non-obese control adults). The A/G -

38,245 G allele and the A76A T allele showed nominal evidence for association with 

childhood obesity (p=0.03, 95% CI= [1.02-1.34], OR=1.17; p=0.03, 95% CI= [0.58-0.97], 
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OR=0.75; Table 2). The remaining SNP -38,244 ATG T/C was not associated with childhood 

obesity (p=0.50, Table 2). 

Because our initial screening did not include intronic regions, we analyzed data concerning 

nine additional tagged SNPs covering the MCHR2 introns, that were included in a Whole-

Genome Association scan of childhood obesity performed in a subset of of obese children 

cohort (325 obese children compared to 425 control subjects, unpublished results). The 

location of the intronic SNPs is shown in Figure 1. 

No intronic SNP showed significant (p<0.05) association with childhood obesity, except for 

SNP -26,780 ATG C/T (rs9496085, p=0.035), located in intron 1 of MCHR2. We then 

genotyped rs9496085 in our extended case control set of 2,029 French Caucasians. This SNP 

showed only a modest trend toward association with childhood obesity (p=0.055, 95% CI= 

[0.75-1.00], OR=0.87; Table 2).  

TDT analysis in trios with childhood obesity

TDT analysis of 424 pedigrees with childhood obesity was then performed for the two 

frequent SNPs significantly associated (p<0.05) with childhood obesity in the case control 

design. The SNP -38,245 ATG A/G did not show an allelic transmission distortion in obese 

children (p>0.05, data not shown). However we found evidence of an over-transmission of the 

A76A at risk T allele in obese children (59.0%, p=0.01, 120 transmitted versus 85 non 

transmitted), especially in children with the most severe forms of obesity (Z score of BMI>4) 

(67.0%, p=0.003, 52 transmitted versus 26 non transmitted; Figure 3).  

In an attempt to gain statistical power in our analysis, we then took into account the 

phenotypes and genotypes of three available generations (children, parents and grand parents) 

for the obesity threshold (97th percentile) for gender and age. We analyzed together the over-

transmission of the at risk allele from the heterozygous grand parents to the obese parents and 
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the over-transmission of the at risk allele from the heterozygous parents to the obese children. 

An over-transmission of the “at risk allele” to obese offspring’s was found (61.0%, p=0.002,). 

To investigate if the A76A variant could affect primarily eating behaviors and thus induce 

obesity, we restricted the TDT analysis of eating behavior phenotypes to a subgroup of 102 

non-obese children , given that the T allele was over-transmitted to obese children. These 

non-obese children were issued from the initial 424 pedigrees with childhood obesity and 

showed no distortion of segregation for the T allele (53.8%, p=0.69). Interestingly, the 

analysis of non-obese children with overeating during meal showed a systematic transmission 

of the T allele to these subjects (100%, p=0.004, 6 transmitted versus 0 non transmitted). 

Accordingly, 25% of the TT genotype carriers of the A76A variant showed overeating during 

meal, whereas none of the TC and CC genotype carriers harbored this disorder (p=0.02).

Association studies with adulthood obesity 

No association with adult class III obesity was found for any of the four SNPs (Table 2). 

However, pooled data from obese children and adults showed nominal evidence of association 

with obesity for the -38,245 A/G SNP (p=0.02, 95% CI=[1.02-1.28], OR=1.15) and a trend 

towards association for the A76A T/C SNP (p=0.07, 95% CI=[0.67-1.02], OR=0.83) (Table 

2). In adults there was also a trend toward association of the T allele of the A76A variant with 

higher hunger (p=0.09) and with disinhibition for food (p=0.06, data not shown).  

Haplotype analysis 

To estimate the potential effect of the combination of the MCHR2 SNPs, we performed 

haplotype analysis in obese subjects and controls using the UNPHASED software. The 

haplotype including the two associated SNPs or the four frequent SNPs did not provide 

stronger evidence for association than SNPs analyzed independently (data not shown).  
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Linkage analysis 

After exclusion of subjects carrying at least one risk haplotype of the ENPP1 gene, we tested 

the contribution of the -38,245 A/G and A76A T/C SNPs to the maximum of the linkage peak 

at marker D6S301 using GIST procedure. Our results did not provide any evidence for 

participation of this SNP to the linkage observed on the 6q locus (dominant model, p=0.16). 

Replication study between A76A T/C and childhood obesity 

In an attempt to replicate the association of the A76A T/C in an independent French cohort, 

we genotyped this polymorphism in two additional sets including 986 lean adult subjects 

issued from the SUVIMAX cohort, and 587 obese children collected at the CNRS UMR8090 

(N=148) and the Saint Vincent de Paul hospital (N=439). We did not replicate the association 

between the A76A T allele and childhood obesity (p=0.98, 95% CI=[0.77-1.29], OR=0.99, 

data not shown). 

Discussion 

This study is the first to investigate a possible role of MCHR2 SNPs in human polygenic 

severe obesity in a large population of French Caucasians. The initial case/control analysis 

gave nominal evidence for association between the two variants -38,245 A/G and A76A T/C 

and childhood obesity but this result does not resist to multiple testing correction. Even if the 

TDT analysis supports the contribution of the A76A T/C SNP to childhood obesity, it is 

noteworthy to indicate that none of these two variants showed association with severe forms 

of obesity in adults. We were not able to replicate the association between A76A T/C SNP 

and childhood obesity in an independent case control design including 1,573 subjects. 

Moreover, our results did not provide any evidence for participation of these variants to the 

linkage observed on the 6q locus. This underlines the need to carry on the search for other 
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genetic variants contributing to the observed linkage with childhood obesity on chromosome 

6q.

Our data suggests that the A76A T/C MCHR2 SNP may mediate modest eating behavior 

disorders in childhood such as overeating during meals. However, this result should be 

interpreted with caution because we used a non-validated in-house questionnaire in children.

We also found a trend for an effect of this SNP on food intake parameters in adults. The 

impact of genetic variants of the MCHR2 gene on food intake, if any, seems to be attenuated 

in adulthood, which could explain the lack of association of the A76A variant in severe adult 

obesity. Similar observations have been found for other key components of the central 

regulation of food intake. Farooqi et al. showed an age-related decrease in hyperphagia in 

obese subjects with MC4R mutations, that seems to occur with adulthood (27).  

The observation that genetic variation in MCHR2 could modulate food intake is consistent 

with the proposed role of MCH/MCH receptor pathway in the literature (11). As MCHR1, 

MCHR2 is specifically activated by nanomolar concentrations of MCH, but signals through 

Gq proteins to induce an increase in intracellular [Ca2+] and inositol phosphate 3 (7, 18). As 

A76A is a synonymous coding variation, it seems unlikely that this variant could act by 

increasing the affinity and the binding of MCHR2 to its ligand and thereby induce an 

enhancement in the orexigenic effect of MCH. A more plausible hypothesis could be that this 

variant confers increased RNA stability to MCHR2, which could affect the MCHR2 receptor 

density and the orexigenic effect of MCH. Several reports have highlighted the significance of 

synonymous mutations that affect mRNA secondary structure, which in some cases induce 

diseases (28, 29). In addition, it remains possible that A76A genetic variant could affect exon 

skipping or disrupt splicing process as previously documented in abundant examples of 

synonymous mutations (30, 31). Finally, we cannot exclude the possibility that this variant is 

in linkage disequilibrium with the true functional variant located elsewhere in the MCHR2
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gene. Unfortunately, this SNP was not genotyped in the Hapmap II avoiding us to study the 

extensive LD with A76A in the 6q16 region. A detailed analysis of linkage disequilibrium in 

the MCHR2 region by sequencing of large size population-based cohorts could be useful. If 

LD analysis and association studies revealed that the A76A variant is itself a primary variant 

determining obesity susceptibility, then functional analysis should be undertaken.

In our study, the eight rare SNPs have been found in both obese and control individuals. This 

lack of implication of rare variants of the MCHR2 gene in monogenic forms of obesity in our 

studied population is consistent with the findings of Bell et al. for the MCHR1 gene (32). A 

previous study performed in the United Kingdom population found two non coding SNPs in 

the MCHR2 gene, which were not analyzed as they were rare (33). Screening of this gene in 

white and African-American individuals identified four non coding SNPs and four coding 

mutations (34) that include the three coding mutations identified in our study. A fourth non 

synonymous mutation R63K was identified and was not detected in our initial sequenced set. 

Functional analysis of MCHR2-carrying each of the non synonymous mutations G152Q or 

R63Q demonstrated that this receptor binds MCH and couples to intracellular signalling 

pathways in a similar way to wild type MCHR2 (34). The absence of functional effect 

particularly of the MCHR2-carrying G152Q mutation is consistent with our findings. This 

SNP was found in obese and control subjects at equal frequencies. 

In conclusion, our results suggest that MCHR2 gene is not a major contributor to polygenic 

and monogenic forms of childhood and adulthood obesity. However, the A76A T/C SNP of 

MCHR2 might have a modest effect on food intake abnormalities. These preliminary results 

need to be confirmed in additional populations.  
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Table 1: Positions, base or amino acid changes, RS number (if known) and frequencies 

of the eleven SNPs identified within the MCHR2 gene in the initial screened set. SNPs 

positions in the first column are indicated in relation to the initiation codon ATG or the stop 

codon TGA (in the UCSC genome browser)  

Table 2: Association (p≤0.05) of genotypes and alleles of MCHR2 gene SNPs with 

obesity. Cases Set 1 = 628 French Caucasian children with BMI > 97th percentile. Cases Set 2 

= 696 obese French Caucasian adults with BMI ≥ 40. Control Set = 1,401 non obese and 

normoglycemic French Caucasian adults. N: number of subjects, OR: Odd Ratio, CI: 95% 

Confidence Interval, HW: Hardy Weinberg. Significant p-values are indicated in bold. 

Figure 1: Location of the 20 SNPs in the MCHR2 gene. Exons one to six are represented in 

grey. The eleven SNPs shown below the figure are those identified after the screening of the 

MCHR2 gene: Three variants -38,245 ATG A/G, -38,244 ATG T/C and A76A T/C had a 

MAF>5% and were studied in case/control analysis. The eight remaining SNPs had a 

MAF<5% and were found in both obese and control subjects ruling out a contribution in 

monogenic form of obesity. The nine additional SNPs shown above the figure are the intronic 

tagged SNPs that were included from the whole genome scan study of childhood obesity to 

cover the MCHR2 genetic variation in introns. 

Figure 2: Schematic representation of the structure of the seven-helix transmembrane 

protein MCHR2. Positions of the three coding variations (two synonymous and one non 

synonymous), identified after the MCHR2 screening, are indicated as grey circles. These three 

mutations were also identified in the study of Hawes et al. (34). The bold circles indicate the 

amino acid delimiting the transmembrane domain from both sides of the protein. The dotted 
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circles indicate the non-synonymous mutation R63K that was found in the study of Hawes et 

al. but was not found through our initial screened set. 

Figure 3: Familial association of the A76A T/C in pedigrees with childhood obesity. TDT 

analysis of 424 pedigrees (645 trios) with childhood obesity showed an over-transmission of 

the A76A at risk T allele in obese children (59.0%, p=0.01) and in children with the more 

severe forms of obesity (Z score of BMI >4) (67.0%, p=0.003).  
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Table 1: Positions, base or amino acid changes, RS number (if known) and frequencies of the eleven 

SNPs identified within the MCHR2 gene in the initial screened set. SNPs positions in the first column 

are indicated in relation to the initiation codon ATG or the stop codon TGA (in the UCSC genome 

browser). 

SNPs Location Nucleotide change rs correspondence Frequency 

-38,672 ATG Promoter T/C - 0.7  

-38,531 ATG Promoter C/T rs 9969034 1.4  

-38,471 ATG Promoter G/A - 0.7  

-38,291 ATG Promoter C/T rs 6570474 1.4  

-38,245 ATG Promoter A/G rs 6925272 41.8  

-38,244 ATG Promoter T/C - 19.4  

A76A    (Synonymous) Exon 3 T/C  - 8.6  

G103G  (Synonymous) Exon 3 G/A  - 0.7  

R152Q  (Non synonymous) Exon 4 G/A  - 1.4  

+57 TGA Exon 6 (3’UTR) T/C rs 4839764 0.7  

+508 TGA 3’UTR T/C - 0.7  
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Table 2 : Association (p≤0.05) of genotypes and alleles of MCHR2 gene SNPs with obesity. Cases Set 

1 = 628 French Caucasian children with BMI > 97th percentile. Cases Set 2 = 696 obese French Caucasian 

adults with BMI ≥ 40. Control Set = 1,401 non obese and normoglycemic French Caucasian adults. N: 

number of subjects, OR: Odd Ratio, CI: 95% Confidence Interval, HW: Hardy Weinberg. Significant p-

values are indicated in bold.  

Cohorts Genotypes (frequency) 
Allele freq. 

OR (p-val.)[CI]

HW 

(p-val.) 

 -38,245 ATG  A/G AA AG GG A G 

Set 1 Obese children (N=606) 229 (0.38) 280 (0.46) 97 (0.16) 0.61 0.39 1.17 (0.03) 0.46 

Control (N=1363) 565 (0.41) 630 (0.46) 168 (0.13) 0.65 0.35 [1.02-1.34] 0.72 

Set 2 Morbidly obese (N=623) 234 (0.38) 302 (0.48) 87 (0.14) 0.62 0.38 1.13 (0.09) 0.51 

Control (N=1363) 565 (0.41) 630 (0.46) 168 (0.13) 0.65 0.35 [0.98-1.29 ] 0.72 

Set 1+2 Obese (N=1229) 463 (0.38) 582 (0.47) 184 (0.15) 0.61 0.39 1.15 (0.02) 0.96 

 Control (N=1363) 565 (0.41) 630 (0.46) 168 (0.13) 0.65 0.35 [ 1.02-1.28] 0.72 

 -38,244 ATG  T/C TT TC CC T C   

Set 1 Obese children (N=591) 323 (0.55)  226(0.38) 42 (0.07) 0.74 0.26 1.06 (0.49) 0.75 

Control (N=1362) 760 (0.56) 518 (0.38) 84 (0.06) 0.75 0.25 [ 0.90-1.23] 0.77 

Set 2 Morbidly obese (N=627) 362 (0.58) 228 (0.36) 37 (0.06) 0.76 0.24 0.92 (0.33) 0.89 

Control (N=1362) 760 (0.56) 518 (0.38) 84 (0.06) 0.75 0.25 [0.79-1.08 ] 0.77 

Set 1+2 Obese (N=1218) 685 (0.56) 454 (0.37) 79 (0.06) 0.75 0.25 1.00 (0.96) 0.76 

 Control (N=1362) 760 (0.56) 518 (0.38) 84 (0.06) 0.75 0.25 [0.88-1.13 ] 0.77 
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-26,780 ATG C/T CC CT TT C T  

Set 1 Obese children (N=587) 263 (0.45) 249 (0.42) 75 (0.13) 0.66 0.34 0.87 (0.055) 0.19 

 Control (N=1401) 559 (0.40) 642 (0.46) 200 (0.14) 0.63 0.37 [0.75-1.00 ] 0.49 

Set 2 Morbidly obese (N=634) 252 (0.40) 297 (0.47) 85 (0.13) 0.63 0.37 0.98 (0.83) 0.93 

Control (N=1401) 559 (0.40) 642 (0.46) 200 (0.14) 0.63 0.37 [0.86-1.13] 0.49 

Set 1+2 Obese (N=1221) 515 (0.42) 546 (0.45) 160 (0.13) 0.65 0.35 0.93 (0.19) 0.42 

Control (N=1401) 559 (0.40) 642 (0.46) 200 (0.14) 0.63 0.37 [ 0.83-1.04] 0.49 

A76A T/C TT TC CC T C  

Set 1 Obese children (N=625) 545 (0.87) 77 (0.13) 3 (-) 0.93 0.07 0.75 (0.03) 0.87 

 Control (N=1365) 1139 (0.83) 215 (0.16) 11 (0.01) 0.91 0.09 [0.58-0.97 ] 0.73 

Set 2 Morbidly obese (N=519) 436 (0.84) 82 (0.16) 1 (-) 0.92 0.08 0.93 (0.56) 0.16 

 Control (N=1365) 1139 (0.83) 215 (0.16) 11 (0.01) 0.91 0.09 [0.71-1.20 ] 0.73 

Set 1+2 Obese (N=1144) 981 (0.86) 159 (0.14) 4 (-) 0.93 0.07 0.83 (0.07) 0.36 

 Control (N=1365) 1139 (0.83) 215 (0.16) 11 (0.01) 0.91 0.09 [0.71-1.20 ] 0.73 
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(p=0.01) (p=0.003)

0.67
0.59

0.41
0.33
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