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Abstract

Background: In the context of ecological studies, the Bayesian hierarchical Poisson model is of prime interest

when studying the association between environmental exposure and rare diseases. However, adding spatially

structured extra-variability in the model fitted to the data when such extra-variability does not exist conditionally

on the covariates included in the model (over–fitting) may bias the estimation of the ecological association

between covariates and relative risks toward the null. In order to investigate that possibility, a simulation study

of the impact of introducing unnecessary residual spatial structure in the estimation model was conducted.

Results: In the case where no underlying extra-variability from the Poisson process exists, the simulation results

show that models accounting for structured and unstructured residuals do not underestimate the ecological

association, unless covariates have a very strong autocorrelation structure, i.e., 0.98 at 100 km on a territory of

diameter 1000 km.”

1 Background

Ecological regression studies investigate potential association between geographical variation in disease

rates (or counts) and environmental covariates. For example, a recent study evaluated the ecological
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association between indoor radon concentration and acute leukaemia incidence among children [1]. For rare

diseases and/or small areas, Bayesian hierarchical Poisson model is commonly used where within-area

variability of disease is modelled at the first stage as a Poisson process and ecological relationships between

disease and covariates are introduced at the second stage of the hierarchical model. Spatially extra-Poisson

variability potentially due to aggregated effect of unknown confounders is commonly taken into account

through spatially structured residuals added in the second stage of the model.

In that context, the BYM (Besag, York and Mollié) model [2] is a standard model for estimation of the

ecological associations. The overall variability of a health indicator is broken down into a random Poisson

component, a spatially structured area-specific random effect and an unstructured random term, across

geographic units. It has been extensively shown that not accounting for an actual spatial variability may

lead to major biases [3].

Conversely, if the spatial variability of a health indicator is completely explained by that of environmental

factors and the other ecological covariates taken into consideration, regression residuals do not have spatial

structure. Modelling the spatial structure of residuals could then lead to a biased estimate of the ecological

association via a phenomenon of over–fitting [4–7].

To the author’s knowledge, the quantitative impact of fitting a model including extra-Poisson variability to

analyse data generated by a model where such extra-Poisson variability does not exist conditionally on the

covariates included in the model (over–fitting) has not previously been explicitly and quantitatively

investigated. Robustness of residuals modelling as BYM was studied in a different inferential context. In

the frame of an extensive investigation of the statistical performances of a number of spatial models,

Lawson et al. [8] studied the performance of such models on relative risks estimates in the case of mapping

modelling, i.e. without covariates, where different true spatial structures of residuals were simulated. The

authors showed that BYM model performed well on risks estimations except when the true residuals were

resulting from a mixture structure. Different models were compared to detect effect from a putative source

on a regular lattice [9]. They concluded in particular that the introduction of a spatially structured

area–specific random effect leads to much less bias in the parameter estimate and that BYM model is the

least biased. Notably, biases in parameter estimation appear when the random effects are not acounted for.

In the present study we focused on ecological association estimate when covariates with spatially structure

are introduced. Such covariates are often of interest in epidemiology when environmental exposures are

studied. In our work we focus on a particular model with France mainland as study domain. The aim of

our study was then to determine the robustness of the BYM model in the absence of residual spatial
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variation, i.e., the impact on the ecological association estimate on an irregular domain. The estimates

performances were discussed and characterized according to the covariates structure. Simulations protocols

assumed systematically a Poisson model at the first stage of the hierarchical model and log linear

relationship between the incidence of the disease and exposure at the second stage without addition of

extra-Poisson residuals. Various spatial structures of exposure were considered. The explained spatial

variability is thus fully specified/attributable by the covariate structure.

First, ecological models that do or do not allow spatially structured or unstructured heterogeneity will be

considered. Various simulation protocols for parameter values enabling balanced or unbalanced

between/within area variability will then be presented. The results of the various simulation protocols will

then be considered in terms of their performances with regard to the estimation of ecological associations.

The paper will conclude with a discussion.

2 Methods
2.1 Statistical Models

Let D be the study area of interest, partitioned into m geographic areas. The data consist in the observed

Yi and expected Ei disease counts for each area i, (i = 1, . . . ,m). Let Xi be an ecological variable of

interest in area i. The ecological Poisson M0 model is expressed in hierarchical form as follow:

Yi|Ri ∼ Poisson(EiRi)
log (Ri) |α, β, Xi = α + βXi

(M0)

in which Ri is the relative risk in area i. The second stage models the relationship between the relative risk

and exposure variable. The ecological model M0 does not include any spatially structured or unstructured

heterogeneity.

In order to account for those variabilities, the BYM model [2] was proposed :

Yi|Ri ∼ Poisson(EiRi)
log (Ri) |α, β, Ui, Vi = α + βXi + Ui + Vi

Ui|Uj 6=i ∼ N(
∑

j∈δi
Uj/ni, 1/τ2

Uni)

Vi|τV ∼ N(0, τ2
V )

(BYM)

in which δi denotes the set of labels of the neighbours of area i, ni is the number of neighbours i, Ui

(i = 1, . . . ,m) models the spatially-structured area-specific random effect based on the conditional

autoregressive approach CAR [10], and Vi (i = 1, . . . ,m) is the unstructured random effect. The BYM

model is the benchmark parametric model and is widely used in disease–mapping studies mainly because of

the flexibility of the residuals.
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2.2 Design of the simulation study

Processes X and Y are simulated on D under model M0 accordingly to parameters values. The simulation

parameters were selected with reference to the overall variability of the estimated relative risks, thus

enabling realistic and reasonable values for relative risks. More precisely, let R̂i = Yi/Ei be the maximum

likelihood estimate of the relative risk for the area. If Xi ∼ N(0, 1), then:

V ar
[

log(R̂i)
]

≈ E(
1

EiRi

) + β2.

If the relative risks are spatially independent of the expected disease counts Ei,

E(
1

EiRi

) ≈ 1/Ēh × E(1/Ri),

where Ēh is the harmonic mean of Ei (i = 1, . . . ,m). The overall variance may be expressed as:

V ar
[

log(R̂i)
]

≈ 1/Ēh × exp(−α + β2) + β2.

This variance may be broken down into a Within area variability term Wv = 1/Ēh × exp(−α + β2) and a

Between area variability term Bv = β2. Let p denote the proportion of between area variance,

p = Bv/V ar
[

log(R̂i)
]

, a high value of p corresponds to high between-area variability, that is a high

amount of information with which to estimate the ecological link β. Hereafter, without any loss of

generality, α will be considered equal to 0.

The geographic scale unit consisted in the 94 Departements of mainland France (Corsica excluded). The

expected disease counts (Ei) consist in the expected cases of acute leukaemia in children aged less than 15

years for the period 1990–1998 in Departement i. The cases were retrieved from the French National

Registry of Childhood Leukaemia and Lymphoma [11]. The expected numbers ranged from 4.2 to 204,

with a harmonic mean of 23.35. Scenarios in which the within-area variance was either doubled

(Ēh = 46.6) or divided by 10 (Ēh = 2.33) were also considered.

Given that Xi ∼ N(0, 1), within-area variance depends on 3 parameters, namely: the harmonic mean of

expected disease counts Ēh, the ecological link β and the autocorrelation structure of Xi.

As X has a standardized normal distribution, the 2.5 (p2.5%) and 97.5 (p97.5%) percentiles of the relative

risks are under model M0 exp(α± 1.96β) and their ratio Q=p97.5%/p2.5% is exp(2× β × 1.96). The quantile

ratios were considered equal to 1.0, 1.5, 2.0 and 3.0, equivalent to no effect, weak, moderate and strong

effects, respectively. The corresponding values for β were 0.00, 0.12, 0.21 and 0.33. The proportions of

between-area variance, p, by ecological link β and Ēh breakdown are summarized in Table 1.
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For Ēh = 23.35, the between area variance proportion ranges from 0 to 71%, with a balanced case for an

ecological link when β = 0.21. For Ēh = 46.69, p ranges from 0 to 83%, while p ranges from 0 to 19% when

Ēh = 2.33.

The autocorrelation of the exposure variable was also modulated. The following exponential

autocorrelation structure was considered: cov(Xi, Xj) = exp(−d(i, j)φ), in which d(i, j) is the distance

between areas i and j. Let ρxx = exp(−100φ) be the autocorrelation of two areas 100 km distant from each

other. The following values for ρxx = (0.40, 0.90, 0.95, 0.98) were studied. That correlation structure is

shown in Figures (1). High values of ρxx may mimic a spatial bloc structure.

For each combination of parameters
(

Ēh, β, ρxx

)

, 400 replicates of (X, Y ) = ((Xi, Yi), i = 1, ..., N) were

generated using the M0 model. For each replication, the ecological link was estimated by both models (M0

and BYM) in a Bayesian framework.

The estimations were made with BRugs [12] software. For each data set, a burn-in of 5000 iterations was

used and Bayesian inferences were based on 45000 iterations from Gibbs sampling giving Monte Carlo

standard errors of less than 5% of the posterior standard deviation of each parameter [13]. The Monte

Carlo standard error is an estimate of the difference between the mean of the sampled values and the true

posterior mean. Non-informative priors were chosen for the parameters: α ∼ U(−∞; +∞),

β ∼ N(0.0, 1.0E + 5), τU ∼ Γ(0.5, 0.0005), τV ∼ Γ(0.5, 0.0005) [14], in which Γ(a, b) denotes the Gamma

distribution with expectation equal to a/b.

For each triplet
(

Ēh, β, ρxx

)

, the ecological link was estimated using the M0 and BYM models. Let β̂(j) be

the posterior mean estimates of β at the jth replication, σ
β̂(j) the posterior standard error of β̂(j) and

CIj(β) the 95% credibility interval of β. The following criteria were computed for 400 replications

(j = 1, . . . , 400):

• The empirical mean of the estimated posterior expectations of β
(

β̄sim =
∑400

j=1 β̂(j)/400
)

• The empirical mean of the estimated posterior standard deviations of β
(

σ̄βsim
=

∑400
j=1 σ

β̂(j)/400
)

• The empirical standard deviation of the 400 estimated posterior means of β (sd(βsim))

• The mean relative bias (MB) and its standard deviation (sd(MB)),

• The root mean square error (RMSE),

• The proportion of coverage, π(β): the percentage of time when β lay within its 95% credibility

interval
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• The proportion of non–coverage 1 − π(0): the percentage of time when 0 did not lie within its 95%

credibility interval

When β 6= 0, 1 − π(0) quantifies the ability of the estimation model to detect the existence of an

association, which is analogous to the frequentist power. McNemar’s test for comparing proportions from

paired data (estimates of β from M0 and BYM based on the same replicated data set) was used to test

whether the π(β) (or 1 − π(0)) values were significantly different. The over-fit of the BYM model

(compared to the M0 model) was assessed via that criterion.

3 Simulation Results

Simulations results are structured as follow: firstly, we present results for an harmonic mean Ēh=23.35 of

expected disease counts equal to those from acute leukaemia in children for 1990–1998 in France and a

covariate X with null to moderate autocorrelation. Secondly, for the same harmonic mean Ēh, we study

the influence of strong autocorrelations for the covariate X and finally, variations of Ēh (smaller and

greater than 23.35) are explored.

3.1 Moderate covariate autocorrelation

The first scenario considered Ēh = 23.35 and the autocorrelation equal to 0.0 or 0.4; the results are shown

in Table 2. In that setting, the between-area variance varied from 0 to 71%. In the absence of any spatial

structure for X (ρxx = 0), the estimate of β was unbiased, irrespective of the estimation model. The mean

bias was less than 1% and the RMSE was less than 0.02 for the four values of the ecological link (for both

models). The coverage proportions π(β) were similar for the two models and greater than 94.5%. The

coverage proportion of the BYM model was consistently slightly greater than that of the M0 model.

For β = 0, π(β) was close to 95% and, equivalently, 1 − π(0) was close to 5%. The BYM model thus

handles the scenario in which the covariate has no spatial structure.

When the autocorrelation was increased to 0.4, the results were similar to those with the previous setting.

The mean bias was less than 1%. There was a slight increase in the RMSE but it remained less than 0.02.

The β coverage proportion with the BYM model was greater than that with the M0 model. The

non-coverage proportion was equal to 1, except when there was no association (β = 0). The non-coverage

proportions were significantly different when β = 0. The proportion the closest to 5% was obtained with

the M0 model. Irrespective of the value of β, the variability of β was always slightly over-estimated with

the BYM model. The coverage proportion of the M0 model varied from 94.5 to 95.8% (96.8 to 97.5% for

6



the BYM model). In the absence of, or with moderate, autocorrelation, the over–fitting effect was not

observed. Both models provided an almost unbiased estimate of the ecological link.

3.2 Strong covariate autocorrelation

The scenario of strong autocorrelation for X was then considered: ρxx = 0.90, 0.95, 0.98 at 100km with

Ēh = 23.35. The results are shown in Table 3. When ρxx = 0.90, the mean bias and the RMSE were low

(0.03). The mean bias decreased as the value of the ecological link increased, reflecting an increase in

between-area variability. The coverage proportion with the BYM model was higher than the coverage

proportion with the M0 model for all values of β. The non-coverage proportions were significantly different

for β = 0.00 and β = 0.12, in favor of the M0 model. For ρxx = 0.95, the bias was still small and the

RMSE increased to 0.04. The non-coverage proportions were again significantly different in the cases in

which β = 0.00 and β = 0.12 in favor of the M0 model. Lastly, for ρxx = 0.98 and for the first three values

of β (β = 0.00, 0.12, 0.21), the non-coverage proportions were significantly different, again in favor of M0.

When the ecological link was null, the non–coverage proportion was again smaller with the BYM model, a

consequence of the over-estimation of parameter variability. The β coverage proportions were lower for M0

for 4 values of β. When the autocorrelation increased from 0.90 to 0.98, the RMSE increased from 2.99 to

6.48, mainly due to the decrease in independent information. A slight increase was observed for all the

other criteria. The bias was weak, resulting in very small RMSE and sd(βsim) in both models. At high

autocorrelation values, the overall variability of the estimates increased. There was more variability for

each β value with the BYM model. This is exemplified by the mean posterior standard deviation, which

increased four-fold (for all β values) between the first (ρxx = 0.00) and last (ρxx = 0.98) autocorrelation

scenario. This was also the case for sd(βsim).

3.3 Variation of (harmonic mean of ) expected counts

The next scenario consisted in strong autocorrelation of ρxx = 0.95 at 100 km with variation in number of

expected disease counts. The results for that scenario are shown in Table 4.

For Ēh = 46.6 (and ρxx = 0.95), the mean bias and RMSE were smaller than in the scenario in which

Ēh = 23.3. The β coverage rate was greater than 94.5% for both models and the proportion was higher for

the BYM model. The non-coverage proportions were significantly different, in favor of the M0 model, for

β = 0.12. For β = 0, the non-coverage proportion was again smaller with the BYM model.

For Ēh = 2.33, the bias increased (up to 6%) and the RMSE was the highest observed in the various cases
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(14% approx.). The coverage proportion was smaller than in the previous scenario but greater than 92%.

The coverage proportion π(β) was higher with the BYM model than with the M0 model. While the

non-coverage proportions of 0 were close to 1 (except for β = 0), the proportions decreased by 16% for M0

and 13% for BYM for β = 0.12. Moreover the non-coverage proportions of 0 for the two models were

significantly different and in favor of the M0 model for β = 0.12, 0.21, 0.33.

High autocorrelations thus appear to influence the over–fitting effect of the BYM model. The expected

disease counts, also modulates the overall accuracy of the estimation. In fact, with highly correlated spatial

structure and low disease counts, the bias of the β estimate generated by the BYM increases. But, even

with a highly autocorrelated covariate and adequate disease counts, when Ei is doubled, the BYM model

estimates the ecological link with little bias.

4 Discussion

A simulation study was conducted in order to assess estimation performance with respect to the ecological

association between covariates and health indicators. Key parameters, such as the ecological link, expected

disease counts and autocorrelation strength were selected to ensure that the simulation covered realistic

situations. The choice of parameters enabled coverage of balanced and unbalanced between- and

within-area variabilities.

For moderate autocorrelation structures, both the Poisson model and the BYM model performed well and

the estimation performances were similar. Underestimation of ecological links was only observed for high

autocorrelations. Overall, the posterior standard deviation of β was slightly over-estimated with the BYM

model, resulting in conservative results when the true value of β was null.

The expected disease counts are also of interest because, with a high autocorrelation, the underestimation

of the BYM model is present. In practice, this worst- case scenario can nonetheless be found. Except for

the extreme scenario, strong spatial structure and low disease counts, both models perform well, even with

strong spatial structure. As a consequence, the BYM model can be used to estimate ecological associations

without fearing underestimation. The simulation results show that models accounting for structured and

unstructured residuals do not underestimate materially the ecological association. The rational is the

following: not accounting for an actual spatial variability leads to strong bias. Thus from a practical point

of view, the BYM model should be preferred to the Poisson if spatial autocorrelation of covariate is

suspected. Moreover, autocorrelation structure will be first investigated via Moran’s I test [15].
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β(1) \ Ē
(2)
h 2.33 23.35 46.6

0.00 0.00 0.00 0.00
0.12 0.03 0.25 0.40
0.21 0.09 0.50 0.67
0.33 0.19 0.71 0.83

(1) β: Ecological link
(2) Ēh: Harmonic mean of expected
disease counts
(3) p = Bv/V ar

[

log(R̂i)
]

: Be-

tween area variance proportion

Table 1: Between area variance proportion, p(3),according to ecological link β and Ēh

Tables
Table 1- Between area variance proportion, p(3),according to ecological link β and Ēh
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ρxx
(1) β Model β̄sim

(2) σ̄βsim

(3) MB(4) sd(MB) sd(βsim
(5)) RMSE(6) π(β)(7) 1 − π(0)(8)

0.0 0.00 M0 0.000 1.63 1.73 1.73 0.953 0.047

BYM 0.000 1.76 1.74 1.73 0.958 0.042
0.12 M0 0.119 1.61 -0.44 0.69 1.67 1.67 0.930 1.000

BYM 0.120 1.72 -0.31 0.70 1.68 1.68 0.955 1.000
0.21 M0 0.210 1.60 0.49 0.39 1.64 1.64 0.948 1.000

BYM 0.210 1.72 0.58 0.39 1.66 1.66 0.960 1.000
0.33 M0 0.329 1.57 -0.28 0.23 1.58 1.58 0.953 1.000

BYM 0.329 1.70 -0.24 0.24 1.58 1.58 0.968 1.000
0.4 0.00 M0 -0.001 1.72 1.76 1.76 0.955 0.045 ∗

BYM -0.001 1.90 1.78 1.78 0.975 0.025
0.12 M0 0.121 1.73 0.79 0.73 1.75 1.75 0.945 1.000

BYM 0.121 1.91 0.78 0.74 1.78 1.78 0.968 1.000
0.21 M0 0.211 1.72 0.41 0.39 1.66 1.66 0.958 1.000

BYM 0.211 1.90 0.50 0.39 1.67 1.67 0.973 1.000
0.33 M0 0.332 1.70 0.71 0.25 1.68 1.69 0.945 1.000

BYM 0.332 1.89 0.70 0.25 1.70 1.71 0.973 1.000
(1) ρxx : autocorrelation at 100 km
(2) β̄sim : 100* mean of posterior means
(3) σ̄βsim

: 100* mean of posterior standard deviations
(4) MB : 100* Mean Bias
(5) sd(βsim) : 100*standard deviation of posterior means
(6) RMSE : 100 * Root Mean Square Error
(7) π(β) : Coverage proportion β ∈ CI(β)
(8) 1 − π(0) : Non–Coverage proportion 0 /∈ CI(β)
(*) : Indicator of p–value < 5% from McNemar’s test for comparing proportions 1 − π(0) under M0

and BY M models.

Table 2: Estimation of the ecological link β when Ēh = 23.35 and ρxx = 0.0, 0.4 (400 replications)

Table 2 - Estimation of the ecological link β when Ēh = 23.35 and ρxx = 0.0, 0.4 (400 replications)
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Table 3 – Estimation of the ecological link β when Ēh = 23.35 and ρxx = 0.90, 0.95, 0.98
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ρxx
(1) β Model β̄sim

(2) σ̄βsim

(3) MB(4) sd(MB) sd(βsim
(5)) RMSE(6) π(β)(7) 1 − π(0)(8)

0.90 0.00 M0 0.003 2.96 2.98 2.99 0.945 0.055 ∗
BYM 0.003 3.39 3.03 3.04 0.970 0.030

0.12 M0 0.122 2.98 2.07 1.24 2.99 3.00 0.958 0.973 ∗
BYM 0.123 3.44 2.51 1.27 3.07 3.08 0.973 0.938

0.21 M0 0.213 2.96 1.38 0.79 3.32 3.34 0.930 0.998

BYM 0.213 3.41 1.31 0.81 3.41 3.42 0.955 0.998
0.33 M0 0.331 2.98 0.37 0.47 3.11 3.11 0.943 1.000

BYM 0.331 3.43 0.39 0.47 3.13 3.13 0.965 1.000
0.95 0.00 M0 0.002 4.07 4.04 4.04 0.950 0.050 ∗

BYM 0.002 4.72 4.14 4.14 0.975 0.025
0.12 M0 0.121 4.05 1.03 1.82 4.38 4.37 0.945 0.843 ∗

BYM 0.121 4.70 1.18 1.89 4.54 4.54 0.960 0.775
0.21 M0 0.208 3.99 -1.07 0.99 4.18 4.18 0.960 0.988

BYM 0.208 4.62 -0.80 1.03 4.31 4.31 0.978 0.983
0.33 M0 0.333 4.16 0.78 0.66 4.33 4.33 0.963 1.000

BYM 0.333 4.80 0.98 0.66 4.34 4.35 0.980 1.000
0.98 0.00 M0 0.002 6.29 6.48 6.48 0.950 0.050 ∗

BYM 0.002 7.29 6.53 6.53 0.970 0.030
0.12 M0 0.121 6.23 1.22 2.49 5.98 5.98 0.953 0.545 ∗

BYM 0.122 7.20 1.26 2.47 5.99 5.98 0.975 0.420
0.21 M0 0.207 6.35 -1.36 1.57 6.61 6.60 0.960 0.845 ∗

BYM 0.207 7.35 -1.39 1.59 6.67 6.67 0.985 0.782
0.33 M0 0.330 6.27 0.09 1.00 6.64 6.63 0.935 0.985

BYM 0.331 7.28 0.24 1.01 6.69 6.68 0.975 0.978
(1) ρxx : autocorrelation at 100 km
(2) β̄sim : 100* mean of posterior means
(3) σ̄βsim

: 100* mean of posterior standard deviations
(4) MB : 100* Mean Bias
(5) sd(βsim) : 100*standard deviation of posterior means
(6) RMSE : 100 * Root Mean Square Error
(7) π(β) : Coverage proportion β ∈ CI(β)
(8) 1 − π(0) : Non–Coverage proportion 0 /∈ CI(β)
(∗) : Indicator of p–value < 5% from McNemar’s test for comparing proportions 1 − π(0) under M0

and BY M models.

Table 3: Estimation of the ecological link β when Ēh = 23.35 and ρxx = 0.90, 0.95, 0.98
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Table 4 - Estimation of the ecological link β when ρxx = 0.95 while Ēh varying
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Ēh β Model β̄sim
(1) σ̄βsim

(2) MB(3) sd(MB) sd(βsim
(4)) RMSE(5) π(β)(6) 1 − π(0)(7)

46.6 0.00 M0 -0.001 2.84 2.76 2.76 0.958 0.042 ∗
BYM -0.001 3.40 2.85 2.85 0.975 0.025

0.12 M0 0.118 2.81 -1.34 1.21 2.91 2.91 0.945 0.960 ∗
BYM 0.119 3.38 -1.18 1.21 2.91 2.91 0.980 0.930

0.21 M0 0.212 2.87 0.94 0.69 2.89 2.89 0.955 1.000

BYM 0.212 3.47 0.75 0.70 2.95 2.96 0.983 1.000
0.33 M0 0.329 2.88 -0.21 0.47 3.10 3.10 0.953 1.000

BYM 0.330 3.45 -0.08 0.48 3.19 3.19 0.980 1.000
23.3 0.00 M0 0.002 4.07 4.04 4.04 0.950 0.050 ∗

BYM 0.002 4.72 4.14 4.14 0.975 0.025
0.12 M0 0.121 4.05 1.03 1.82 4.38 4.37 0.945 0.843 ∗

BYM 0.121 4.70 1.18 1.89 4.54 4.54 0.960 0.775
0.21 M0 0.208 3.99 -1.07 0.99 4.18 4.18 0.960 0.988

BYM 0.208 4.62 -0.80 1.03 4.31 4.31 0.978 0.983
0.33 M0 0.333 4.16 0.78 0.66 4.33 4.34 0.963 1.000

BYM 0.333 4.79 0.98 0.66 4.34 4.35 0.980 1.000
2.33 0.00 M0 0.007 12.4 13.5 13.4 0.935 0.065

BYM 0.008 13.3 13.4 13.4 0.948 0.052
0.12 M0 0.112 12.5 -6.94 5.38 12.9 12.9 0.953 0.162 ∗

BYM 0.113 13.4 -5.65 5.43 13.0 13.0 0.965 0.130
0.21 M0 0.206 12.8 -1.92 3.45 14.5 14.5 0.927 0.410 ∗

BYM 0.206 13.8 -1.98 3.46 14.6 14.5 0.940 0.368
0.33 M0 0.341 13.0 3.38 2.12 14.00 14.0 0.938 0.738 ∗

BYM 0.343 13.9 4.05 2.14 14.1 14.2 0.960 0.715
(1) β̄sim : 100* mean of posterior means
(2) σ̄βsim

: 100* mean of posterior standard deviations
(3) MB : 100* Mean Bias
(4) sd(βsim) : 100*standard deviation of posterior means
(5) RMSE : 100 * Root Mean Square Error
(6) π(β) : Coverage proportion β ∈ CI(β)
(7) 1 − π(0) : Non–Coverage proportion 0 /∈ CI(β)
(∗) : Indicator of p–value < 5% from McNemar’s test for comparing proportions 1 − π(0) under M0

and BY M models.

Table 4: Estimation of the ecological link β when ρxx = 0.95 while Ēh varying

15




	Start of article
	Figure 1

