
HAL Id: inserm-00174089
https://inserm.hal.science/inserm-00174089

Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Laplace Expansions in Markov Chain Monte Carlo
Algorithms

Chantal Guihenneuc-Jouyaux, Judith Rousseau

To cite this version:
Chantal Guihenneuc-Jouyaux, Judith Rousseau. Laplace Expansions in Markov Chain Monte
Carlo Algorithms. Journal of Computational and Graphical Statistics, 2005, 14 (1), pp.75-94.
�10.1198/106186005X25727�. �inserm-00174089�

https://inserm.hal.science/inserm-00174089
https://hal.archives-ouvertes.fr


Laplace expansions in MCMC algorithms

Chantal Guihenneuc-Jouyaux and Judith Rousseau 1

Summary

Complex hierarchical models lead to a complicated likelihood and then, in a Bayesian

analysis, to complicated posterior distributions. To obtain Bayes estimates such as

the posterior mean or Bayesian confidence regions, it is therefore necessary to simu-

late the posterior distribution using a method such as an MCMC algorithm. These

algorithms often get slower as the number of observations increases, especially when

the latent variables are considered. To improve the convergence of the algorithm,

we propose to decrease the number of parameters to simulate at each iteration by

using a Laplace approximation on the nuisance parameters. We provide a theoret-

ical study of the impact that such an approximation has on the target posterior

distribution. We prove that the distance between the true target distribution and

the approximation becomes of order O(N−a) with a ∈ (0, 1), a close to 1, as the

number of observations N increases. A simulation study illustrates the theoretical

results.The approximated MCMC algorithm behaves extremely well on an example

which is driven by a study on HIV patients.

Some key words: Bayesian Hierarchical Model; Gibbs algorithm; Laplace approxi-

mation; Latent variable models

1 INTRODUCTION

As the complexity of models considered in statistical inference increases, the need

of new computional tools gets increasingly pressing. In this respect, Markov chain

Monte Carlo (MCMC) methods have been widely developed in the last decade and

have enhanced the use of complex models in different types of applications. Typically
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this has been done using Bayesian inference, (Robert and Casella (1999)). In a

Bayesian approach, samples produced by MCMC algorithms are quite appropriate

to approximate many aspects of the target posterior distributions using ergodic

averages. A typical class of complex Bayesian models are hierarchical models with

a large number of parameters.

Suppose we have a hierarchical model with the following joint probability density

with respect to some measure µ:

f(X|θS, S)π(θS|S)p(S|λ)h(λ),

where X is the vector of observations, S ∈ S is a vector of parameters - typically

latent variables or at least high dimensional - λ ∈ L is the parameter associated with

S and θS ∈ Θ is the nuisance parameter. Depending on the problem, either S, or

λ, or both are the parameters of interest. In this paper we shall therefore consider

(λ, S) as the parameter of interest, since the marginal distributions of λ and S can

be obtained from the joint distribution.

Traditionally, there are two ways to calculate posterior quantities of interest:

asymptotic expansions or simulations. If the dimension of the parameter (λ, S, θS)

is too large relative to the number of observations, asymptotic expansions such as

Laplace expansions can work quite poorly or even not be valid, see Ghosh (1994,

Ch. 5) or Tierney and Kadane (1986). It is then necessary to compute the posterior

distribution via an MCMC algorithm. However, it is often the case that the larger

the number of observations, the larger the number of parameters and thus, the longer

we have to run the algorithm to compute the posterior distribution. We study a

way to combine the asymptotic approximations of the target posterior distribution

via Laplace, with MCMC.

The most commonly used MCMC methods to sample from the posterior dis-

tribution are the Gibbs sampler and the hybrid Gibbs sampler, see for instance

Robert and Casella (1999). A Gibbs sampler involves sampling components (possi-

bly vectors) using the full conditional distributions. In a hybrid Gibbs sampler we

use Hasting-Metropolis steps when some of the full conditional distributions are too

complicated to sample from.

A Gibbs algorithm would run a chain on (λ, S, θS) to obtain a sample from the

posterior distribution of (λ, S) in the following way :

1. λt ∼ h(λ|St−1)
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2. St ∼ p(S|X,λt, θt−1
S )

3. θt
S ∼ π(θS|X,St, λt),

we denote this algorithm by M0.

Instead of running a chain on (λ, S, θS) we can run a chain on (λ, S) by integrating

out the nuisance parameter θS, using

g(X|S) =

∫

Θ

f(X|θS, S)π(θS|S)dθS, (1)

which leads to the new sampling scheme,

1. λt ∼ h(λ|St−1)

2. St ∼ p(S|X,λt) ∝ g(X|S)p(S|λt).

We denote this algorithm by M1.

Liu, Wong and Kong (1994) have proved that, in terms of maximal correlations,

Scheme M1 is better than Scheme M0, at least when no Hasting-Metropolis step is

included. They suggest that, if there is a strong dependence between two compo-

nents, integrating one of them out is the best strategy. In our setup, there is often

a strong dependence between S and θ, since S can be a parameter of interest, it

is natural to integrate θ out. However, in most cases (1) cannot be obtained an-

alytically but can be approximated using a Laplace expansion. The new sampling

scheme is then

1. λt ∼ h(λ|St−1)

2. St ∼ p̂(S|X,λt) ∝ ĝ(X|S)p(S|λt),

where ĝ(X|S) denotes the Laplace approximation of g(X|S), see for instance Tierney

et al. (1989).

The stationary distribution of the simulated Markov chain is then modified. The

question is how much is it modified? This approach has been used in particular by

DiMatteo, Genovese and Kass (2001) in the context of regression function estimation

via free-knot splines. In their approach S = (k, ξ) represents the number and the

locations of the knots, θS = (β, σ) is the parameter to be integrated out, although β
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can be a parameter of interest. In other words they simulate directly π(S|Xn) with-

out having to simulate π(β, σ|S,X). By considering the number of knots bounded

and under a particular prior they prove that the Laplace approximation of g(X|k, ξ)
is uniform (in (k, ξ)) and thus obtain an approximate posterior density for S close

to the true one, in probability.

In this paper we extend this type of result to a more general class of models. Our

aim is to measure the impact of the Laplace approximation occurring at each step

of the algorithm on the posterior distribution of the parameters of interest, namely

(λ, S). The first result we give on the error due to the approximated posterior dis-

tribution of (λ, S) is general. We then focus our attention on latent variable models.

These models have been used in many areas as a convenient representation of weakly

dependent heterogeneous phenomena. Hidden Markov models (HMM) are specific

latent variable models where the completed model is directed by an unobserved

Markov process S. When the state space of S is continuous, these models are usually

called state space models such as in econometrics, in stochastic volatility models

(Shephard and Pitt (1997), Hamilton (1989), Chib (1996)) or in signal processing

(Hodgson (1999), Rabiner (1989)). HMM’s also have a large ranging number of

applications, when the state space of S is discrete : in Genetics as DNA sequence

modeling (Rabiner (1989), Durbin et al (1998), Muri (1998)) and in medicine (Gui-

henneuc et al (2000), Kirby and Spiegelhalter (1994)). Our work has been motivated

by biomedical applications. In medicine, multistate models, i.e. finite state space

HMM’s, have been increasingly used to model and to characterize the progression

of diseases. The definition of the states is generally based on the discretisation of

continuous markers as the decline of CD4 cell counts for HIV patients. These mark-

ers are usually subject to great variability, so that the observed trajectories give a

noisy representation of the true trajectories. The states are therefore considered as

unobserved, leading to a hidden Markov model representation.

In this paper we assume that we have N observations X = (X1, ..., XN ) and

that conditionally on some vector S they are independent with distribution whose

density with respect to Lebesgue measure is denoted f(Xi|θS, S), i = 1, ..., N . We

assume that the distribution of S depends on some parameter λ and we denote with

π, h and p any distribution (prior or posterior) on respectively θS (given S), λ and

S. In a latent variable model, S would be the latent process.

In Section 2, we present the algorithm based on the Laplace expansion. In

Section 2.1 we describe the algorithm and in Section 2.2 we prove that the stationary

distribution of the Markov chain generated by the algorithm based on the Laplace
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approximation gets close to the true posterior distribution of (S, λ) as N goes to

infinity. This Section is divided into two parts, first we present a general result and

then we focus on latent variable models. In Section 3 we give some simulations that

illustrate the good behaviour of the approximated algorithm.

2 LAPLACE APPROXIMATION

2.1 The Laplace Algorithm

We begin with notation. Let lN(θS) be the log-likelihood of the completed model

conditional on S and let θ̂S be the conditional maximum likelihood estimate. The

differentiation operator will be denoted by D, i.e. for any function g : IRp −→ IRq

with p, q ≥ 1, Dνg(z) is the ν-th derivative of g with respect to z, where ν =

(ν1, ..., νp), νi ≥ 0. We also denote |ν| = ν1 + ... + νp. For simplicity’s sake we

also denote Dg(z) the vector of first derivatives and D2g(z) the matrix of second

derivatives of g. Let J be the non normalized empirical Fisher information matrix

of the completed model, i.e. J = −D2lN(θ̂S) and let |J | be its determinant. Finally,

||µ1 − µ2||TV denotes the total variation norm of µ1 − µ2 and ψ = log π(θ).

The true marginal distribution of (λ, S)|X is given by :

π(λ, S|X) =

{

∫

Θ

∏N
i=1 f(Xi|θs, S)π(θS|S)dθs

}

p(S|λ)h(λ)

∫

L

∫

S

{

∫

Θ

∏N
i=1 f(Xi|θs, S)π(θS|S)dθs

}

dp(S|λ)h(λ)dλ
.

θS is a nuisance parameter, that we want to avoid simulating. We therefore propose

to replace the integral over θS, which is a finite dimensional parameter, by its Laplace

approximation. The approximate marginal distribution of (λ, S)|X would then be :

π̂(λ, S|X) =

{

∏N
i=1 f(Xi|θ̂S)π(θ̂S)J−1/2

}

p(S|λ)h(λ)

∫

L

∫

S

{

∏N
i=1 f(Xi|θ̂S)π(θ̂S)J−1/2

}

dp(S|λ)h(λ)dλ
.

Let g(X|S) be the marginal conditional density of X given S and ĝ(X|S) its

Laplace approximation, i.e.

g(X|S) =

∫

Θ

elN (θS)π(θS|S)dθS

and

ĝ(X|S) = (2π)d/2π(θ̂S)J−1/2

N
∏

i=1

f(Xi|θ̂S),
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where d is the dimension of θS. We thus would have: π̂(λ, S|X) ∝ ĝ(X|S)p(S|λ)h(λ).

However, since this approximation will be used at each iteration of the Gibbs al-

gorithm and since the error depends on S, there might be some values of S, for

which the approximated ĝ(X|S) is quite different from g(X|S). Since it is diffi-

cult to control the error of the approximation, for such values of S, we use instead,

as the approximated density of X given S : g̃(X|S) = IIB(S,X)ĝ(X|S), where

B = {(X,S); g(X|S) = ĝ(X|S)(1+O(N−a))}, for some a ∈ (1/2, 1) and IIB denotes

the indicator function of the set B. a will be chosen as close to 1 as possible. Note

that, if the error term |ĝ(X|S)− g(X|S)| goes to 0 uniformly in S, there is no need

for the use of g̃(X|S), and we can use ĝ(X|S).

We then have as the limiting target distribution : π̃(λ, S|X) ∝ g̃(X|S)p(S|λ)h(λ).

The new algorithm has thus the following structure : at the t-th iteration,

1. λt ∼ h(λ|X,St−1) which is the true one,

2. St ∼ p̃(S|X,λt) ∝ g̃(X|S)p(S|λt).

We denote this algorithm by ML and call it the Laplace algorithm. To validate

this algorithm, we thus need to make sure that its target distribution is close to the

true one, as N goes to infinity.

2.2 Validity Of The Approximation

In this Section, we present results ensuring that the approximated target distribution

and the true target distributions are close to one another. In Section (2.2.1) we

present the result in its most general form. As the general case covers situations that

can be very different, for instance latent variable models with discrete or continuous

latent variables or curve estimation via free knot splines as in DiMatteao et al.

(2001), the conditions we give to ensure the validity of the approximation are vague.

Therefore, in Section (2.2.2), we deal with the special case of latent variable models

with finite state spaces.

2.2.1 General Case

In the case of latent variable models, the dimension of S increases with N , i.e.

S = (s1, ..., sN ). If the si’s take their values in a finite space say {1, ..., k} then θS ∈
(θ1, ..., θk)

N , where θi ∈ IRpi is the parameter corresponding to the population for

which s = i. We can therefore write θS = (θ(si), ..., θ(sN )). If the si’s are continuous

random variables then θS would be a function of the latent variable si, for each
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observation, parameterised by a finite dimensional parameter θ, i.e. f(Xi|θS, S) =

f(Xi|cθ(si)). If c is linear cθ(si) = θtsi and the model can be considered as a

generalised linear model. In the free knot splines case the number of knots is bounded

but must be estimated and θS is also a function in the form cθ(si). Generally

speaking we write the sampling model as f(Xi|θS, S) = f(Xi|cθ(si)) with θ ∈ Θ ⊂
IRd and cθ a function of si.

We consider the following assumption.

[G] There exist a > 0 and S1 ⊂ S, such that ∀θ ∈ Θ, ∀S ∈ S1

P [Bc|θ, S] ≤M(θ)/N 1+a, with

∫

Θ

M(θ)dθ <∞

and
∫

L

P [Sc
1|λ]h(λ)dλ < M/N 1+a,

when N is large enough.

We then have the following result,

Theorem 1 Under condition [G] the approximate target distribution is close to the

true one in the following sense:

||π̂(λ, S|X)− π(λ, S|X)||TV ≤ CN−a,

except on a small set i.e.

Pm(X)(||π̂(λ, S|X)− π(λ, S|X)||TV > CN−a) ≤ N−1,

where Pm(X) denotes the probability under the marginal distribution of X.

Proof of Theorem (1): The proof is given in Appendix A. The idea is the follow-

ing, by definition of B, g(X|S) = g̃(X|S)(1+O(N−a)) for all S such that (X,S) ∈ B.

The difference between the true and the approximated distribution of (λ, S|X) (in

total variation), will then be of order N−a except on Bc, the complementary set of

B, which will be forgotten by our algorithm. To control this difference, we thus need

to control p(Bc|X), which is done using assumption [G].

This hypothesis is vague due to the generality of Theorem 1. The idea is that

under regularity conditions on the error model f(X|θS, S), Laplace expansions are

valid and the set B is large enough to ensure [G]. Actually 2 steps are crucial when

applying this theorem to a specific model. One is the determination of B, which must

be defined using quantities that can be evaluated at each iteration. Another is to

verify that the marginal probability of Bc,
∫

Θ×S P [Bc|θ, S]π(θ|S)dθdp(S), on which
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the Laplace approximation is not controlled, is bounded. When the conditional

probabilities of Bc given (θ, S) are uniformly bounded, as in DiMatteo et al. (2001),

then Theorem 1 can easily be applied. However, when the dimension of S increases

with N , as is typically the case with latent variable models, this is not the case and

justifying condition [G] can be quite involved. In the following section, we therefore

study more precisely the case of latent variable models, for which the si’s belong to

some finite state space.

2.2.2 Latent Variable Models With Finite State Space

In this Section, we consider the following type of models, based on longitudinal

data. The data consist of observed values Xij where i indexes the individual and

j the follow-up point, 1 ≤ i ≤ n, 1 ≤ j ≤ ni and N =
∑n

i=1 ni. We therefore

have n individuals, and for each individual i, we have a number ni of observations.

The Xij’s, conditional on the unobserved random variables Sij = s, s = 1, ..., k, are

independent with distribution Pθs
. The distribution Pθs

has a density with respect

to Lebesgue measure denoted by fθs
(X), where θs ∈ Θs, and Θs is an open subset

of IRps . The densities fθs
may differ by more than the parameter θs and they can

belong to different parametric families. The latent process is defined as follows. The

individuals are independent, and for each individual i, the Sij’s, j = 1, ..., ni, can

have a dependence structure (for example Markovian), with a distribution depending

on a parameter λ ∈ L. In other words, Sij and Si′j′ are independent when i 6= i′.

In this regard, a motivating illustration of such a latent variable model is the HMM

used for modeling HIV patients as proposed by Guihenneuc et al. (2000). There, the

latent process S represents the health progression throughout 6 transient unobserved

states. The observed process is a biological marker (CD4 cell counts), which has

a great within individual variability. In this model, a seventh state is considered,

which corresponds to the AIDS status, based on clinical symptoms. This state

is therefore perfectly observable. S is modeled by a Markov process on {1, ..., 7},
for which λij represents the transition rate to state j starting from state i. The

conditional distributions for S are therefore given by:

p(Sij|λ, Sij−1) = (exp Λdtij)Sij−1Sij
and p(Si1 = s) = δ(s) > 0, (2)

where Λ is the infinitesimal transition matrix. The error process is Gaussian.

Let θ = (θ1, ...., θk) ∈ Θ = Θ1× · · ·Θk. We also denote πs(θs) the marginal prior

of θs, s = 1, ..., k. If we want to characterize the progression of the hidden process

S, λ is then the parameter of interest. If we want to reconstruct the individual
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trajectories, then S is the parameter of interest. We can also consider (λ, S) as the

parameter of interest but θ is generally a nuisance parameter. We are thus interested

in the posterior distribution of the parameter of interest, for instance h(λ|X), the

posterior density of λ. This posterior distribution is obviously not available in closed

form and we must simulate it, using an MCMC algorithm. Indeed, the posterior

distribution of interest has the following form when λ is the parameter of interest:

h(λ|X) =
∑

S∈S
π(λ, S|X)

∝
∑

S∈S

∫

Θ

f(X|θ, S)dπ(θ)p(S|λ)h(λ)

Let θ̂ = (θ̂1, ..., θ̂k) = θ̂(X,S) be the conditional maximum likelihood estimate

of θ. The conditional model of X given S can be separated into k independent and

identically distributed models. The Laplace approximation, will then, mainly be a

Laplace approximation in each submodel. To make sure that this approximation is

good, we thus need to have enough observations in each submodel, i.e. in each state

s, s ∈ {1, ..., k}. To do so we consider the following assumption on the underlying

unobserved process S :

[H] : For all s ≤ k, i = 1, · · · , n,

p(for some j ≤ ni;Sij = s|λ) ≥ c0(λ) > 0.

This hypothesis is not strong. In particular in the HIV example, we have,

p(for some j ≤ ni;Sij = s|λ) > δ(s), so that [H] is satisfied.

The results that are stated in this section are written for non compact Θ.

Throughout this section we point out how the assumptions [A1]-[A6] and results

would simplify in the compact case. In the following, we denote by Eθ{h(X)} the

expectation of h(X) under Pθ.

[A1] In each submodel, s = 1, ..., k, the log-likelihood, log fθs
(x), is 4 times con-

tinuously differentiable in θs and satisfies: for ν = (ν1, ..., νp) ∈ INp, such that

|ν| ≤ 4, there exists δ > 0 and there exists q > 2 for which
∫

Θs

Eθs

(

sup
|θs−θ′s|<δ

|Dν log fθ′s(x)|q
)

πs(θs)dθs <∞,

where πs denotes the marginal prior density of θs.

[A2] In each submodel s = 1, ..., k, the information matrix Is(θs) is positive definite,

for all θs ∈ Θs, where

Is(θs) = −
∫

∂2 log (fθs
(x))

∂θs∂θT
s

fθs
(x)dx,
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is the Fisher information matrix per observation associated with the density

fθs
(x).

[A3] For all s = 1, ..., k, there exists 0 < c < 1/2 such that :

∫

Θs

Pθs

(

|θ̂s − θs| > n−c
s

)

πs(θs)dθs ≤ n−2
s .

[A4] Let θ0 = (θ0,1, ..., θ0,k) with θ0,s ∈ Θs, s = 1, ..., k. For all s = 1, ..., k,

∫

Θ

pr{θs; |θs − θ0,s| > n−c
s , Ks(θ0,s, θs) < 2 log ns/ns}πs(θ0,s)dθ0,s ≤ Cn−2−a

s ,

and
∫

Θ

pr

{

θs; |θs − θ0,s| > n−c
s , K2

s (θ0,s, θs) <
(2 + a) log ns

ns

M2,s(θ0,s, θs)

}

πs(θ0,s)dθ0,s ≤ Cn−2−a
s ,

where Ks(θ0,s, θs) = Eθ0,s

(

log fθ0,s
(X)− log fθs

(X)
)

and

M2,s(θ0,s, θs) = [Eθ0,s
{(log fθs

− log fθ0,s
)2}]1/2[Eθs

{(log fθs
− log fθ0,s

)2}]1/2.

[A5] There exists 0 < t < c, such that qt ≥ 2, with q defined in assumption [A1]

and c in assumption [A3], satisfying: pr (|Is(θs)|−1 > nt
s/2) < n−2

s .

[A6] π(θ) > 0, for all θ ∈ Θ, and π is twice continuously differentiable and satisfies

the following conditions : for all s ≤ k,

pr

(

sup
|θs−θ0,s|<n−c

s

|D log π(θs)| > nt
s

)

≤ n−2
s ,

and

pr

(

sup
|θs−θ0,s|<n−c

s

|D2 log π(θs)| > n2t
s

)

≤ n−2
s ,

with t defined in assumption [A5] and c in assumption [A3].

The first four conditions are usual in Laplace expansions. The fourth condition is

expressed quite generally, as it is done in Bickel and Ghosh (1990). It often requires

fairly weak conditions on the prior, such as moment conditions, in regular models.

We have chosen this general expression because, depending on the model, the ap-

propriate assumptions could be fairly different. For instance, even for very smooth

models like the Gaussian (µ, σ) distribution, with (µ, σ) ∈ IR× IR+, conditions such

as those proposed by Ibragimov and Hasminskii (1981) are not really appropriate.
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[A5] and [A6] are conditions on the prior, and are needed to control the be-

haviour of the Laplace expansion when the parameter goes to the boundary of the

set. When Θ is compact, it is enough to assume that terms are bounded, but when

Θ is not compact, it is necessary to control the integrals. In the Gaussian case

however, as in the HIV example, these conditions reduce to very simple conditions

on the prior density, in the form : π(σ > cn/ log n2) ≤ n−2. Condition [A6] is

equivalent, in the non compact case, to the type D4 of priors defined in Ghosh et

al. (1982).

In the previous Section we had defined B in a vague way : B = {(X,S); g(X|S) =

ĝ(X|S)(1 +O(N−a))}, for some a > 0. To be able to implement the algorithm, and

to obtain a rigorous proof on its validity we now give an explicit expression of B.

Let t = 2/q ∈ (0, 1) with q defined in assumption [A1], β ∈ (1/2, 1) and let As be

defined by : As = {θs; ls(θs)− ls(θ̂s) > − log ns} ∩ {θs; |θs − θ̂s| > n−c}, then

B(β, t, c) =
{

(X,S);∀s : ns > nβ, π(As) ≤ n−1
s , |Dνln(θ̂s)| ≤ n1+t

s for |ν| ≤ 3, |Js| ≥ n−t
s ,

sup
|θs−θ̂s|<n−c

s

|Dνln(θs)| ≤ n1+t
s for |ν| = 4, sup

|θs−θ̂s|<n−c
s ,∀s

|D2ψ(θ)| ≤ n2t
s ,

Dψ(θ̂) ≤ nt
s

}

,

where c is defined in assumption [A3]. Condition [H] implies that β can be as close

to 1 as we want.

When B is defined as such, a = β(1− 3t). This definition of B is simpler in the

compact case, by dropping the last two constraints on ψ = log π.

We now state the main result of this section :

Theorem 2 If [H] is satisfied and if the hypotheses [A1]− [A6] are satisfied, the

approximate target distribution is close to the true one in the following sense:

||π̂(λ, S|X)− π(λ, S|X)||TV ≤ Cn−a,

except on a small set i.e.

Pm(X)(||π̂(λ, S|X)− π(λ, S|X)||TV > Cn−a) ≤ n−1,

where Pm(X) denotes the probability under the marginal distribution of X.

By imposing stronger conditions, in particular by imposing bounds in the form

n−h for h greater than what is already imposed in assumptions [A3]-[A6], we can

obtain a better bound for Pm(X)(||π̂(λ, S|X)−π(λ, S|X)||TV > Cn−a), as will appear

clearly in the proof.
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Note that the error bounds for the posterior distribution of (λ, S) are controlled

in terms of the number of individuals, n, and not by the total number of observations,

N , as in Theorem 1. However in most applications with longitudinal data, N would

typically equal or at least bounded by n times a constant greater than 1, in other

words the number of follow ups would be more or less the same for each individual.

Proof of Theorem 2: As in the proof of Theorem 1, we obtain

|π̂(A|X)− π(A|X)| ≤ 2n−a +

∑

S IIBc(X,S)g(X|S)p(S)
∑

S IIB(X,S)g(X|S)p(S)
(1 + n−a)

≤ 2n−a + (1 + n−a)
p(Bc|X)

1− p(Bc|X)
.

Therefore, we just need to prove that

Pm(X){p(Bc|X) > n−a} ≤ Cn−1. (3)

The proof of (3) is given in Appendix B. 2

In the compact case, i.e. if Θ is compact or equivalently if each Θs is compact,

Ghosh et al. (1982) and Bickel and Ghosh (1990) have obtained conditions on the

model, fθ and on π to be able to integrate out the Laplace expansion with respect

to π. Now, if Θ is not compact, as is typically the case in medical studies, no such

result exists. Our definition of B and the assumptions [A1]-[A6] are defined for

such non compact sets. These assumptions can be relaxed slightly in the compact

case (Ghosh et al. (1982) and Bickel and Ghosh (1990)).

The algorithm ML, in Section 2.1, gives therefore a reasonable answer when the

number of individuals is large, in theory. We now present a simulation study, to

illustrate this in practice and to compare it to the classical Gibbs algorithm M0.

3 SIMULATIONS

We have simulated a data set in a case of HMM very close to the HIV example.

The posterior distribution of the parameters will be estimated by the classical Gibbs

sampling algorithm M0 as described in Section 1 and by the Gibbs sampling algo-

rithm with the Laplace approximation step ML. We will compare the two algorithms

in order to appreciate their relative performance.

3.1 Simulated Model

The hierarchical model we simulated has 7 states in the Markov process with the

seventh an absorbing state that we assume is observed. A Gaussian distribution is
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the link between the observations and the true states. More precisely, if Sij is the

state of the individual i, at time tij, then Sij takes its value in {1, ..., 7}. The 11

transitions rates are illustrated as follows:

λ1−→ λ3−→ λ5−→ λ7−→ λ9−→ λ11−→
1 2 3 4 5 6 7
←−
λ2

←−
λ4

←−
λ6

←−
λ8

←−
λ10

The transitions rates are chosen to be equal to 0.04 for the forward rates (λ1, λ3, λ5, λ7, λ9)

except for the transition to the absorbing state 7, λ11 = 0.01, and equal to 0.005 for

the backward rates (λ2, λ4, λ6, λ8, λ10).

As the seventh state is supposed to be observed and if Xij is the value of the

continuous observed variable, then the conditional distribution of X given S is

f(Xij|θk, Sij = k) = N (µk, σ
2
k), k = 1, ..., 6,

where {µ1, ..., µ6}= {log 1100, log 800, log 600, log 425, log 275, log 170} and {σ2
1, ..., σ

2
6}=

{0.05, 0.01, 0.01, 0.01, 0.05, 0.05}. The choice of the parameters values was inspired

by the HIV example where the observed variable X corresponds to the CD4 cell

counts on a log scale. We have simulated n = 300 individuals with a number of

observations ni per individual between 10 and 12 inclusive.

Figure 1 represents the histogram of the simulated X (on the left) and the values

of the X’s per state (on the right). Regions where the values of X do not give clear

information on the states are highlighted by these graphs.

The goal is to estimate the parameters of interest, {λ1, ..., λ11}.

3.2 Implementation

The nuisance parameters are globally denoted by θ and the parameters of interest,

the transition rates, by λ. We consider two cases. In case 1, the mean parameters,

{µ1, ..., µ6}, are supposed to be known, θ is then simply composed by the variance

parameters {σ2
1, ..., σ

2
6}. Then, it is very easy to obtain an exact analytical expression

of π(λ, S|X). In this case, we can simulate a Markov chain (λt, St) whose stationary

distribution is the true posterior π(λ, S|X), without simulating θ. This algorithm

will be called the Exact algorithm and the posterior distribution of the parameters

will be considered as a reference in the comparison with the results obtained by

the Gibbs Algorithm M0 and the Laplace algorithm ML. This provides us a way

to evaluate the performance of the Laplace approximation and the effect of the

approximation on the posterior distribution.
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Figure 1: Histogram of simulated data X (left) and values of the X’s per state

(right)

In case 2, we consider the mean parameters as unknown so that the nuisance

parameter θ is now composed by {(µ1, σ
2
1), ... ,(µ6, σ

2
6)}. In this case, no analytical

expression of π(λ, S|X) exists which excludes the use of the Exact Algorithm.

Recall that, in the Laplace algorithm, we need to ensure that (X,S) ∈ B, where

B is defined in Section 2.2. In this example, f(x|θ, S) is Gaussian, so we only need

to check that the number of observations per state is large enough, i.e. greater than

n3/4 and that the σ̂’s were always neither too large nor too small. It turned out,

that these cases never happened.

As in the HIV problem studied by Guihenneuc et al. (2000), we consider the fol-

lowing prior distributions. The transition rates are taken to be uniform on [0, 0.25],

{σ2
1, ... ,σ2

6} are independent inverse Gamma random variables with parameters

(0.01,0.01). In Case 2, {eµ2 , ..., eµ6} are generated from order statistics on [100, 1100]

with a mean spacing equal to 200 in order to reasonably separate their values, and

µ1 is fixed at log 1100.

3.3 Results

The results are obtained on the basis of 20000 iterations of each algorithm excluding

1000 iterations for the burn-in. A new parameter of interest which can be evaluated

at each iteration is the waiting time Ti→j of passage into state j starting from state

i. This parameter is directly deduced from the transition rates and is easier to
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interpret, it is thus often estimated in practice.

An illustration of the results is given by Figure 2 which represents the estimated

marginal posterior distributions of T3→4 and T3→5 when the mean parameters are

considered as known for the three algorithms (case 1). Note that this figure is

representative of the estimated marginal posterior distributions of the other param-

eters. The three algorithms give very similar results, although the Gibbs algorithm

tends to overestimate the tails of the posterior density. To be more precise, the Ex-

act algorithm and the Laplace algorithm give equivalent estimated posterior means

and 95% credible intervals which are, respectively for T3→4 and T3→5, equal to 34.3

([26.4, 44.7]) and 56.1 ([45.9, 67.9]). This remark shows a very good performance of

the Laplace approximation. The Gibbs algorithm leads to posterior means close to

those obtained from the other two algorithms but the estimated credible intervals

are slightly larger (34.0, [25.8, 44.9] for T3→4 and 56.1, [46.4, 69.0] for T3→5). However

classical diagnostic tools such as those provided by CODA software (Convergence

Diagnostic and Output Analysis) give no real indication of divergence for the three

algorithms.

20 30 40 50

0.
0

0.
04

0.
08

E
xa

ct
 a

lg
or

ith
m

Waiting times from  3  to  4

20 30 40 50

0.
0

0.
04

0.
08

La
pl

ac
e 

al
go

rit
hm

20 30 40 50

0.
0

0.
04

0.
08

G
ib

bs
 a

lg
or

ith
m

40 50 60 70

0.
0

0.
04

E
xa

ct
 a

lg
or

ith
m

Waiting times from  3  to  5

40 50 60 70

0.
0

0.
04

La
pl

ac
e 

al
go

rit
hm

40 50 60 70

0.
0

0.
04

G
ib

bs
 a

lg
or

ith
m

Figure 2: Marginal posterior distributions of T3→4 and T3→5 in case 1 obtained

by, from top to bottom: Exact, Laplace, Gibbs algorithm. Solid and dashed lines

represent, respectively, estimated posterior means and 95% credible intervals.
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Table 1: Posterior mean and 95% credible interval of T3→4 and T3→5 in case 2

Laplace algorithm Gibbs algorithm Gibbs algorithm

on 20000 iterations on 20000 iterations on 40000 iterations

T3→4 36.1 35.1 35.6

[26.4,47.2] [26.7,45.3] [26.7,46.8]

T3→5 58.6 57.9 57.9

[47.7,71.8] [48.1,69.8] [47.8,70.4]

We observe a different phenomenon in the second case when the mean parameters

are unknown. The first two rows of Figure 3 represent the estimated marginal

posterior distribution of T3→4 and T3→5 by the Laplace algorithm (top) and the Gibbs

Algorithm (second row) on the basis of 20000 iterations. The estimated posterior

means and 95% credible intervals are given in table 1 (first two columns). Remember

that, in this case, the Exact algorithm cannot be implemented. Both the posterior

means and the credible intervals differ between the Laplace algorithm and the Gibbs

algorithm. In particular the Gibbs algorithm does not seem to visit correctly, within

20000 iterations, the tails of the distribution. This point suggests the need of a

greater number of iterations for the Gibbs algorithm. We have thus simulated 40000

iterations of the Gibbs algorithm (third row of Figure 3 and third column of Table

1). The estimated marginal posterior distributions get closer to those obtained

from the Laplace algorithm (with 20000 iterations). Therefore, not only does the

Laplace algorithm give a good approximation of true posterior distributions, but it

also converges more quickly.

4 CONCLUSIONS

In this paper, we propose an algorithm, that simulates from an approximated poste-

rior density, by using a Laplace approximation at each iteration of a Gibbs algorithm.

We have proved that the new target density gets close to the true one, as the number

of observations increases. In the simulations we have carried out, we observed that,

even with a reasonable number of individuals (300), the posterior distribution was

very well approximated by the Laplace algorithm. The surprisingly good behaviour

of the Laplace approximation, might be due to the fact that Laplace approximations

of posterior quantities are actually correct to the order n−3/2 instead of n−1, as was
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Figure 3: Marginal Posterior Distributions of T3→4 and T3→5 in case 2 obtained

by, from top to bottom: Laplace algorithm on 20000 iterations, Gibbs algorithm

on 20000 iterations, Gibbs algorithm on 40000 iterations. Solid and dashed lines

represent, respectively, estimated posterior means and 95% credible intervals.
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suggested by Kass, Tierney and Kadane (1989).

This algorithm could therefore be used in many applied studies where the large

computation time is a real problem, as an improvement of the classical Gibbs algo-

rithm. In our simulated example, the computational time per iteration was exactly

the same for the Laplace algorithm and the Gibbs algorithm. However, as the

Laplace algorithm converges more rapidly to the stationary distribution (40000 it-

erations of the Gibbs algorithm lead to approximately the same result as 20000

iterations of the Laplace algorithm), the global computational time was a lot bet-

ter in the case of the Laplace algorithm. In the case of DiMatteo et al. (2001),

the computational time per iteration was even better for the Laplace algorithm. In

their paper, DiMatteo et al. (2001) used the same kind of approximation to avoid

the simulation of an extra parameter. They also proved that this approximation

is good, as the number of observations goes to infinity. However, their context is

very special, since the dimension of the whole parameter, in their case (k, ξ, β, σ),

is finite and does not depend on n. In this paper, we present a very general result

(Theorem 1) and a more practical one (Theorem 2). In both cases, we allow the

dimension of the parameter to increase with n, or even to be infinite in Theorem

1. This makes a lot of difference when dealing with Laplace approximations, since

uniform approximations cannot be obtained.

In some cases, especially when the dimension of the nuisance parameter θ is

large, adding a second order term in the Laplace expansion (which would lead to an

approximation of order N−2) improves greatly the approximation at each iteration.

By adding a few more assumptions on the model (typically on the prior), this should

also improve the global error on the posterior distribution of (λ, S). This would

require some technical work but the basic idea would be the same.

It would be interesting to study the behaviour of the Laplace algorithm on real

data, where we are, in addition, often faced with misspecification of the model.
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APPENDIX A: PROOF OF THEOREM 1

We have, for any Borel set A on L× S :

|π̂(A|X)− π(A|X)|

=

∣

∣

∣

∣

∫

S

∫

λ
IIA(λ, S)IIB(X, s)ĝ(X|S)p(S|λ)h(λ)dλdP (S)

∫

S
IIB(X,S)ĝ(X|S)p(S)dP (S)

−
∫

S

∫

λ
IIA(λ, S)g(X|S)dp(S|λ)h(λ)dλ

∫

S
g(X|S)dp(S)

∣

∣

∣

∣

≤
∫

S

∫

λ
IIB(X, s)|ĝ(X|S)− g(X|S)|dp(S|λ)h(λ)dλ

∫

S
IIB(X,S)ĝ(X|S)dp(S)

+

∣

∣

∣

∣

∫

S

∫

λ
IIA(λ, S)IIB(X, s)g(X|S)dp(S|λ)h(λ)dλ

∫

S
IIB(X,S)ĝ(X|S)dp(S)

−
∫

S

∫

λ
IIA(λ, S)g(X|S)dp(S|λ)h(λ)dλ

∫

S
g(X|S)dp(S)

∣

∣

∣

∣

≤ N−a + p(Bc|X) +

∫

S

∫

λ
IIA(λ, S)IIB(X, s)g(X|S)dp(S|λ)h(λ)dλ

∫

S
g(X|S)dp(S)

×
∣

∣

∣

∣

∫

S
g(X|S)dp(S)−∑S IIB(X,S)ĝ(X|S)dp(S)

∫

S
IIB(X,S)ĝ(X|S)dp(S)

∣

∣

∣

∣

≤ 2N−a + p(Bc|X) +

∫

S
IIBc(X,S)g(X|S)dp(S)

∫

S
IIB(X,S)ĝ(X|S)dp(S)

.

When (X,S) ∈ B, (1−N−a)−1g(X|S) ≥ ĝ(X|S) ≥ (1 +N−a)−1g(X|S), so,

|π̂(A|X)− π(A|X)| ≤ 2N−a +

∫

S
IIBc(X,S)g(X|S)dp(S)

∫

S
IIB(X,S)g(X|S)dp(S)

(1 +N−a)

≤ 2N−a + (1 +N−a)
p(Bc|X)

1− p(Bc|X)
.

We use the Markov inequality,

Pm(X){p(Bc|X) > N−a} ≤ Nap(Bc)

≤ MN−1,

where the last inequality comes from hypothesis [G].

APPENDIX B: PROOF OF INEQUALITY (3)

We use Markov’s inequality :

Pm(X){p(Bc|X) > n−a} ≤ nap(Bc)

= nap(Bc ∩ {∃s;ns ≤ nt}) + nap(Bc ∩ {∀s;ns > nt}) (4)

Assumption [H] implies that the first term of the right hand side of (4) is bounded by

n−h, for all h > 0, when n is large enough. We now consider the second term of the
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right hand side of (4): naE{p(B1|S, θ, λ)}, where B1 = Bc ∩ {ns > nt, s = 1, ..., k}.
Inequality (3) will therefore be satisfied if

p(B1|S, θ0, λ0) ≤
c(θ0)

n1+a
, with

∫

Θ

c(θ)π(θ)dθ <∞. (5)

Let Bs = {Xs; gs(Xs) = ĝs(Xs)(1 + n
−a/β
s )}, with Xs = (x1, ..., xns

) are ns indepen-

dent and identically distributed random variables distributed according to fθ0,s
,

gs(Xs) =

∫

Θs

ns
∏

i=1

fθs
(xi)πs(θs)dθs,

and ĝs is its formal Laplace expansion. In other word, Bs is the set on which the

Laplace expansion is correct, conditionally on S, in the sub-model s. The conditional

independence structure implies that (5) will be obtained if, for all s ≤ k,

Pθ0,s
(Bc

s) ≤
c(θ0,s)

n
(1+a)/β
s

, with

∫

Θ

cs(θs)πs(θs)dθs <∞. (6)

We can therefore work in each submodel independently, and drop the s, for simplic-

ity’s sake.

In the general case, dropping the index s, we have :

Pθ0
(Bc) ≤ Pθ0

{π(An) > n−1}+ Pθ0
{inf x′Jx/(x′x) ≤ n−t}

+
3
∑

|ν|=2

Pθ0
(|Dνln(θ̂)| ≥ n1+t) + Pθ0

(

sup
|θ−θ̂|<n−c

|D4ln(θ)| ≥ n1+t

)

+Pθ0

(

sup
|θ−θ̂|<n−t

|D2ψ(θ)| > n2t

)

+ Pθ0

(

Dψ(θ̂) > nt
)

. (7)

Hypothesis [A4] implies that :
∫

Θ

Pθ

(

|θ̂ − θ| > n−c
)

π(θ)dθ ≤ n−2

so we only need to work on {θ; |θ − θ0| ≤ 2n−c}. The last two terms of the right

hand side of (7) are bounded by n−2 using hypothesis [A6]. We now consider the

first term of the inequality (7). In Appendix C , we prove that

Pθ0

[
∫

|θ−θ0|>n−c

exp {ln(θ)− ln(θ̂)}π(θ)dθ ≥ 2n−1

]

≤ n−2. (8)

Let gν(X) = sup|θ−θ0|<n−c |Dν log fθ(X)|, then

Pθ0

(

sup
|θ−θ0|<n−c

|Dνln(θ)|/n > nt

)

≤ Pθ0

(

n
∑

i=1

gν(Xi) > n1+t

)

≤ n−qtEθ0
{gν(Xi)

q},
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assumption [A1] then implies that for all |ν| ≤ 4

∫

Θ

Pθ0

(

sup
|θ−θ0|<n−c

|Dνln(θ)| > n1+t

)

π(θ0)dθ0 ≤ n−2. (9)

It thus only remains to bound the second term of (7). Let Jn(θ) = −n−1D2ln(θ)

and Jn = Jn(θ̂), then Jn = Jn(θ0) + (θ̂− θ0)DJn(θ̄)T , with θ̄ ∈ (θ0, θ̂) and where AT

denotes the transpose of A. Let Zn,2(θ0) be defined by Jn(θ0) = I(θ0)+n
−1/2Zn,2(θ0),

then

Pθ0

(

|Jn|−1 > nt
)

≤ Pθ0

(

|I(θ0)|−1 > nt/2
)

+ Pθ0

(

n−1/2|Zn,2(θ0)| > 1/4
)

+Pθ0

{

|(θ̂ − θ0)DJn(θ̄)T | > 1/2
}

. (10)

Hypothesis [A5] implies that the first term of the right hand side of (10) is of the

right order. The last term is bounded by

an = Pθ0

(

|DJn(θ̂)| > nc/2
)

+ Pθ0

(

|θ̂ − θ| > n−c
)

.

The first term of an is bounded by n−2 as previously and the second one also, using

hypothesis [A3]. We now consider the second term of (10).

Pθ0

(

n−1/2|Zn,2(θ0)| > 1/4
)

≤ 4q′/2n−q′/2Eθ0

(

|Zn,2(θ0)|q
′

)

≤ Cn−q′/2Eθ0

(

|D2 log fθ0
(X) + I(θ0)|q

′

)

,

where C is a constant depending only on q′. Inequality (9) implies that there exists

4 ≤ q′ ≤ q such that the above expectation is finite and integrable in θ0. This

achieves the proof of Theorem (2). 2

APPENDIX C : PROOF OF INEQUALITY (8)

We recall that An = {θ; |θ − θ0| > n−c; ln(θ) − ln(θ̂) > − log n}. In this proof, for

clarity’s sake, we denote π(B) the probability of B under the prior distribution of

θ. Then

Pθ0

{

π(An) > n−1
}

≤ nEθ0
{π(An)}

= n

∫

|θ−θ0|>n−c

Pθ0
{ln(θ)− ln(θ0) > − log n} π(θ)dθ

≤ n

∫

|θ−θ0|>n−c

Pθ0

{

Zn(θ) >
√
nK(θ0, θ)− log n/

√
n
}

π(θ)dθ,
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where Zn(θ) = n−1/2 {ln(θ)− ln(θ0) + nK(θ0, θ)}. Let

Ãn = {θ; |θ − θ0| > n−c, K2(θ0, θ) ≥ (2 + a/β) log n/nM2(θ0, θ)},

Hypothesis [A4] implies that

Pθ0
{π(An) > n−1} ≤ n

∫

Ãn

Pθ0

(

Zn(θ) >
√
nK(θ0, θ)/2

)

π(θ)dθ + n−1−(a/β).

Let θ ∈ Ãn,

Pθ0

(

Zn(θ) >
√
nK(θ0, θ)/2

)

≤ e−t
√

nK(θ0,θ)/2
[

Eθ0

{

et(log fθ−log fθ0
)/
√

n
}

etK(θ0,θ)/
√

n
]n

= e−t
√

nK(θ0,θ)/2

[

1 +
t2

2n

∫ 1

0

Eθ0

{

(l(θ0)− l(θ))2eut(l(θ)−l(θ0))/
√

n
}

du

]n

≤ e−t
√

nK(θ0,θ)/2

{

1 +
t2M2(θ0, θ)

n

}n

≤ e−t
√

nK(θ0,θ)/2+t2M2(θ,θ0)/2.

Let t = 2
√
nK/M2, then Pθ0

(Zn(θ) >
√
nK(θ0, θ)/2) ≤ e−nK(θ0,θ)2/M2(θ,θ0), we thus

obtain
∫

Ãn
e−nK(θ0,θ)2/M2(θ,θ0) ≤ n−2−(a/β), which achieves the proof of (8).
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