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Abstract 

Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected 

individuals develop chronic hepatitis which can then progress to liver cirrhosis and 

hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20-30% of acutely 

infected individuals and results in resolution of infection without sequaelae. Both viral and 

host factors appear to play an important role for resolution of acute infection. A large body of 

evidence suggests that a strong, multispecific and long-lasting cellular immune response 

appears to be important for control of viral infection in acute hepatitis C. Due too the lack of 

convenient neutralization assays, the impact of neutralizing responses for control of viral 

infection had been less defined. In recent years, the development of robust tissue culture 

model systems for HCV entry and infection has finally allowed to study antibody-mediated 

neutralization and to gain further insights into viral targets of host neutralizing responses. In 

addition, detailed analyzes of antibody-mediated neutralization in individual patients as well 

as cohorts with well defined viral isolates has enabled to study neutralizing responses in the 

course of HCV infection and characterize the impact of neutralizing antibodies for control of 

viral infection. This review will summarize recent progress in the understanding of the 

molecular mechanisms of antibody-mediated neutralization and its impact for HCV 

pathogenesis. 
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Introduction 

With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major 

impact on public health (1). HCV is a major cause of hepatitis world-wide. The majority of 

infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and 

hepatocellular carcinoma. Treatment options for chronic HCV infection are limited and a 

vaccine to prevent HCV infection is not available.  

 

HCV is a small enveloped positive-strand RNA virus that belongs to the genus 

Hepacivirus of the Flaviviridae family. This virus exhibits high genetic heterogeneity and has 

been classified into six genotypes and several subtypes. The HCV genome encodes a single 

precursor polyprotein of about 3,000 amino acids that is cleaved co- and post-translationally 

by host and viral proteases into functional structural and non-structural proteins. The virion is 

composed of three different structural proteins: the core protein forming the viral 

nucleocapsid and two envelope glycoproteins, E1 and E2.  

 

In vivo, HCV infects only humans and chimpanzees (2). Each individual is infected 

with a mixture of distinct but closely related HCV genomes, termed quasispecies. The liver is 

the primary target organ of HCV, and the hepatocyte is its primary target cell. Replication of 

the HCV genome has been demonstrated in vivo and in vitro in liver hepatocytes, and 

hematopoietic cells including dendritic cells and B lymphocytes (3, 4). HCV establishes 

persistent infection in the majority of infected individuals despite the fact that it is recognized 

and targeted by the host’s immune system (5). 

 

Viral proteins are recognized as non-self by the host’s immune system and induce the 

production of antibodies. During the natural course of infection, a large number of antibodies 

targeting epitopes of both structural and non-structural proteins are produced. The vast 

majority of antibodies induced have no antiviral activity, either because they are elicited by 

intracellular, degraded or incompletely processed proteins released from dying cells or 
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because they are directed against epitopes that do not play any role in the virus entry 

process (6, 7). A small proportion of antibodies termed “neutralizing antibodies” are able to 

target exposed epitopes of the viral structural proteins and neutralize the infectious virus by 

preventing or controlling viral infection. This review will summarize the current knowledge 

about host neutralizing responses in HCV infection. It starts with a brief description of the 

current model systems allowing the study of neutralizing responses, followed by viral targets 

of neutralizing antibodies. Finally, neutralizing responses in the course of HCV infection and 

the impact of neutralizing antibodies for HCV pathogenesis are discussed. 

 

Model systems for the study of antibody-mediated virus neutralization 

For many years, studies of host neutralizing responses against HCV had been hampered by 

the lack of a convenient tissue culture system for HCV entry and infection. In recent years, 

several in vitro models have been developed to study defined aspects of HCV host cell 

interaction and antibody-mediated virus neutralization: These include recombinant HCV 

envelope glycoproteins (8, 9), HCV-like particles (10), HCV pseudotyped particles (11-13), 

and, more recently, cell-culture derived infectious HCV (14-16). Recombinant HCV envelope 

glycoproteins have been successfully used as a surrogate model to study virus-host cell 

interaction leading to the identification of putative HCV receptor candidates including CD81 

(8), scavenger receptor class B type I (SR-BI) (9) and heparan sulfate (17) as well as 

antibodies inhibiting cellular binding of envelope glycoproteins (18). HCV-like particles (HCV-

LP) generated by self-assembly of the HCV structural proteins in insect cells have been 

shown to exhibit morphologic, biophysical, and antigenic properties similar to putative virions 

isolated from HCV-infected patients (10). In contrast to individually expressed envelope 

glycoproteins E1 and E2, E1/E2 heterodimers of HCV-LPs are presumably presented in a 

native, virion-like conformation. HCV-LPs have been shown to bind and enter human 

hepatoma cells as well as primary hepatocytes and dendritic cells in a receptor-mediated 

manner, therefore representing a useful model system for the study of HCV-host cell 
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interaction (17, 19-24) including the characterization of antibodies interfering with cellular 

binding of particles (22, 25).  

 

Retroviral HCV pseudotyped particles (HCVpp) represent a convenient and elegant 

approach to study viral entry and antibody-mediated neutralization (11, 12). Infectious 

HCVpp consist of unmodified HCV envelope glycoproteins E1 and E2 assembled onto 

retroviral or lentiviral core particles (11, 12). HCVpp are produced by transfecting cells with 

expression vectors encoding the full-length E1/E2 polyprotein, retroviral or lentiviral core 

proteins, and a packaging-competent retro- or lentiviral genome carrying a marker gene. The 

presence of a green fluorescent protein or luciferase reporter gene packaged within these 

HCVpp allows reliable and fast determination of infectivity mediated by the envelope 

glycoproteins. HCVpp are infectious for certain cell lines of hepatocyte origin, principally Huh-

7 cells, as well as for human primary hepatocytes (11, 12). This system has been extremely 

useful in identifying neutralizing antibodies as well as characterization of the molecular 

mechanisms of antibody-mediated neutralization (12, 25-30). Vesicular stomatitis viruses 

(VSV)/HCV pseudotypes expressing HCV E1 or E2 chimeric proteins containing 

transmembrane and cytoplasmic domains of the VSV G glycoprotein (13, 31) have been 

developed as another HCV pseudotype model system to study HCV entry and antibody-

mediated neutralization. VSV/HCV pseudotypes infect human hepatoma cell lines and sera 

from HCV-infected chimpanzees or humans neutralize the pseudotype virus infectivity (13, 

32). In contrast to retroviral HCV pseudotypes demonstrating strong tropism for liver-derived 

cell lines, VSV/HCV pseudotypes are generated in relatively lower titer and can infect a 

broad range of mammalian cell lines, including cell lines not derived from the liver.  

 

Most recently, several laboratories succeeded in establishing the efficient production 

of infectious HCV particles using a unique clone derived from a viral isolate of a Japanese 

patient with fulminant hepatitis C (JFH-1) (14-16). Successful infection of naïve Huh-7 and 

Huh-7-derived hepatoma cells with cell-culture derived HCV (HCVcc) was demonstrated by 
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detection of viral proteins and a highly reproducible time-dependent increase of viral RNA in 

infected cells (14-16). Virus production in Huh-7 cells was dependent on an active viral 

polymerase and expression of a functional viral envelope containing the HCV envelope 

glycoproteins E1 and E2 (14-16). Inoculation of naïve chimpanzees with JFH-1 or chimeric 

J6/JFH-1-derived HCV particles synthesized in vitro resulted in viral infection in vivo (14, 33) 

demonstrating the biological significance of this model system. The ability to generate 

infectious HCVcc of different genotypes – such as the development of chimeric HCVcc (34) 

or HCVcc derived from HCV genotype prototype 1a strain H77 (35) - certainly improves the 

scope of the cell culture system for HCV infection. Infection of HCVcc has been shown to be 

efficiently neutralized by anti-HCV antibodies derived from human sera (14) as well as 

polyclonal anti-envelope antibodies (34). 

 

The chimpanzee remains the only natural occurring animal model for the study of 

HCV infection in vivo. The clinical course of infection is usually milder in chimpanzees than in 

humans. However, these animals have provided unique opportunities to study adaptive 

immune responses to HCV (36). Using the chimpanzee model, antibodies with neutralizing 

properties have first been described (37, 38). These antibodies were directed against 

epitopes in the envelope glycoprotein E2 hypervariable region 1 (HVR-1) of HCV and 

appeared to be isolate-specific. The chimpanzee model has also been used to study 

protective immunity against re-exposure. Vaccination studies (39) and passive immunization 

with rabbit anti-sera (38) have shown some protection but infection of chimpanzees with HCV 

does not provide complete protective immunity against re-infection with homologous or 

heterologous virus (40-44). 

 

Targets of host neutralizing responses 

In recent years, rapid progress has been made in the understanding of the molecular 

mechanisms of HCV life cycle (Figure 1). Attachment of the virus to the target cell is 

mediated through binding of HCV envelope glycoproteins to binding factors present on the 
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host cell surface, such as the glycosaminoglycan heparan sulfate (17, 25). Binding and entry 

of HCV is believed to be a multistep process involving several attachment and entry factors, 

such as CD81, SR-BI and claudin-1 (45-47). HCV is most certainly internalized in a clathrin-

dependent manner (48-50) and HCV genome delivery into the host cell cytosol prior to HCV 

replication is pH dependent (48, 51). In analogy to other viral infection, antibodies 

neutralizing HCV may render virions non-infectious by interfering with different steps of the 

viral life cycle (52, 53). Binding of the antibodies to the virus may directly block attachment of 

the virus with the host cell and thus inhibit dissemination of infection. Neutralizing antibodies 

may also interfere with post-binding steps such as interaction of the virus with host entry 

factors. If endocytosis is an obligate replicative step, internalization of the virus into the host 

cell by endocytosis may also cause neutralization. Neutralization of viruses by antibodies 

may also take place during fusion at the cell surface or in endosomes: neutralizing antibodies 

may directly interfere with the fusogenic protein, hinder conformational changes necessary 

for the fusion process or simply obstruct contact between cellular and viral membranes. In 

addition, neutralizing antibodies may also interfere with viral uncoating or the first steps 

necessary for viral replication (Fig. 1). The identification and characterization of antibodies 

targeting distinct steps of viral entry is thus an important strategy for the understanding of the 

molecular mechanisms of antibody-mediated neutralization. 

 

Using the above described model systems, it could be demonstrated that envelope 

glycoproteins E1 and E2 are critical for host cell entry and thus represent important targets 

for virus neutralization. Monoclonal or polyclonal antibodies targeting both linear and 

conformational epitopes of envelope glycoprotein E2 have been shown to inhibit cellular 

binding of HCV-LP binding, entry of HCVpp and infection of HCVcc (Table 1) (10-12, 14-16, 

19, 20). Several viral epitopes targeted by neutralizing antibodies have already been 

identified: epitopes of the E2 HVR-1 region (aa 384-410) (12, 18, 27), two epitopes adjacent 

to the N-terminal region HVR-1 region (aa 408-422 and aa 412-419) (22, 54, 55), the E2 

CD81 binding region (aa 474-494 and aa 522-551) (12, 54, 56, 57) and conformational 
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epitopes within glycoprotein E2 (58-61). These epitopes may represent potential candidate 

targets for antibodies in passive immunoprophylaxis. Indeed, two studies have demonstrated 

that monoclonal antibodies directed against conformational epitopes (60) or epitope aa 412-

423 exhibited broad cross-neutralizing activity among all major genotypes of HCVpp entry 

(54) as well as HCVcc infectivity (62). Most recently, at least three epitopes (aa 270-284, 

416-430, 600-620) playing a role in membrane fusion processes have been identified in the 

envelope glycoproteins E1 and E2 (63). Since one epitope (aa 416-430) has been shown to 

represent a target for monoclonal antibodies efficiently neutralizing HCV infection (54), it is 

conceivable that membrane fusion may represent another target for anti-HCV antibodies with 

neutralizing properties. 

 

Impact of Virus Neutralizing Antibodies for Pathogenesis of Infection 

HCV RNA is detectable already one week following infection. Despite the rapid onset of viral 

replication, there is a delay in the appearance of HCV-specific T -lymphocytes and HCV-

specific antibodies which only appear several weeks after infection. Patients who 

spontaneously clear HCV infection have been described to mount a vigorous multi-epitope-

specific CD4 and CD8 T-cell responses (64, 65). Antibody-mediated neutralization occurs 

during HCV infection in vivo but the role of antibodies for the control of HCV infection has 

been difficult to study. Antibody-mediated neutralization has been suggested by study of 

patients undergoing liver transplantation for HCV- and hepatitis B virus (HBV)-related liver 

cirrhosis. Infusion of anti-HBs hyperimmune globulin containing anti-HCV appeared to reduce 

HCV infection in the transplanted liver (66). In addition, HCV-infected patients with primary 

antibody deficiencies have been reported to have accelerated rates of disease progression 

(67, 68). Moreover, passive protection against HCV has been demonstrated in a cohort of 

patients that had been administered immunoglobulin preparations derived from HCV RNA-

positive plasma but containing HCV-neutralizing antibodies (69). However, in the majority of 

patients, HCV infection is established despite the induction of an humoral immune response 

that targets various epitopes of the HCV envelope glycoproteins (22, 26, 28, 70, 71).  
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Until recently, functional studies analyzing the neutralizing antibody response during 

acute and chronic HCV infection using HCV model systems demonstrated a lack of 

neutralizing antibodies in the majority of patients with acute HCV infection (22, 26, 70, 72). 

These studies were limited by the fact that the viral surrogate ligand was derived from a 

different isolate than the virus present in the infected patient thus precluding the detection of 

isolate-specific antibodies. Most recently, studies using well defined nosocomial or single-

source HCV outbreaks with a defined inoculum enabled to study the role of isolate-specific 

neutralizing antibodies for control of HCV infection in humans. Using the HCVpp model 

system, two studies have demonstrated that neutralizing antibodies are induced in the early 

phase of infection by patients who subsequently clear the virus (29) or control viral infection 

(73). In a well characterized single-source outbreak of hepatitis C, viral clearance was 

associated with a rapid induction of neutralizing antibodies in the early phase of infection. In 

contrast, chronic HCV infection was characterized by absent or low-titer neutralizing 

antibodies in the early phase of infection (29). In addition, patients with resolution of infection 

were shown to exhibit a broader cross-neutralizing activity of antibodies in the early phase of 

infection. An impaired ability to cross-neutralize viral variants rapidly emerging during acute 

infection may thus contribute to viral evasion from neutralizing responses in persistent HCV 

infection (29). These results suggest that a strong early broad neutralizing antibody response 

may contribute to control of HCV in the acute phase of infection and assist cellular immune 

responses in viral clearance. This conclusion is further supported by recent findings for HIV 

demonstrating that neutralizing antibodies act in concert with antiviral cellular responses for 

control of HIV infection (74-76). Furthermore, experimental data obtained in animal models 

have demonstrated that immune control of poorly cytopathic viruses, such as lymphocytic 

choriomeningitis virus (LCMV) or simian immunodeficiency virus requires a collaboration of 

both the cellular and humoral arms of the immune system (7, 77). Indeed, gene-targeted 

mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies exhibit an 

accelerated LCMV clearance (75). Applying these findings to HCV infection - another 

prototype of persistent-prone non-cytopathic viruses - it is conceivable, that both cellular (5, 
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64, 65, 78, 79) and neutralizing responses (29, 73) may contribute to control of HCV infection 

during the very early phase of viral infection. 

 

Patients who do not clear the virus develop high-titer and even cross-neutralizing 

antibodies during the chronic phase of infection (14, 22, 26, 29, 70, 80). Paradoxically, these 

antibodies are not able to control HCV infection. Viral escape from antibody-mediated 

neutralization in these patients may occur on several levels: (i) HCV exists as a quasispecies 

with distinct viral variants in infected individuals changing constantly over time and his 

variability has been shown to represent a mechanism of escape from antibody-mediated 

neutralization in the chimpanzee model (26); (ii) the interplay of HCV glycoproteins with high-

density lipoprotein and SR-BI has been shown to mediate protection from neutralizing 

antibodies present in sera of acute and chronic HCV-infected patients (27, 74); and (iii) as 

shown for other viruses such as human immunodeficiency virus (HIV), escape from 

neutralizing antibodies may occur through a combination of different mechanisms, for 

instance point mutations, insertions/deletions or changes in glycosylation patterns of the viral 

envelope (30, 81) or conformational masking of receptor binding sites following envelope-

antibody interaction (82) preventing neutralizing antibody binding (84).  

 

Most recently, it has been shown for a chronic HCV patient who has been 

meticulously followed-up for 30 years that HCV continuously escapes the host’s immune 

system by repeated mutational changes resulting in loss of recognition of the HCV envelope 

glycoproteins by antibodies (80). In fact, neutralization of heterologous strains does not 

reflect neutralization of the viral variants present in the patient’s serum at the time of 

sampling (80). These data suggest that the neutralizing antibody response of the host lags 

behind the rapidly evolving HCV envelope glycoprotein sequences of the quasispecies 

population. The fact that envelope glycoprotein sequences and neutralizing antibody 

specificity change over time suggest that neutralizing antibodies exert selective pressure on 

HCV evolution. In line with this hypothesis, it has been shown that HCV quasispecies 
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complexity is associated with the inability to clear HCV infection and development of chronic 

disease (83). 

 

Conclusions and perspectives 

The development of robust tissue culture model systems for HCV infection within recent 

years has finally allowed to study antibody-mediated neutralization in HCV infection. Rapid 

progress has since then been made in determining the kinetic and targets of host neutralizing 

responses in the course of HCV infection. The novel model systems and patient cohorts with 

well defined viral isolates will now allow the identification of the molecular mechanisms of 

antibody-mediated neutralization as well as mechanisms of viral escape from host 

neutralizing responses. The elucidation of these mechanisms will be crucial for the 

understanding of HCV pathogenesis as well as the development of novel preventive and 

therapeutic strategies for control of HCV infection. 
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Table 1: HCV epitopes targeted by antibodies interfering with cellular HCV envelope 

glycoprotein binding, viral entry or infection. Envelope glycoprotein epitope (position 

amino acid within the HCV polyprotein) and its potential function with the viral entry process 

is shown. The experimental system for antibody-mediated inhibition of viral binding, entry or 

infection is listed together with the respective reference. Abbreviations: CD-conformation-

dependent; E1, E2 – envelope glycoproteins E1 and E2; HCV-LP - HCV-like particles; HVR-1 

- hypervariable region-1; HCVpp - HCV pseudotyped particles; HCVcc- cell-culture derived 

HCV; SR-BI – scavenger receptor class B type I 

Envelope 
glycoprotein 

Epitope (amino 
acids) 

Potential function Model system 

E1    
 192 - 226  HCV-LP binding [85] 
 197 – 207  HCV-LP binding [24]

 270 - 284 Membrane fusion HCVpp entry [63] 
 313 - 332  HCV-LP binding [85] 
    
E2    
 HVR-1 SR-BI / heparan 

sulfate binding 
Chimpanzee [38] 

 HVR-1 SR-BI / heparan 
sulfate binding 

E2 binding, HCVpp 

entry [18, 27] 

 396 – 407  HCVpp entry [12] 
 408 – 422  HCV-LP binding [22] 
 412 - 419  HCVpp entry [55] 
 412 – 423  HCVpp entry, HCVcc 

infection[12, 57] 
 416 – 430 Membrane fusion HCVpp entry [63] 
 432 – 443  HCVpp entry [12] 
 436 – 447  HCVpp entry [12] 
 474 – 494 CD81 binding E2 binding, HCVpp 

entry [56, 86] 
 522 – 551 CD81 binding E2 binding, HCVpp 

entry [56, 86] 
 600 – 620 Membrane fusion HCVpp entry [63] 
 640 – 653  HCV-LP binding [24] 
 644 – 655  HCVpp entry [12] 
 CD  E2 binding, HCVpp 

entry [58-61] 
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Figure Legend 

Figure 1. Potential targets for neutralizing antibodies within the HCV life cycle. A model 

of HCV infection with potential targets for virus neutralizing antibodies is shown. Antibodies 

can potentially interfere with the viral life cycle at different steps: (i) by blocking virus-target 

cell interaction inhibiting the binding of the virus to putative receptors on the cell surface, (ii) 

by interfering with post-binding events preventing conformational changes of the virus 

envelope that are required for subsequent steps in the virus life cycle, and (iii) by preventing 

the virus uncoating after entry. Abbreviations: ER – endoplasmic reticulum; HS – heparan 

sulfate; LDL-R – LDL receptor; SR-BI  scavenger receptor class B type I 
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