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ABSTRACT  

Background. Tumor angiogenesis is a dynamic process that plays a major role in cancer 

progression. Vascular endothelial growth factor (VEGF) and its receptors play a pivotal role in 

angiogenesis. The authors investigated the expression of VEGF and its receptors VEGFR-1 and 

VEGFR-2 in renal cell carcinoma (RCC) in the perspective of anti-VEGF treatments.  

Methods. Total VEGF protein levels were quantified by ELISA in tumor tissue samples from 

surgical specimens of 65 patients with clear cell RCC. At the cellular level VEGF isoforms, 

VEGFR-1 and VEGFR-2 mRNA were quantified by real time quantitative RT-PCR in laser 

microdissected tumoral epithelial as stromal cells and in corresponding normal tissue 

compartments. Colocalization of VEGF and VEGFR-1 proteins was studied by triple 

immunofluorescent labeling.  

Results. Protein VEGF in cytosolic extracts was significantly higher in tumoral than in non tumoral 

tissue (p < 0.0001). Event free survival was significantly longer for patients with cytosolic VEGF 

lower than the cut-off (75th percentile of VEGF protein levels, p = 0.02). In laser-microdissected 

epithelial cells, VEGF121 and VEGFR-1 mRNA expressions were higher in RCC than in 

corresponding non tumoral kidney (p = 0.007 and p = 0.002, respectively); they were also higher in 

stromal cells of RCC compared with non- tumoral kidney (p = 0.02 and p = 0.003, respectively). 

There was no differential VEGFR-2 expression in epithelial or in stromal cells of tumoral or non-

tumoral kidney. By immunofluorescent labelling VEGF and VEGFR-1 colocalized on RCC tumor 

epithelial and stromal cells. 

Conclusion. Combined laser microdissection and quantitative RT-PCR, as triple 

immunofluorescent labelling, underlined the preferential expression of the most soluble VEGF 

isoform, VEGF121, and its receptor VEGFR-1, but not VEGFR-2, in epithelial and stromal cells of 

RCC. 

Keywords: Laser microdissection, renal cell carcinoma, VEGF, VEGFR-1, VEGFR-2. 
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INTRODUCTION 

Tumor angiogenesis is a dynamic process that plays a major role in cancer progression, particularly 

in renal cell carcinoma (RCC) (1-3). Vascular endothelial growth factor (VEGF) and its receptors 

play a pivotal role in physiological and pathological angiogenesis. Therapeutic molecules directed 

against VEGF protein and VEGF receptor signalling are now available for RCC treatment (3, 4). 

Therefore, further characterization of VEGFR expression on RCC cells and investigation into 

VEGF as a growth factor in RCC is needed. 

VEGF binds with high affinity to the receptor tyrosine kinase VEGFR-1 (Flt-1) and 

VEGFR-2 (Flk-1, KDR), which upon ligand binding become tyrosine phosphorylated and activate 

multiple signalling networks (5). VEGF increases microvascular permeability, induces endothelial 

cell proliferation, survival, migration and differentiation, promotes the degradation of the 

extracellular matrix around the sprouting endothelium by inducing the expression of proteases. 

VEGF has five main isoforms produced by alternative splicing of a single gene located on 6p21.3, 

VEGF121, VEGF165, VEGF189, VEGF145 and VEGF206 (6, 7). These isoforms differ primarily in their 

bioavailability, which is conferred by heparin and heparan-sulfate binding domains encoded by 

exons 6 and 7. VEGF189, VEGF145 and VEGF206 contain additional stretches of basic residues, 

resulting in their nearly complete retention in the extracellular matrix. VEGF165 exists both as an 

extracellular matrix-bound and as a soluble form released by proteolysis (2, 8). VEGF121, which 

lacks both exon 6 and exon 7, is a highly diffusible protein. Several studies point out VEGF121 and 

VEGF165 as the most expressed isoforms in human tissues and tumors (9-11). Tumor progression 

involves complex interactions between neoplastic epithelial cells and the surrounding stroma 

composed of fibroblasts, endothelial cells, smooth muscle cells, inflammatory cells, and of a 

macromolecular network termed the extracellular matrix. In organs, tissue homeostasis is dictated 

by interactions between stromal and epithelial cells. During pathological processes, particularly 

cancer, both the epithelial and the stromal compartments undergo crucial changes for tumor 

progression (12). Supportive functions, such as angiogenesis, are provided by the stromal 
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components and allow tumor growth. Both stromal and epithelial cells are able to produce VEGF, 

and the expression of VEGF receptors R-1 and R-2 by epithelial cells from normal and neoplastic 

tissue has been reported (2, 13). 

In the present study, we used laser microdissection coupled to real time quantitative PCR 

(QRT-PCR) to assess the respective expression of VEGF and its receptors transcripts in RCC tumor 

and stromal cells. At the protein level we analyzed VEGF quantitative expression in tissue extracts 

and VEGF and VEGFR-1 distribution and coexpression in the different types of cells. 
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PATIENTS AND METHODS 

Patients  

Between January 1998 and May 2001, 100 patients with untreated RCC were admitted to the 

department of urology of Hôpital Saint-Louis (Paris, France). RCC was histologically subclassified 

according to the current classification of adult renal epithelial neoplasms (14). Sixty-five patients 

with conventional cell renal carcinoma were included in this study (47 men, 18 women; median age 

65 years: 31-88) (Table 1). Among the 35 RCC samples excluded, 16 were papillary carcinomas, 5 

were chromophobe carcinomas and 9 were conventional RCC in patients for whom no follow-up 

was possible. All patients consented to this study. Before surgery, all patients underwent clinical 

examination and thoracoabdominal scan. Staging was done according to the TNM classification 

(15). T and N were always defined as pT and pN. The 65 patients underwent nephrectomies 

(radical, n = 59; partial, n = 2; tumorectomies, n = 4) and were classified as: T1, n = 45; T2, n = 14; 

T3, n = 5; T4, n = 1. Patients with lymph node invasion were staged as N+. Metastasis was defined 

according to the clinical findings, if no histopathological data on metastasis were available. In 10 

patients, distant metastases were discovered at the time of diagnosis (lung, n = 7; bone, n = 1; brain, 

n = 1; distant lymph node, n = 1). In 9 patients metastasis occurred after surgery (lung, n = 5; bone, 

n = 1; inferior vena cava, n = 1; brain n = 1; distant lymph node, n = 1). Fuhrman’s nuclear grade 

was as follows: grade 1, n = 7; grade 2, n = 35; grade 3, n = 19; grade 4, n = 4 (16). 

 

Sample collection 

Surgical pieces were immediately analyzed macroscopically. Samples from tumoral areas and from 

macroscopically normal areas were isolated. Half of them was immediately snap-frozen in liquid 

nitrogen, the other half was fixed in formaldehyde and further processed for paraffin embedding. A 

systematic microscopic control of the samples was performed and the tumor samples containing 

areas of necrosis were not used. 
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VEGF protein level quantification in whole tissue sections 

Sixty whole tissue sections (10 µm thick) were taken from frozen tumoral and non normal renal 

tissue. Sections were placed in 10 mM Tris-HCL buffer, pH 7.4, containing molybdat and 

dithiotreithol (Sigma, Saint-Quentin Fallavier, France). Cytosolic extracts from RCC and 

corresponding normal kidney (n=52) were obtained by centrifugation at 100 000 g for 1 hour at 

4°C. VEGF levels were assayed in duplicate by specific sandwich enzyme immunoassay techniques 

(Quantikine R&D Systems, catalog number DVE00, Minneapolis, MN). The minimum detectable 

concentration was estimated to be 9 pg/ml. The ELISA test for VEGF recognized the different 

VEGF isoforms. 

 

Triple Immunofluorescence study 

Triple immunofluorescence labellings were performed on 5µm-thick frozen sections from tumoral 

and non tumoral areas. The sections were incubated with primary antibodies directed against VEGF 

(mouse anti-human VEGF-A antibody, Santa Cruz biotechnology, Santa Cruz, CA, USA), VEGFR-

1 (goat anti-human VEGFR-1, R&D systems, Minneapolis, MN, USA) at 1:100 dilution or 

VEGFR-2 (goat anti-human VEGFR-2, Santa Cruz, CA, USA)  at 1:100 dilution. The sections were 

then incubated with FITC-conjugated chicken anti-mouse IgG (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA) at 1:200 dilution and PE-conjugated donkey anti-goat IgG (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) at 1:500 dilution. Subsequently, the sections were incubated 

with mouse cytokeratin antibodies (clone AE1/AE3, at 1:100 dilution, Chemicon, Temecula, CA, 

USA) which were pre-labelled with Zenon Alexa Fluor 350 mouse IgG labelling kit (Molecular 

Probes, Eugene, OR, USA). Using an AX 70 Olympus microscope with SIS software, successive 

pictures were captured on the same area analyzed with different fluorochrome wavelength filters. 

For each selected area the successive pictures were overlaid. Cells expressing cytokeratins were 

considered as epithelial cells when cells not expressing cytokeratins were considered as stromal 

cells. 
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Combined Laser Microdissection and QRT-PCR 

Laser microdissection was performed on epithelial cells and stromal cells on 5µm-thick frozen 

sections of tumoral (n=33) and non tumoral renal tissue (n=22). On an Olympus BX inverted 

microscope with PALM laser microdissector, the two different cell populations were successively 

laser microdissected and catapulted into caps of tubes containing Trizol reagent for RNA extraction. 

The surface of the different laser microdissected areas was calculated using PALM robot software 

version 3.0. The systematic quantitative assessment allowed us to laser microdissect a minimum of 

500 000 tumor cells and 100 000 stromal cells.  

RNA extraction and reverse transcription  

RNA was extracted using Trizol reagent (Invitrogen, France). Reverse transcription of total RNA 

was performed using 200 units of Superscript II RNase H- reverse transcriptase with random 

hexamers (Invitrogen, France) according to manufacturer’s instructions.  

Primer and probe design  

Quantification of the transcripts coding for VEGF121, VEGFR-1 and VEGFR-2 and control gene, β2 

microglobulin (B2M) was performed using LightCycler technology
 
(Roche Diagnostics, France). 

Primers and probes were chosen using Primer Express Software (Applied Biosystems, France) 

(Table 2). Hydrolyzation probes were labeled with a reporter dye (6-carboxy-fluorescein
 

phosphoramidite) at the 5' end and a quencher dye (5-carboxy-tetramethylrhodamine)
 
at the 3' end.  

QRT- PCR  

PCR optimization and specificity of RT-PCR products were conducted using SYBR
® 

Green 

technology, melting curves and agarose gel electrophoresis. Transcript quantification was 

performed using TaqMan
®
 technology. Quantitative PCR was performed using either the SYBR

®
 

Green or LCFastStart DNA Master Mix kit (Roche Diagnostics, France) according to 

manufacturer’s instructions. All experiments were performed in duplicate. 
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To determine the absolute copy number of the target transcripts,
 
the cDNAs for VEGF121 mRNA 

and its receptors, were cloned in TOPOII TA cloning Kit (Invitrogen, France) following the 

manufacturer’s recommandations. Cloned products were digested with EcoR I (Invitrogen Cergy 

Pontoise, France), extracted from 2% agarose gel, purified with the PCR purification Kit (Qiagen, 

Courtaboeuf, France). Finally the products were measured in a spectrophotometer, and molecule 

concentrations were calculated. A Standard curve for each transcript was generated using serial 

dilutions of cloned products ranging from one or 10 to 10
9
 molecules /µl. The copy number

 
of 

unknown samples was calculated by setting their PCR cycle number (Crossing Point) to the 

standard curve. To correct for differences in both RNA quality and quantity
 
between samples, the 

expression levels of interest transcripts were normalized to the housekeeping Β2Μ gene transcripts. 

Results
 
are presented as copies of target gene per 10

6 
copies of B2M.

 
 

Statistical analyses 

Values for VEGF protein levels and for the gene expression levels of VEGF121, VEGFR-1 and 

VEGFR-2 in tissue extracts are given as median and range. Differences for VEGF protein and 

mRNA expression between different renal tissue compartments (tumoral and non tumoral, epithelial 

and stromal) were analyzed by Wilcoxon test for paired data. Univariate analysis of the correlation 

between the different parameters was done using the non-parametric Spearman rank test. For 

survival analysis, the stopping date was January 1, 2006. The overall survival (OS) rates were 

measured from the date of surgery to the study endpoints which were the stopping date, the date of 

death from RCC, or the time of last visit before the patient was lost to follow up. For the patients 

free of tumor after surgery, the event-free survival (EFS) was measured from the date of surgery to 

the study endpoints. Survival rates were estimated by the method of Kaplan and Meier. Univariate 

analysis was performed using logrank tests. Results for comparison of major endpoints were 

regarded as significant if the two-sided p was < 0.05. Statistical analysis was performed using the 

SAS V 913 software package (SAS Institute, Carry, NC). 
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RESULTS 

VEGF protein levels in whole tissue sections 

VEGF protein level was significantly higher (p < 0.0001) in tumoral tissue than in corresponding 

non tumoral renal tissue (253 pg/mg, 10-79959 vs 45 pg/ml, 10-2491; n=52), (Figure 1). Tumor 

VEGF protein level was associated with tumor size (p = 0.03), tumor grade (p = 0.02) and 

metastasis at diagnosis (p = 0.006) (Table 3). Tumor protein levels were significantly higher (p = 

0.01) in patients with metastasis detected during the follow-up (2061 pg/mg, 78-6179, n = 9) than in 

patients with no metastasis at all, i.e neither before surgery nor during the follow-up (207 pg/mg, 

10-12812, n = 46). 

For survival analysis VEGF protein level cut-off value was chosen after quartile analysis, 

and was the value at the 75th percentile of the values found in tumoral tissue for the 65 patients. 

The median follow-up was 72 months (range: 58-94 months). Univariate analysis of the survival 

curves demonstrated the benefit of lower levels of VEGF for event-free survival (p = 0.02) (figure 

2). This parameter was not an independent prognostic factor in multivariate analysis. 

 

Combined laser microdissection and QRT-PCR according to metastatic and non metastatic 

status 

We have developed for the quantification of each transcript, a highly specific and sensitive QRT-

PCR test adapted to small quantities of laser microdissected cells (Figure 3). For all assays, intra- 

and inter-run variability (calculated from triplicate samples and comparing the results of samples in 

10 different runs) showed an average SD for the crossing points of 0.15 and 0.55 respectively. With 

this combined method the studied transcripts, VEGF121 and its receptors VEGFR-1 and -2, have 

been detected and quantified in all specimens of stromal and epithelial compartments from either 

tumoral or normal kidney.  

Comparing epithelial and stromal cells in tumoral and corresponding non tumoral areas 

(n=22), VEGF121 mRNA was significantly higher in tumoral epithelial (p = 0.007) and stromal cells 
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(p = 0.016) than in corresponding non tumoral cellular populations. Similarly VEGFR-1 mRNA 

was significantly higher in tumoral epithelial (p = 0.002) and stromal cells (p = 0.003) than in 

corresponding non tumoral cellular populations (Table 4). No difference in VEGFR-2 mRNA 

expression was found in laser microdissected epithelial and stromal compartments from tumoral and 

non tumoral areas. Comparing epithelial and stromal compartments in tumors (n = 33), no 

significant difference was found either for expression of VEGF121, VEGFR-1 or -2. Considering the 

patients with or without metastasis at diagnosis, no difference was observed regarding VEGF121, 

VEGFR-1 and -2 expressions. In this group of 33 patients with RCC analyzed with combined laser 

microdissection and QRT-PCR, no association of VEGF121, R1 and R2 mRNA values were found 

with the stage of the disease or survival. 

 

Immunofluorescent labelling of VEGF, VEGFR-1, VEGFR-2 and cytokeratins 

In tumoral areas (Figure 4), VEGF was strongly expressed by tumor cells and by some stromal 

cells. Coexpression of VEGF and VEGFR-1 was observed in tumor cells and interestingly in 

stromal cells of tumoral areas. No cell expressed VEGFR-1 alone. Around 1 of 10 cytokeratin 

positive cells coexpressed VEGF and VEGFR-1. In corresponding non tumoral tissue VEGF was 

seldom expressed. It was not found in glomerular or vascular areas, but in rare tubular sections. In 

non tumoral kidney, no coexpression of VEGF and VEGFR-1 was observed and no stromal cell 

was labeled. In tumoral and non tumoral areas (Figure 5), no cell expressed VEGFR-2. 
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DISCUSSION 

In this study of 65 patients with RCC, with an 8 year follow-up, we have shown that VEGF protein 

levels in tumor cytosolic extracts were associated with tumor progression. VEGF protein level 

measure in RCC cytosolic extracts is an easy-to-perform and reliable test. Several groups have 

analyzed VEGF expression in RCC at the mRNA and/or at the protein level using 

immunohistochemistry or western blot (17-21), but assessment of VEGF protein level in RCC 

tumor extracts has not been reported. The two quantitative techniques that could be used in clinical 

situations are QRT-PCR at the mRNA level and ELISA in cytosolic extracts at the protein level. In 

other types of cancer, particularly in breast cancer (22, 23), VEGF tumor content measured in 

cytosolic extracts has been shown to have a prognostic significance. 

Considering mRNA expression, different groups have reported an increase in VEGF mRNA 

expression in RCC, compared with normal renal tissue (24, 25). A higher tumor VEGF mRNA 

expression has been associated with a worse prognosis in different series of RCC (20, 21). As for 

VEGF isoforms a predominant expression of VEGF121 and VEGF165 transcripts has been reported in 

different series of RCC (25-27), together with a higher VEGFR-1 and R-2 mRNA level in RCC 

compared to normal kidney in one series (27). We have extended these results, using laser 

microdissection coupled with QRT-PCR, with the analyses of VEGF and its receptors expression in 

microdissected RCC epithelial and stromal compartments. When compared to corresponding non 

tumoral renal cells, VEGF121 and VEGFR-1, but not VEGFR-2, mRNA levels were higher in RCC 

epithelial and stromal cells. This suggests that epithelial as well as stromal cells contribute to the 

increased VEGF and VEGFR-1 expression in RCC. Along the same line, experimental data in a 

xenograft model of breast cancer demonstrate that the tumor growth inhibition is the strongest when 

human VEGFR-1, expressed by the tumor cells, and murine VEGFR-1, expressed by the stromal 

cells, are concomitantly inhibited (28). 

To further characterize the type of cell expression of VEGF and VEGFR-1, we used a triple 

immunofluorescence labeling on whole tissue sections. Interestingly, we observed a colocalization 
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of VEGF and VEGFR-1 on some RCC tumor epithelial and stromal cells. Such a coexpression was 

not observed in any type of cells in normal kidney.  

Taking together, these results are in accordance with recent studies demonstrating a major 

role for VEGFR-1 signaling in tumor progression (28-32). VEGFR-1 participates in the migration 

of neoplastic epithelial cells (11, 32) as of several others types of non-endothelial cells, such as 

hematopoietic stem cells and monocytes. For leukemic cells it has been shown that VEGFR-1 is 

essential for tumor cell growth via a VEGF/VEGFR-1 autocrine loop (33, 34). During progression 

of solid tumors, hematopoietic progenitor cells expressing VEGFR-1 might initiate the pre-

metastatic niche (31). The demonstration, in a murine model of RCC, of the inhibition of lung 

metastasis through administration of a soluble form of VEGFR-1 also underlines the role of 

VEGFR-1 in RCC progression (30).  

We have demonstrated that in RCC both epithelial and stromal cells contribute to VEGF and 

VEGFR-1 overexpression, and that VEGF overexpression is linked to tumor progression. These 

results contribute to a better knowledge of cell targets of anti-VEGF therapies. Along this line, 

further studies are needed to establish the value of VEGF protein assay in RCC cytosolic extracts 

for the patients who could benefit of anti-VEGF therapies.  
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Table 1: Characteristics of patients 

Patients N= 65 

Median Age, Range 65, 31-88 

  

Gender  

Male 47 

Female 18 

  

Nephrectomy  

Radical 59 

Partial 2 

Tumorectomy 4 

  

TNM  

Size (pT)  

T1 45 

T2 14 

T3 5 

T4 1 

  

Nodes (pN)  

N+ 4 

N- 61 

  

Metastasis  

M+ 10 

M- 55 

  

Furhman's Grade  

n 1 7 

n 2 35 

n 3 19 

n 4 4 
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Table 2: Specific primer and probe sequences, used for real-time QRT-PCR.  
 

 

Name Sequence 
Exon 

junction 
Product 
size (bp) 

VEGF 121 - sense  

VEGF 121 - antisense 

VEGF 121 - probe 

5’-gAgCTTCCTACAgCACAACAAA-3’ 

5’-CTCggCTTgTCACATTTTTC-3’ 

5’-TgCAgACCAAAgAAAgATAgAgCAAgACA 

5-8 99 

VEGFR-1- sens 

VEGFR-1- antisense 

VEGFR-1- probe  

5’-CgACgTgTggTCTTACggAgTA-3’ 

5’-CTTCCCTCAggCgACTgC-3’ 

5’-TgTgggAAATCTTCTCCTTAggTgggTCTC-3’ 

24-25 107 

VEGFR-2- sens 

VEGFR-2- antisense 

VEGFR-2- probe 

5’-TCTCAATgTggTCAACCTTCTAgg-3’ 

5’-AAATTTgCAgAATTCCACAATCAC-3’ 

5’-TgTACCAAgCCAggAgggCCACTC-3’ 

19-20 79 

B2M- sens 

B2M- antisense 

B2M- probe 

5’CgCTCCgTggCCTTAgC 3’ 

5’ gAgTACgCTggATAgCCTCCA  3’ 

5’TgCTCgCgCTACTCTCTCTTTCTggC 3’ 

1-2 70 
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Table 3. VEGF (pg/mg) in RCC tissue according to histopathology, staging and grading 

 

 

Size Grade Metastasis at diagnosis 

<7 cm (45)*                        ≥7cm (20) Low
†
 (42)                      High (23) M0 (46)                                   M (10) 

241 (10 - 79959)       413 (14 - 12812) 

p = 0.03 

164 (14 - 6087)        470 (10 - 79959) 

p = 0.02 

207 (10 - 12812)         1516 (86 - 79959) 

p = 0.006 

* The numbers in parenthesis represent the number of patients in each group 
† 

Low grade is grade 1 - 2 and high grade is grade 3 - 4 
‡
 Results are given as median (range) 

§
 Wilcoxon test, p < 0.05 was considered as statistically significant 
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Table 4: VEGF121, VEGFR-1 and -2 transcript expression in laser microdissected compartments (epithelium and stroma)  

of normal and tumoral renal tissue according to the metastatic status. 

 

 

  Whole population (n = 22) M0* (n = 12)
 †

 M+* (n = 10) 

VEGF121 
4.8 (0-125) vs 2.6 (0-8.6),  

p = 0.007 

4.3 (0-125.0) vs 2.5 (0.1-8.6)
 ‡

,  

p = 0.03 

6.0 (1.6- 42.0) vs 3.5 (0- 5.6),  

p = 0.11
§
 

VEGFR-1 2.9 (0.1-197.5) vs 0.5 (0-10.2),  

p = 0.002 

2.0 (0.05-197.5) vs 0.6 (0-3.4),  

p = 0.02 

4.3 (0.4- 68.6) vs 0.5 (0- 10.3),  

p = 0.03 

TE* vs 

NTE* 

VEGFR-2 9.5 (0- 104) vs 8.3 (0- 41.4),  

p = 0.51 

11.4 (0.2-104) vs 10.2 (0- 41.4), 

p > 0.99 

9.5 (0- 54.3) vs 2.8 (0.3- 27.3),  

p = 0.14 

VEGF121 6.9 (0.6-165.0) vs 1.0 (0-23.2),  

p = 0.02 

8.0 (0.9-165.0) vs 0.5 (0-15.2),  

p =0.02 

6.9 (0.6- 31.1) vs 2.6 (0- 23.2),  

p = 0.40 

VEGFR-1 5.3 (0-435.0) vs 0.5 (0-54.7),  

p = 0.003 

4.5 (0- 435) vs 0.3 (0- 54.7),  

p = 0.12 

7.8 (0-108.7) vs 0.6 (0- 4.7),  

p = 0.007 

TS* vs 

NTS* 

VEGFR-2 6.5 (0- 132.3) vs 1.3 (0- 76.9), 

p = 0.33 

6.5 (0- 54) vs 1.3 (0- 76.9),  

p = 0.87 

9.8 (0- 132.3) vs 1.3 (0- 65.7),  

p = 0.14 

* M0: non metastatic, M+ metastatic, TE: tumoral epithelial cells,  

NTE: non tumoral epithelial cells, TS: tumoral stromal cells, NTS: non tumoral stromal cells,  
† 

The numbers in parenthesis represent the number of patients in each group 
‡
 Results are given as median (range) 

§
 Wilcoxon test for paired data, p < 0.05 was considered as statistically significant. 
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LEGENDS TO FIGURES  

 

Figure 1 

Individual values of VEGF (pg/mg) in RCC and normal tissue. Data points, mean of two 

determinations, bars, median values; p value was calculated using the nonparametric 

Wilcoxon test for paired data. 

 

Figure 2 

Event-free-survival after surgery was estimated according to the VEGF levels in tumor 

extracts. The cut-off value for VEGF is the 75th percentile of VEGF levels in the tumor; p 

value was calculated using the logrank test. 

 

Figure 3 

VEGF121, VEGFR-1 and VEGFR-2 mRNA calibration curves and agarose gel electrophoresis 

TaqMan probe PCR products showing specificity of real-time RT-PCR. V9, V8, V7, V6, V5, 

V4, V3, V2, V1 and one correspond respectively to: 10
9
,
 
10

8
, 10

7
, 10

6
,10

5
,10

4
,10

3
,10

2
, 10 and 

one copies of transcripts. For all the assays, intra- and inter-run variability (calculated from 

triplicate samples and comparing the results of samples in 10 different runs) showed an 

average SD for the crossing points of 0.15 and 0.55 respectively. The DNA marker used on 

agarose gel electrophoresis was pUC19 DNA/Msp1 (HpaII) Marker, 23 (Fermentas, France). 

 

Figure 4 

Expression of VEGF, VEGFR-1 and cytokeratin (AE1/AE3) in RCC (A and B) and in non 

tumoral areas (C). Triple immunofluorescence labelling of VEGF-R1, VEGF, and 

cytokeratins showed that cytokeratin-positive RCC cells coexpressed VEGF and VEGFR-1 
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(epithelial cells surrounded by broken lines in A and B); cytokeratin negative round (A) or 

fusiform (B) cells coexpressed also VEGF and VEGFR-1 (arrows). In the normal kidney, no 

cell whether tubular (T), glomerular (G) or interstitial expressed VEGFR-1. Few tubular cells 

expressed slightly VEGF. Scale bars = 10 µm. 

 

Figure 5 

Expression of VEGF, VEGFR-2 and cytokeratin (AE1/AE3) in RCC (A) and in non tumoral 

areas (B). Identical methods of triple immunofluorescence labelling for VEGFR-2, VEGF, 

and cytokeratins did not show any coexpression of VEGF and VEGFR-2 whether in RCC (A) 

or in non tumoral renal tissue (B). T: tubular area, G: glomerular area. Scale bars = 10 µm. 
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107 bp 

    V9              V7             V5              V3       V2     V1            0  

V7       V6        V5    V4       V3    V2      V1   one copy     0 

99 bp 

79 bp 

  V7       V6       V5    V4       V3    V2       V1   one copy     0 
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