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Abstract

Non-linear mixed-effects models (NLMEMs) are used to improve information gather-

ing from longitudinal studies and applied to treatment evaluation in disease evolution

studies, such as HIV infection. The estimation of parameters and the statistical tests

are critical issues in NLMEMs since the likelihood and the Fisher information ma-

trix have no closed form. An alternative method to numerical integrations, in which

convergence is slow, and to methods based on linearisation, in which asymptotic

convergence has not been proved, is the Stochastic Approximation Expectation-

Maximization (SAEM) algorithm. For the Wald test and the likelihood ratio test,

we propose estimating the Fisher information matrix by stochastic approximation

and the likelihood by importance sampling. We evaluate these SAEM-based tests

in a simulation study in the context of HIV viral load decrease after initiation of an

antiretroviral treatment. The results from this simulation illustrate the theoretical

convergence properties of SAEM. We also propose a method based on the SAEM

algorithm to compute the minimum sample size required to perform a Wald test of

a given power for a covariate effect in NLMEMs. Lastly we illustrate these tests on

the evaluation of the effect of ritonavir on the indinavir pharmacokinetics in HIV

patients and compare the results with those obtained using the adaptative Gaussian

quadrature method implemented in the SAS procedure NLMIXED.

H
A

L author m
anuscript    inserm

-00169790, version 1



KEYWORDS: Likelihood ratio test; Wald test; longitudinal data; Non-linear

mixed effects models; SAEM algorithm; sample size.

1 Introduction

Most clinical trials aim at comparing the efficacy of two different treatments or

studying the effect of co-medication or physiological covariates. To assess whether

the effect of such covariates implies a better reduction of the disease than without

the covariates, several biological endpoints are repeatedly measured along the trial

extent. The statistical approaches commonly used to study the influence of the

covariate are classically based on the final measurements of this longitudinal data.

Alternative methods to improve information extraction from longitudinal studies

are analyses based on linear or non-linear mixed-effects models (NLMEMs). Such

models have been developed for disease evolution studies, to determine the efficacy of

anti-viral treatments in human immunodeficiency virus (HIV) [1, 2, 3, 4] or hepatitis

B virus [5] infections evaluated through measures of viral load evolution, or prostate

cancer treatment assessed by prostate-specific antigen dosage [6]. NLMEMs are also

used to model the evolution of functional markers, for instance, for the decay of

functional capacity in patients with rheumatoid arthritis [7], or the evolution of the

ventilation function in patients with asthma [8]. NLMEMs are also powerful tools

to analyze the pharmacokinetic properties of a drug. They allow for decreasing the

number of samples per subject, which is an important advantage for interaction

studies of protease inhibitors in HIV infected patients, for example [9].

Analysis of the covariate effect based on longitudinal data is thus essential. The

properties of the statistical tests used to perform this analysis are based on the

maximum likelihood (ML) theory. However, because of the non-linearity of the
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regression function in the random effects, the likelihood of NLMEMs cannot be ex-

pressed in a closed form and the estimation of parameters by ML theory is complex.

This situation leads to the development of widely used estimation methods based

on likelihood linearization. These algorithms realize a first-order linearization of

the regression function, as in the First Order and First Order Conditional Esti-

mate (FOCE) algorithms [10, 11] implemented in the NONMEM software and in

the nlme function of Splus and R software [12]. However these approximate meth-

ods cannot be considered as fully established theoretically. Furthermore, Vonesh

gives an example of a specific design resulting in inconsistent estimates obtained

with linearization methods, such as when the number of observations per subject

does not increase faster than the number of subjects [13]. Particularly, convergence

assumptions, on which the statistical tests are based, are not fulfilled. For instance,

several authors show an inflation of the type I error by simulation of the most widely

used group comparison tests, the Wald test and the Likelihood Ratio Test (LRT)

[14, 15, 16, 17]. Thus, methods with proven convergence and consistency for finding

the maximum likelihood estimate in NLMEMs are required.

Several estimation methods of conventional ML theory have been proposed as

alternatives to linearization algorithms. A common method to handle numerical

integrations is the adaptative Gaussian quadrature (AGQ) method. Estimation al-

gorithms of parameters in a generalized mixed model and in a NLMEM based on

this classical AGQ method have been proposed by Pinheiro and Bates [18] and are

implemented in the SAS procedures GLIMMIX and NLMIXED, respectively [19].

However, the AGQ method requires a sufficiently large number of quadrature points

implying an often slow convergence, which is not very stable. Improvement upon this

method is thus needed. A second common method to handle numerical integrations

is importance sampling, which is a stochastic integration method. However, as em-
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phasized by Ge el al. [20], to achieve satisfactory numerical stability, this method can

be computationally intensive, and hence numerically less efficient than many other

parametric methods. The tool most commonly used to estimate models with missing

or non-observed data such as random effects is the Expectation-Maximization (EM)

algorithm [21]. The widespread popularity of the EM is largely due to its monotonic-

ity: the likelihood increases at every step. Furthermore, the convergence of the EM

algorithm has been widely studied [21]. Because of the non-linearity of the model,

stochastic versions of the EM algorithm are proposed. Wei et al. [22]; Walker [23]

and Wu [24, 25] propose MCEM algorithms, with a Monte-Carlo approximation of

the expectation of the sufficient statistics in the E-step. This Monte-Carlo imple-

mentation is based on independently distributed samples with the posterior density

of the parameters conditional on the observations. However the MCEM algorithm

may have computational problems, such as slow or even no convergence and the

large sample simulations realised by Monte Carlo Markov Chain (MCMC) proce-

dure at each iteration are time consuming. Furthermore, the replication choice of

the Monte Carlo sample is a central issue to guarantee convergence, and this prob-

lem remains unsolved. As an alternative to address both the pointwise convergence

and the computational problem, we propose stochastic approximation versions of

EM (SAEM) [26, 27]. This algorithm requires the simulation of only one realization

of the missing data at each iteration, which substantially reduces computation time.

In addition, pointwise almost sure convergence of the estimate sequence to a local

maximum of the likelihood has been proved under general conditions [26]. Kuhn

and Lavielle [28] propose to combine the SAEM algorithm with a MCMC procedure

adapted to NLMEMs.

The first objective of this paper is to propose ML statistical tests for NLMEMs

based on this SAEM algorithm. The Wald test statistic requires the computation
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of the standard errors (SEs) of the estimated parameters. The inverse of the Fisher

information matrix provides an upper bound of the estimated variance matrix but

has no closed form because of the incomplete data structure. Therefore, we propose

an estimate of this Fisher information matrix on the basis of Louis’ principle [29]

and the stochastic approximation procedure implemented in SAEM. To estimate the

likelihood required for the LRT, we propose to use an importance sampling proce-

dure. We then implement these methods and evaluate them in a simulation study

of HIV infection dynamics. We simulate datasets from the bi-exponential model for

HIV dynamics proposed by Ding and Wu [14], and evaluate the statistical properties

of the SAEM parameter estimates, the standard error and the likelihood estimates.

We also evaluate the type I error and the power of the tests for a comparison of

a treatment effect on one parameter. Methods for minimum required sample size

determination are needed for group comparison tests based on NLMEMs. Kang et

al. [30] propose a method to compute sample sizes given a test hypothesis, based

on a first-order linearization of the NLMEM. The second objective of this paper is

to propose an alternative to this linearization-based approach, by using a SAEM-

based approach. The sample size computation method is illustrated on the same

HIV dynamics example.

After describing the model and notations (section 2), section 3 describes the

SAEM algorithm and the statistical tests. Section 4 reports the simulation study

and its results. Section 5 illustrates these tests on the evaluation of the effect of

ritonavir on the indinavir pharmacokinetics, in patients with HIV infection. We

compare the results with those obtained using the adaptative Gaussian quadrature

method implemented in the SAS procedure NLMIXED. Section 6 concludes the

article with some discussion.
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2 Models and notations

Let us define yi = (yi1, . . . , yini
) where yij is the response value for individual i at

time tij, i = 1, . . . , N , j = 1, . . . , ni, and let us define y = (y1, . . . , yN). We define

an NLMEM as follows:

yij = f(φi, tij) + g(φi, tij) εij,

εi ∼ N (0, σ2Ini
), (1)

φi = Xiµ + bi, with bi ∼ N (0, Ω),

where f(·) and/or g(·) are non-linear functions of φ, εi = (εi1, . . . , εini
) represents

the residual error, φi is a p-vector of individual regression parameters, µ is the k×p-

matrix of fixed effects, Xi is the k-vector of known covariates, bi is a p-vector of

random effects independent of εi, σ2 is the residual variance, Ini
the identity matrix

of size ni and Ω quantifies the variance matrix of the random effects. The maximum

likelihood estimation in NLMEM is based on the log-likelihood function L(y ; θ) of

the response y, with θ = (µ, Ω, σ2) ∈ Θ the vector of all the parameters of the model.

This function is equal to:

L(y ; θ) =
N∑

i=1

L(yi ; θ) =
N∑

i=1

log

(∫
p(yi, φi; θ) dφi

)
, (2)

where p(yi, φi; θ ) is the likelihood of the complete data (yi, φi) of the i-th subject

and is equal to p(yi, φi; θ) =
∏ni

j=1 p(yij|φi; θ)p(φi; θ). As the random effects φi are

unobservable and the regression functions are non-linear, the integral (2) has no

closed form.
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3 Estimation algorithm and group comparison tests

3.1 The SAEM algorithm

The EM algorithm is a classical approach to estimate parameters of models with

non-observed or incomplete data [21]. For NLMEMs, the non-observed vector is the

individual parameter vector φ = (φ1, . . . , φN) and the complete data of the model is

(y, φ). Let us define the function Q(θ|θ′) = E(Lc(y, φ; θ)|y; θ′), where Lc(y, φ; θ) is

the log-likelihood of the complete data. At the m-th iteration of the EM algorithm,

the E step is the evaluation of Qm(θ) = Q(θ | θ̂m), whereas the M step updates θ̂m by

maximizing Qm(θ). For cases in which the E step has no analytic form, Delyon et al.

[26] introduce a stochastic version of the EM algorithm that evaluates the integral

Qm(θ) by a stochastic approximation procedure. The authors prove the convergence

of this SAEM algorithm under general conditions if Lc(y, φ; θ) belongs to a regular

curved exponential family:

Lc(y, φ; θ) = −Λ(θ) + 〈S(y, φ), Φ(θ)〉,

where 〈., .〉 is the scalar product and S(y, φ) is the minimal sufficient statistic of

the model. The E step is then divided into a simulation step (S step) of the non-

observed data φ(m) under the conditional distribution p(φ|y; θ̂m) and a stochastic

approximation step (SA step) of E
(
S(y, φ)|θ̂m

)
:

sm+1 = sm + γm(S(y, φ(m)) − sm), (3)
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using (γm)m≥0 a sequence of positive numbers decreasing to 0. The M step is thus

the update of the estimate θ̂m:

θ̂m+1 = arg max
θ∈Θ

(−Λ(θ) + 〈sm+1, Φ(θ)〉) .

For NLMEMs, the SA step reduces to:

s1,i,m+1 = s1,i,m + γm

(
φ

(m)
i − s1,i,m

)
, i = 1, . . . , N,

s2,m+1 = s2,m + γm

(
N∑

i=1

φ
(m)t
i φ

(m)
i − s2,m

)
,

s3,m+1 = s3,m + γm




∑

i,j

(
yij − f(φ

(m)
i , tij)

g(φ
(m)
i , tij)

)2

− s3,m



 ,

and θ̂m+1 is obtained in the maximization step as follows:

µ̂m+1 =

(
N∑

i=1

X t
iXi

)−1 N∑

i=1

X t
is1,i,m+1,

Ω̂m+1 =
1

N

(
s2,m+1 −

N∑

i=1

(Xiµ̂m+1)s
t
1,i,m+1 −

N∑

i=1

s1,i,m+1(Xiµ̂m+1)
t +

N∑

i=1

(Xiµ̂m+1)(Xiµ̂m+1)
t

)
,

σ̂2
m+1 =

s3,m+1∑N

i=1 ni

.

However, the simulation step can be complex when the posterior distribution

p(φ|y; θ) has no analytical form, such as for NLMEMs. Therefore an MCMC pro-

cedure such as the Metropolis-Hastings algorithm can be used to simulate φ(m). At

the m-th iteration of the SAEM algorithm, the S step is thus the simulation of φ(m)

with use of a Metropolis-Hastings algorithm which constructs a Markov Chain, with

p(φ|y; θ̂m) as the unique stationary distribution (see [27] for more details). Kuhn

and Lavielle [27] present the details of the SAEM implementation and prove that un-

der general hypotheses, the sequence (θ̂m)m≥0 obtained by this algorithm converges
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almost surely towards a (local) maximum of the likelihood L(y; ·).

3.2 Estimation of the Fisher Information matrix with stochas-

tic approximation

The computation of the standard errors (SEs) of the estimated parameters is needed

to perform the Wald test and to compute the required minimum sample size. These

SEs can be evaluated as the diagonal elements of the inverse of the Fisher information

matrix estimate, of which evaluation is complex because it has no analytic form. We

adapt the estimation of the Fisher information matrix, proposed by Delyon et al.

[26] and based on the Louis’ missing information principle [29]. The Hessian of

L(y; θ) can then be expressed as:

∂2
θL(y; θ) = E

[
(∂2

θLc(y, φ; θ)
)

+ Var (∂θLc(y, φ; θ)) .

The Jacobian of L(y; θ) is the conditional expectation of the complete data likeli-

hood:

∂θL(y; θ) = E (∂θLc(y, φ; θ)|y, θ) .

For NLMEMs, the derivatives ∂θLc(y, φ; θ) and ∂2
θLc(y, φ; θ) have analytical forms.

Therefore we implement their estimation using the stochastic approximation proce-

dure of the SAEM algorithm. At the m-th iteration of the algorithm, we evaluate

the 3 following quantities:

∆m+1 = ∆m + γm

(
∂θLc(y, φ(m+1); θ̂m+1) − ∆m

)
,

Gm+1 = Gm + γm

(
∂2

θLc(y, φ(m+1); θ̂m+1) + ∂θLc(y, φ(m+1); θ̂m+1)∂θLc(y, φ(m+1); θ̂m+1)
t − Gm

)
,

Hm+1 = Gm+1 − ∆m+1∆
t
m+1.
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As the sequence (θ̂m)m≥0 converges to the maximum of the likelihood, the sequence

(Hm)m≥0 converges to the Fisher information matrix.

3.3 Estimation of the likelihood with importance sampling

The computation of the likelihood is needed to perform the LRT. The likelihood

can be computed by adaptative Gaussian quadrature (AGQ) method. However, the

convergence of the AGQ method can be slow and not very stable, especially when the

number p of random effects is large. Alternative methods are stochastic integrations,

such as Monte Carlo or importance sampling methods. Kuhn and Lavielle [27]

propose a simple Monte-Carlo procedure to estimate L(y; θ), the estimate of the log

likelihood of the i-th subject is as follows:

L(yi; θ ) = log

(
1

T

T∑

t=1

p(yi|φ
(t)
i ; θ)

)
,

with φ
(t)
i ∼iid N (µ, Ω), for t = 1, . . . , T . By the strong law of large numbers, this esti-

mate L(y; θ) converges almost surely towards E[L(y; θ)]. However, this Monte-Carlo

estimate is susceptible to numerical instabilities and to computational precision is-

sues [31]. To avoid these numerical problems, we propose to estimate the likelihood

using an importance sampling procedure. The importance sampling estimates of the

log likelihood of the i-th subject is as follows:

L(yi; θ ) = log

(
1

T

T∑

t=1

p(yi|φ
(t)
i ; θ)p(φ

(t)
i ; θ)

hi(φ
(t)
i ; θ)

)

with hi(.; θ) any instrumental distribution and φ
(t)
i ∼iid hi(.; θ), for t = 1, . . . , T .

This estimate converges for the same reason as the regular Monte-Carlo estimate,

whatever the choice of the distribution hi. However, some choices of hi are obviously
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better than others, especially to reduce the variance of the estimate. Among the

distributions hi, it is possible to exhibit the optimal distribution that minimizes the

variance of the estimate [32]. For NLMEMs, this distribution is the individual pos-

terior distribution p(φ|yi; θ). However, because this distribution has no closed form

in NLMEMs, we propose for hi a Gaussian approximation of the i-th individual pos-

terior distribution (i.e. φ
(t)
i ∼ N (µpost

i , Ωpost
i )). For each i, the posterior individual

mean µpost
i and the posterior individual variance Ωpost

i are estimated by the empirical

mean and empirical variance of the φ
(m)
i simulated by the MCMC procedure.

3.4 Statistical tests

Let us assume that a scalar covariate effect β is tested on the k-th fixed effect. Let us

denote by Gi the value of the covariate for subject i. The vector Xi is Xi = (1, Gi)

and the fixed effect matrix is:

µ =




µ1 . . . µk−1 µk µk+1 . . . µp

0 . . . 0 β 0 . . . 0





The null hypothesis to test is H0: {β = β0}, with the alternative hypothesis H1:

{β 6= β0}. Both the Wald test and the LRT can be performed to assess the covariate

effect. For the Wald test, the parameter β̂ and its variance V (β) = SE2(β) are

estimated with the SAEM algorithm under H1. The statistic SW = (β̂ − β0)
2/V (β)

follows a 1 degree of freedom χ2
1 distribution under H0. The rejection region of the

Wald test for a nominal level α is therefore {SW > χ2
1;1−α}, where χ2

1;1−α is the

critical value of the centered χ2
1 distribution. For the LRT, the maximum likelihood

estimates θ̂1 and θ̂0 of the models with and without the covariate effect respectively

are computed with SAEM. The log-likelihoods L1 = L(y; θ̂1) and L0 = L(y; θ̂0) of the

model with and without covariate effect respectively are estimated by importance
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sampling. The statistic SLRT = 2(L1 − L0) is computed. Under H0, SLRT follows

a χ2
1 distribution. The rejection region of the LRT test for a nominal level α is

therefore {SLRT > χ2
1;1−α}. These 2 tests can easily be extended to a vector β

of covariate effects, the degrees of freedom for the χ2 distribution being then the

number of components of β.

3.5 Sample size computation

We propose a method to compute the power of a Wald test of a covariate effect

based on NLMEMs. This computation requires proceeding through the following

steps: specify the regression function and the NLMEM to be used; identify values

for the parameter θ; specify an experimental design (tij)1≤i≤N,1≤j≤ni
; identify the

covariate effect to test, (i.e. the alternative hypothesis H1); evaluate the standard

errors SEN , and finally, compute the power of the test. The minimum sample size

required for a given power is then deduced from these last 2 steps, which are detailed

below.

Let the tested parameter β be a scalar covariate effect on one fixed effect. For

a clinical trial aiming at detecting a covariate effect of at least (β1 − β0) on this

fixed effect, the alternative hypothesis of the test is H1: {β ≥ β1}. Under H1, the

statistic SW is asymptotically distributed with a non-centered χ2
1 distribution with

a non-centrality parameter (β − β0)
2/V (β). Therefore, the power of the Wald test

is equal to:

p(β) =

∫ ∞

χ2
1;1−α

π(x; 1, (β − β0)
2/V (β))dx (4)

where π(x; 1, c) is the probability density function of the non-centered χ2
1 distri-

bution, with a non-centrality parameter c. To compute the expected variance or

standard error of β in an NLMEM, we propose to use the estimate of the Fisher
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information matrix provided by the SAEM algorithm and detailed in section 3.2.

When all patients have the same sampling design, a dataset with a covariate effect

β = β1 is generated with this sampling design and with a number Nsim of subjects

large enough to ensure a fine approximation of the expected SE by the observed

SE. The estimation of the Fisher information matrix is performed on this simulated

dataset using the SAEM algorithm. Because the Fisher information matrix of the

complete dataset is the sum of the individual Fisher information matrices, given the

hypothesis of an identical sampling design for each subject, the SE for a dataset of N

subjects, SEN(β), can be evaluated from the SE of the simulated dataset SENsim
(β)

using SEN(β) = SENsim
(β) ·

√
Nsim/N . Therefore, for a given design and a given

number of subjects N , the power of the Wald test can be evaluated from the equa-

tion (4). Finally, for a given power, the minimum sample size required is deduced

from this power evaluation.

4 Simulation study

4.1 Simulation settings

The objective of this simulation study is to illustrate some statistical properties of the

SAEM algorithm in the context of HIV viral dynamics. We evaluated the accuracy

of the parameter estimates, the SE and the likelihood estimates. We performed the

Wald test and the LRT in the context of group comparison tests, and lastly, we

computed the power of the Wald test.

The bi-exponential model for initial HIV dynamics proposed by Ding and Wu

[14] was used to simulate the datasets:

f(φi, tij) = log10(P1ie
−λ1itij + P2ie

−λ2itij).
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This function has p=4 individual parameters: P1i, P2i are the baseline values and

λ1i, λ2i 2-phase viral decay rates. These parameters are positive and distributed

according to a log-normal distribution. Thus, φi and µ take the following values:

φi = (ln P1i, ln P2i, ln λ1i, ln λ2i) and µ = (ln P1, ln P2, ln λ1, ln λ2). Identical sampling

times are assumed for all subjects. Additive Gaussian random effects are assumed

for each parameter with a diagonal covariance matrix Ω. Let ω2 = (ω2
1, ω

2
2, ω

2
3, ω

2
4)

denote the vector of the variances of the random effects. Additive Gaussian error

is assumed with a constant variance σ2 (i.e. g(φi, tj) = 1 for all i, j). For the fixed

effects, the values are those proposed by Ding and Wu [14]: lnP1 = 12, ln P2 = 8,

ln λ1 = ln(0.5), ln λ2 = ln(0.05). The inter-subject variability is identical for the 4

parameters: ω2
1 = ω2

2 = ω2
3 = ω2

4 = 0.3 corresponding to a variation coefficient of

55%. The residual standard deviation is σ = 0.065, which corresponds to a variation

coefficient of 15% for the viral load. With the Matlab software, we generated N = 40

or N = 200 total number of subjects with n=6 blood samples per patient, taken on

days 1, 3, 7, 14, 28 and 56. A simulated dataset with N = 40 subjects is represented

on Figure 1.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time (day)

lo
g 10

 v
ira

l l
oa

d 
(c

p/
m

L)

Figure 1: Simulated dataset with N = 40 subjects of the biexponential model
describing the HIV viral load decrease under treatment.
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4.2 Evaluation of estimates

Our aim is to evaluate the estimates produced by the SAEM algorithm. We fitted

the datasets with the simulation model and computed the relative bias and relative

root mean square error (RMSE) for each component of θ from 1000 replications

of the trial described below for N = 40 and N = 200 subjects, respectively. The

relative bias and RMSE on the 1000 data sets obtained for N = 40 and N = 200

subjects are presented in Table 1. For N = 40 subjects, the estimates have very

Table 1: Relative bias (%) and relative root mean square error (RMSE) (%) of the
estimated parameters evaluated by the SAEM algorithm from 1000 simulated trials
with N = 40 and N = 200 subjects.

Parameters Bias (%) RMSE (%)
N = 40 N = 200 N = 40 N = 200

ln P1 0.006 -0.003 0.78 0.35
ln P2 0.01 -0.003 1.23 0.55
ln λ1 0.48 -0.01 12.92 5.75
ln λ2 -0.04 0.01 3.03 1.36
ω2

1 -2.45 -0.38 25.59 10.88
ω2

2 -3.38 -1.21 29.02 12.19
ω2

3 -1.75 -0.17 22.94 10.60
ω2

4 -1.34 0.16 25.09 11.64
σ2 0.10 0.15 15.82 6.91

low bias (<1% for the fixed effects, <5% for the variance parameters). The RMSE

is satisfactory for the fixed effects (<13%) as well as for the variance parameters

(<30%). As expected with N = 200 subjects, both the bias and the RMSE decrease

with increasing subject number.

The SE estimated for each component of θ̂ by the SAEM algorithm are com-

pared with the “true” SE evaluated by the empirical standard deviation of the 1000

parameter estimates obtained for the simulated datasets. In Figure 2, for each com-

ponent of θ, the 1000 estimated SEs and the true SEs with N = 40 datasets are

plotted. For all parameters, the SEs estimated by SAEM are very close to the true
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Figure 2: Histograms of the 1000 relative SEs (%) estimated by SAEM for datasets
with N=40 subjects. The line represents an estimate of the “true” standard error
estimated on 1000 replications.

SEs. Similar results are observed with N = 200 datasets.

The influence of the size T of the random samples used to evaluate the likelihood

by importance sampling is studied for one dataset with N = 200 subjects. The log-

likelihood is evaluated successively for different sample sizes T = 1000 or 5000 or

10 000 or 50 000, with 10 replications for each T , using the Gaussian approximation

of the individual posterior distribution from the last 250 iterations of the SAEM

algorithm. Results are reported in Figure 3 and show that the variability of the

approximation is reduced by increasing the sample size. Therefore, the likelihood is

evaluated by the importance sampling procedure with a sample size T = 10 000, as

a balance between estimate accuracy and time consumption.

4.3 Evaluation of statistical tests

We performed a Wald test and an LRT to test the difference between two treatment

groups on the viral load decrease, especially on the first viral decay rate, lnλ1, as

proposed by Ding and Wu [14]. We considered that the two groups are of equal size

(i.e. 20 and 100 subjects per group when N = 40 and N = 200 subjects, respec-
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Figure 3: Log-likelihood estimates as a function of the sample size T used in the
importance sampling procedure with 10 replications for each T , for one dataset with
N = 200 subjects.

tively). The parameter vector θ is θ = (µ, ω2, σ2) under H0 and θ = (µ, β, ω2, σ2)

under H1. We applied these tests using SAEM on the 1000 datasets simulated with

β = 0 and evaluated the type I error of both the Wald test and the LRT by the

proportion of trials for which H0 is rejected, because these datasets are simulated

without any treatment effect. We then evaluated the power of these tests for a

treatment effect of almost 30% between the 2 treatment groups on the parameter

ln λ1 (i.e. the alternative hypothesis H1: {β ≥ β1} with β1 = 0.262). The power is

estimated by the proportion of trials for which H0 is rejected, within 1000 datasets

simulated with a treatment effect β1 = 0.262 on ln λ1.

The estimation of the type I error for a nominal value of 5% and the powers

are given in Table 2 for datasets with 20 or 100 subjects per group. The estimated

Table 2: Evaluation on 1000 simulated datasets with 20 or 100 subjects per group
of the type I error and the power of the Wald test and LRT for a treatment effect
on the first decay rate.

Type I error Power
Number of subjects per group 20 100 20 100
Wald test 4.0% 4.5% 37.5 % 90.4%
LRT 5.8% 5.6% 38.2 % 85.4%
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type I errors are close to 5%, and given the dataset number of replications, do not

differ significantly from the expected 5% value. The estimated powers are similar

for the 2 tests and, as expected, are lower with N = 40 subjects than with N = 200

subjects.

4.4 Sample size computation example

The method proposed in section 3.5 to evaluate the power of the Wald test is applied

to the model, the parameter values and the sampling design detailed above, for

a difference of 30% between the 2 treatment groups in the parameter ln λ1 (i.e.

β1 = 0.262). A dataset is simulated with 2 groups of 5 000 subjects (i.e. N = 10 000

subjects), and with a treatment effect β1 on ln λ1. This dataset is analyzed using

the SAEM algorithm to evaluate the Fisher information matrix. A SE(β̂) = 0.0112

is obtained for 5 000 subjects per group. Applying equation (4), a sample size of

20 subjects per group (N = 40) provides a power of 32%, and a sample size of 100

subjects per group (N = 200) provides a power of 92%. These 2 values are close

to the 2 estimated powers, obtained with the simulation study for the Wald test, of

37% and 90% respectively. Finally, the minimum sample size required to ensure a

power of at least 80% is 70 subjects per group (N = 140). These results illustrate

the ability of the SAEM approach to predict the SE of a fixed effect and the power

of the Wald test to compute the minimum sample size required for a given power.
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5 Effect of ritonavir on the indinavir pharmacoki-

netics in the COPHAR1-ANRS102 trial

5.1 Material and Methods

The COPHAR1-ANRS102 study was an open, multi-center, prospective trial includ-

ing HIV-infected adults given an antiretroviral combination of at least 3 drugs, one

being either indinavir or nelfinavir. Patients were required to have a baseline plasma

HIV RNA below 200 copies/mL and to have maintained the same antiretroviral

treatment for 6 months. Data on indinavir concentration were obtained for 45 pa-

tients who received different dosages of indinavir: 31 patients, indinavir alone three

times a day (for most, 800 mg), and 14 patients indinavir twice a day (for most, 800

mg) with a booster dose of 100mg of ritonavir. From each patient, 5 blood samples

were collected for the indinavir concentrations: a sample before indinavir adminis-

tration and samples at 0.5, 1, 3 and 6 hours after indinavir administration. More

details on this trial can be found in Goujard et al. [33]. The concentration data

of the indinavir group were analyzed with an NLMEM and the FOCE algorithm

implemented in the WinNonMix software by Brendel et al [34].

The aim of the present analysis is to evaluate the effect of the co-administration of

ritonavir on the pharmacokinetic parameters of indinavir using the SAEM algorithm

and the tests developed. The results are compared to those obtained with the

adaptative Gaussian quadrature (AGQ) method implemented in the SAS procedure

NLMIXED.

The pharmacokinetic statistical model proposed by Brendel et al [34] was used,

which is a one-compartment model with first-order absorption and first-order elim-
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Figure 4: Observed individual indinavir concentrations: (+) and (∆) for patients
receiving ritonavir or not respectively; predicted mean curves obtained with SAEM:
dotted line and plain line for patients receiving ritonavir or not respectively.

ination at steady-state:

f(φ, t) =
Dka

V ka − Cl

(
e−

Cl
V

t

(1 − e−
Cl
V

τ )
−

e−kat

(1 − e−kaτ )

)

where ka is the first-order absorption rate constant, Cl the oral clearance, V the oral

volume distribution and τ the delay between 2 drug administrations fixed to 12 and

8 h for patients receiving ritonavir or not, respectively. The individual parameters

are φ = (ln V, ln ka, ln Cl). A diagonal variance matrix Ω and a homoscedastic error

model were used. The Wald test was used to test the effect of ritonavir administra-

tion on the fixed effects ka, Cl and V . The vector θ was estimated under H1 with

the SAEM algorithm and the procedure NLMIXED.

5.2 Results

Concentration data are displayed in Figure 4. The SAS procedure NLMIXED failed

to estimate the variability on ka which has to be fixed to 0. The SAEM algorithm

succeeded in the estimation of all the parameters and estimated the ka variability

to 10−7. Therefore, a model without a variability on ka was considered with both
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Table 3: Pharmacokinetic parameters of indinavir (estimate, SE (%) and p-value of
the Wald test) estimated with the SAEM and the adaptative Gaussian quadrature
(AGQ) algorithms

SAEM AGQ
Parameters Estimate SE (%) p-value Estimate SE (%) p-value
V (L) 46.70 32 43.80 22
ka (h−1) 0.76 22 0.78 14
Cl (L/h) 37.80 7 42.14 7
βV -0.59 89 0.154 -0.24 205 0.628
βka

-0.90 32 0.002 -0.80 30 0.002
βCl -0.66 21 <.001 -0.62 22 <.001
ω2

V 1.22 55 1.22 40
ω2

Cl 0.05 50 0.07 51
σ2 2.40 12 2.77 12

estimation methods. The parameters estimated by the SAEM and the AGQ methods

for this model are presented in Table 3. To ensure convergence, 2000 iterations were

used for the SAEM algorithm and 30 nodes were used with the SAS procedure

NLMIXED. It takes about 90 s CPU time for the SAEM algorithm and 400 s CPU

time for the procedure NLMIXED to run on a conventional Intel Pentium IV 2.8

GHz workstation.

A significant effect of co-medication with ritonavir was found with the 2 methods

on ln ka and ln Cl (p < 0.01), resulting in a decrease of 0.41/h and 0.44/h of ka

with the SAEM and the AGQ method, respectively, and a decrease of 0.51 L/h and

0.53 L/h of Cl with the SAEM and the AGQ method, respectively, when patients

received ritonavir. The effect of ritonavir on V is not significant with both methods.

The log-likelihood evaluated by the importance sampling procedure was equal to

-469.6 at the estimates obtained with SAEM and equal to -472.1 at the estimates

obtained with the AGQ method. The predicted concentrations of indinavir with

and without ritonavir evaluated at the fixed effect values obtained with SAEM are

overlayed on the plot of concentrations data of Figure 4. This graph illustrates the
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slower decrease in indinavir concentration when it is co-administered with ritonavir.

6 Discussion

In this paper, we propose statistical tests for covariate effects in NLMEMs adapted

to non-linear longitudinal data analysis. Because these tests take into account all the

data, they are obviously more powerful than tests using only the final measurements.

In the context of NLMEMs, several tests taking into account all the data have been

proposed. However, those based on approximate methods have poor properties,

especially with increase of the type I error. More recently, tests from numerical inte-

gration based methods, such as the adaptative Gaussian quadratures have also been

proposed, even though they can be limited by slow convergence when the number of

parameters is large. We propose here statistical tests based on the SAEM algorithm,

which has good computational properties. The SAEM algorithm and the statistical

tests proposed in this paper are implemented in a Matlab function called MONO-

LIX and freely available on http://mahery.math.u-psud.fr/∼lavielle/monolix. The

simulation study illustrates the accuracy of the SAEM algorithm to fit non-linear

longitudinal data in the context of HIV viral load decrease, the parameter estimates

being unbiased and with small RMSE. The SEs of the parameters are evaluated

from the Fisher information matrix. We propose an estimation of this matrix with

the stochastic approximation procedure of the SAEM algorithm and Louis’ prin-

ciple [29]. Results of the simulation study show that the SE estimates are very

close to the “true” SEs evaluated on 1000 simulated datasets. Kuhn and Lavielle

[27] propose to estimate the likelihood with a simple Monte Carlo procedure, but

this method provides poor estimates and is prone to computational instabilities. To

avoid this problem, we propose an importance sampling approach, with a Gaussian
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approximation of the conditional posterior distribution used to sample the individ-

ual parameter. Hence, the Wald test and the LRT based on these Fisher information

matrix and likelihood estimation procedures have accurate properties, especially the

obtained type I errors are close to the expected threshold of 5%.

Another critical issue for NLMEMs is the computation of the minimum sample

size required to observe a significant covariate effect on a fixed effect parameter with

the Wald test. This issue requires evaluation of the expected SE for this covariate

effect. Kang et al. [30] propose an analytic evaluation based on the linearization

of the model, a method to be compared with the extension of the PFIM function

for covariates proposed by Retout et al. [35]. However Kang et al. [30] show

that this method underestimates the power of the test when the random effect

variability increases. An alternative to this linearization method is to compute

the expected Fisher information matrix with the SAEM estimate. A large dataset

is simulated to be close to asymptotic results, from which the Fisher information

matrix is estimated using SAEM. We show on the HIV example that the power

predicted by this method is close to that evaluated on the simulation study. In this

example, the same elementary design is used in every patient. This can easily be

extended when the population design is composed of different groups of elementary

designs [30].

Finally, the SAEM algorithm and the proposed tests are used to analyze the

indinavir pharmacokinetics and to test the effect of the co-administration of ritonavir

in HIV infected patients from the COPHAR 1-ANRS102 trial. As expected, a

significant effect of ritonavir co-administration is found on the absorption and the

elimination of indinavir [34]. Similar results were obtained with the two methods on

this model. However models with more random effects may be difficult to analyse

with the AGQ method.
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The SAEM algorithm provides accurate estimates when working with NLMEMs

and may be applied to even more difficult issues. For instance, when measuring a

biological response such as a concentration or a viral load, the observations may be

left-censored, due to the limits of quantification of the measuring equipment. We

extended the SAEM algorithm to this case, the left-censored data being considered

as non-observed data as well as the random effects [36].
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