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Abstract— A critical issue in image restoration is the problem
of noise removal while keeping the integrity of relevant image
information. Denoising is a crucial step to increase image quality
and to improve the performance of all the tasks needed for
quantitative imaging analysis. The method proposed in this paper
is based on a 3D optimized blockwise version of the Non Local
(NL) means filter [1]. The NL-means filter uses the redundancy
of information in the image under study to remove the noise.
The performance of the NL-means filter has been already
demonstrated for 2D images, but reducing the computational
burden is a critical aspect to extend the method to 3D images. To
overcome this problem, we propose improvements to reduce the
computational complexity. These different improvements allow
to drastically divide the computational time while preserving
the performances of the NL-means filter. A fully-automated and
optimized version of the NL-means filter is then presented. Our
contributions to the NL-means filter are: (a) an automatic tuning
of the smoothing parameter, (b) a selection of the most relevant
voxels, (c) a blockwise implementation and (d) a parallelized
computation. Quantitative validation was carried out on synthetic
datasets generated with BrainWeb [2]. The results show that
our optimized NL-means filter outperforms the classical imple-
mentation of the NL-means filter, as well as two other classical
denoising methods (Anisotropic Diffusion [3] and Total Variation
minimization process [4]) in terms of accuracy (measured by the
Peak Signal to Noise Ratio) with low computation time. Finally,
qualitative results on real data are presented.

I. INTRODUCTION

Quantitative imaging involves image processing workflows
(registration, segmentation, visualization, etc.) with increasing
complexity and sensitivity to possible image artifacts. As a
consequence, image processing procedures often require to
remove image artifacts beforehand in order to make quan-
titative post-processing more robust and efficient. A critical
issue concerns the problem of noise removal while keeping
the integrity of relevant image information. This is particularly
true for ultrasound images or magnetic resonance images
(MRI) in presence of small structures with signals barely de-
tectable above the noise level. In addition, a constant evolution
of quantitative medical imaging is to process always larger

cohorts of 3D data in order to find significant discriminants
for a given pathology (e.g. see [5]). In this context, complex
automatic image processing workflows are required [6] since
human interpretation of images is no longer feasible. For
effectiveness, these workflows have to be robust to a wide
range of image qualities and parameter-free (or at least using
auto-tuned parameters). This paper focuses on these critical
aspects by introducing a new restoration scheme in the context
of 3D medical imaging. The Non Local (NL-) means filter
was originally introduced by Buades et al. [1] for 2D image
denoising. The adaptation of this filter we propose for 3D
images is based on (a) an automatic tuning of the smoothing
parameter, (b) a selection of the most relevant voxels for the
NL-means computation, (c) a blockwise implementation and
(d) a parallelized computation. These different contributions
allow to make the adapted filter fully-automated and above all
to overcome the main limitation of the classical NL-means:
the computational burden.

Section II gives a short overview of the literature on image
restoration. Section III presents the proposed method with
details about our contributions. Sections IV, V and VI show
(a) the impact of our adaptations compared to the classical
NL-means implementation and (b) a comparison with respect
to other well established denoising methods on Gaussian and
Rician noise. Both validation experiments are performed on a
phantom data set in a quantitative way. Section VII shows
results on real data such as 3 Tesla T1-weighted (T1-w)
MRI and T2-weighted (T2-w) MRI of a patient with Multiple
Sclerosis (MS) lesions. In section VIII we propose a discussion
on the applicability and the further improvements of the NL-
means filter in the context of 3D medical imaging.

II. STATE-OF-THE-ART

A. General overview
Many methods have been proposed for edge-preserving

image denoising. Some popular approaches include Bayesian
approaches [7], PDE-based approaches [3], [4], [8], [9], ro-
bust and regression estimation [10], adaptive smoothing [11],
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wavelet-based methods [12]–[14], bilateral filtering [15]–[17],
local mode filtering [18], hybrid approaches [19]–[21].

Strong theoretical links exist between most of these tech-
niques, as recently shown for local mode filtering [18], bilat-
eral filtering, anisotropic diffusion and robust estimation [17],
[22] and adaptive smoothing [23], anisotropic diffusion and
total variation minimization scheme [24].

More recently, some promising methods have been proposed
for improved image denoising, based on statistical averaging
schemes enhanced via incorporating a variable spatial neigh-
borhood scheme [25]–[29]. Other approaches consist in mod-
eling non-local pairwise interactions from training data [30]
or a library of natural image patches [31], [32]. The idea is to
improve the traditional Markov random field (MRF) models
by learning potential functions from examples and extended
neighborhoods for computer vision applications [30]–[32].
Awate and Whitaker proposed another non-parametric patch-
based method relying on comparisons between probability
density functions [33].

Some of these techniques, generally developed for 2D
images, have often been extended to 3D medical data, es-
pecially to MR images: anisotropic diffusion [34], [35], total
variation [36], bilateral filtering and variants [37], wavelet-
based filtering [38]–[42], hybrid approaches [43], [44].

B. Introduction of the NL-means filter

Most of the denoising methods restore the intensity value
of each image voxel by averaging in some way the intensities
of its (spatially) neighboring voxels. The basic and intuitive
approach is to replace the value of the voxel by the average of
the voxels in its neigbourhood (so-called box filtering [45]).
In practice, this filter has been shown to be outperformed by
the Gaussian filter, which consists in weighting each voxel in
the neighborhood according to its distance to the voxel under
study. Both filters can be iterated until the desired amount of
smoothing is reached. Such data-independent approaches can
be implemented very efficiently. Their major drawback is that
they blur the structures of interest in the image (e.g. edges or
small structures and textures).

This has naturally led to data-dependent approaches, which
aim at eliminating (or reducing the influence of) the neighbor-
ing voxels dissimilar to the voxel under study. Simple order
statistic operators can be used for this purpose, such as the
median filter, leading to a simple generalization of the box
filter. More sophisticated approaches, based on image deriva-
tives have been successfully proposed for many applications,
such as adaptive smoothing [11] and anisotropic diffusion [3].
Neighborhood filters [46], [47] and variants [15], [16], have
been also proposed and consist in averaging input data over
the image voxels that are spatially close to the voxel under
study and with similar gray-level values.

All these techniques rely on the idea that the restored value
of a voxel should only depend on the voxels in its spatial
neighborhood that belong to the same population, that is the
same image context. This has been termed by Michael Elad as
the locally adaptive recovery paradigm [17]. Another approach
has been recently proposed, that has shown very promising

results. It is based on the idea that any natural image has
redundancy, and that any voxel of the image has similar voxels
that are not necessarily located in a spatial neighborhood. First
introduced by Buades et al. in [1], the NL-means filter is
based on this redundancy property of periodic images, textured
images or natural images to remove noise. In this approach,
the weight involving voxels in the average, does not depend
on their spatial proximity to the current voxel but is based
on the intensity similarity of their neighborhoods with the
neighborhood of the voxel under study, as in patched-based
approaches. In other words, the NL-means filter can be viewed
as an extreme case of neighborhood filters with infinite spatial
kernel and where the similarity of the neighborhood intensi-
ties is substituted to the point-wise similarity of gray levels
as in commonly-used bilateral filtering. This new non-local
recovery paradigm allows to combine the two most important
attributes of a denoising algorithm: edge preservation and
noise removal.

III. METHODS

In the following, we introduce the notations:
• u : Ω3 7−→ R is the image, where Ω3 represents the

grid of the image, considered as cubic for the sake of
simplicity and without loss of generality (|Ω3| = N3).

• for the original voxelwise NL-means approach
– u(xi) is the intensity observed at voxel xi.
– Vi is the cubic search volume centered on voxel xi

of size |Vi| = (2M + 1)3, M ∈ N.
– Ni is the cubic local neighborhood of xi of size

|Ni| = (2d + 1)3, d ∈ N.
– u(Ni) = (u(1)(Ni), ..., u

(|Ni|)(Ni))
T is the vector

containing the intensities of Ni.
– NL(u)(xi) is the restored value of voxel xi.
– w(xi , xj) is the weight of voxel xj when restoring

u(xi).
• for the blockwise NL-means approach

– Bi is the block centered on xi of size |Bi| = (2α +
1)3, α ∈ N.

– u(Bi) is the vector containing the intensities of the
block Bi.

– NL(u)(Bi) is the vector containing the restored
value of Bi.

– w(Bi, Bj) is the weight of block Bj when restoring
the block u(Bi).

– the blocks Bik
are centered on voxels xik

with ik =
(k1n, k2n, k3n), (k1, k2, k3) ∈ N

3 and n represents
the distance between the centers of the blocks Bik

.

A. The Non Local means filter

In the classical formulation of the NL-means filter, the
restored intensity NL(u)(xi) of the voxel xi, is the weighted
average of all the voxel intensities in the image u defined as:

NL(u)(xi) =
∑

xj∈Ω3

w(xi, xj)u(xj) (1)

where u(xj) is the intensity of voxel xj and w(xi, xj) is
the weight assigned to u(xj) in the restoration of voxel xi.

2
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More precisely, the weight quantifies the similarity of the local
neighborhoods Ni and Nj of the voxels xi and xj under the
assumptions that w(xi, xj) ∈ [0, 1] and

∑

xj∈Ω3 w(xi, xj) = 1
(cf Fig. 1 left). The classical definition of the NL-means filter
considers that each voxel can be linked to all the others, but
for practical computational reasons the number of voxels taken
into account in the weighted average can be limited to the so-
called “search volume” Vi of size (2M+1)3, centered at the
current voxel xi.

For each voxel xj in Vi, the Gaussian-weighted Euclidean
distance ‖.‖2

2,a defined in [1], is computed between u(Nj)
and u(Ni). This distance is a classical L2 norm convolved
with a Gaussian kernel of standard deviation a, and measures
the distance between neighborhood intensities. Given this
distance, w(xi, xj) is computed as follows:

w(xi, xj) =
1

Zi

e−
‖u(Ni)−u(Nj )‖2

2,a

h2 (2)

where Zi is a normalization constant ensuring that
∑

j w(xi, xj) = 1, and h acts as a smoothing parameter
controlling the decay of the exponential function. When h
is very high, all the voxels xj in Vi will have the same
weight w(xi, xj) with respect to the voxel xi. The restored
value NL(u)(xi) will be then approximately the average of
the intensity values of the voxels in Vi leading to strong
smoothing of the image. When h is very low, the decay of the
exponential function will be strong, thus only few voxels xj

in Vi with u(Nj) very similar to u(Nj) will have a significant
weight. The restored value NL(u)(xi) will tend to be the
weighted average of some voxels with a similar neighborhood
to current voxel xi leading to a weak smoothing of the image.
In Section III-B.1, a trade-off has then to be found, and we
propose a method to automatically estimate the optimal value
of h.

In [1], Buades et al. show that, for 2D natural images, the
NL-means filter outperforms state-of-the-art denoising meth-
ods such as the Rudin-Osher-Fatemi Total Variation minimiza-
tion scheme [4], the Perona-Malik Anisotropic diffusion [3] or
translation invariant wavelet thresholding [48]. Nevertheless,
the main drawback of the NL-means filter is the computa-
tional burden due to its complexity, especially for 3D images.
Indeed, for each voxel of the volume, distances between the
intensity neighborhoods u(Ni) and u(Nj) for all the voxels
xj contained in Vi need to be computed. Let N 3 denote the
size of the 3D image, then the complexity of the filter is in
the order of O((N(2M +1)(2d+1))3). For a 3D MRI of size
181 × 217 × 181 with the smallest possible value for d and
M (d = 1 and M = 5), the computational time reaches up to
6 hours on 3 GHz CPU. This time is far beyond a reasonable
duration expected for a denoising filter in a medical practice.
For this reason, we propose several adaptations to reduce the
computational burden which are detailed in Section III-B. We
also show that these adaptations improve the quality of the
denoising compared to the classical implementation.

B. Improvements of the NL-means filter

1) Automatic tuning of the Smoothing parameter h: Ac-
cording to [1], the smoothing parameter h depends on the

standard deviation of the noise σ, and typically a good choice
for 2D images is h ≈ 10σ. Equation 2 shows that h also needs
to take into account |Ni|, if we want a filter independent of
the neighborhood size. Indeed, the L2 norm increasing with
|Ni|, h needs also to be increased to obtain an equivalent filter.
The automatic tuning of the smoothing parameter h comes to
determine the relationship h2 = f(σ2, |Ni|, β) where β is a
constant. Let us show how we can estimate this relationship:

(a) In case of an additive white Gaussian noise, the standard
deviation of noise can be estimated via pseudo-residuals εi as
defined in [49], [50]. For each voxel xi of the volume Ω3, let
us define:

εi =

√

6

7



u(xi) −
1

6

∑

xj∈Pi

u(xj)



 (3)

Pi being the 6-neighborhood at voxel xi and the constant
√

6/7 is used to ensure that E[ε2
i ] = σ̂2 in homogeneous

areas. Thus, the standard deviation of noise σ̂ is computed as
the least square estimator:

σ̂2 =
1

|Ω3|

∑

i∈Ω3

ε2i (4)

(b) Initially, the NL-means filter was defined with a
Gaussian-weighted Euclidean distance, ‖.‖2

2,a defined in [1].
However, in order to make the filter independent of |Ni|, to
simplify the complexity of the problem, and to reduce the
computational time, we used the classical Euclidean distance
‖.‖2

2 normalized by the number of elements:

1

|Ni|
‖u(Ni) − u(Nj)‖

2
2 =

1

|Ni|

|Ni|
∑

p=1

(u(p)(Ni) − u(p)(Nj))
2.

(5)
Finally, Equation 2 becomes:

w(xi, xj) =
1

Zi

e
−

‖u(Ni)−u(Nj )‖2
2

2βσ̂2|Ni| (6)

where only the adjusting constant β needs to be manually
tuned. In the case of Gaussian noise, β is theoretically be
close to 1 (see [51] p. 21 for theoretical justification) if the
estimation σ̂ of the standard deviation of the noise is correct.
The adjustment of β will be discussed in section V-A.

2) Voxel selection in the search volume: To deal with
computational burden, Mahmoudi and Sapiro [52] recently
proposed a method to preselect a subset of the most relevant
voxels xj in Vi to avoid useless weight computations. In other
words, the main idea is to select only the voxels xj in Vi

that will have the highest weights w(xi, xj) in Equation 1
without having to compute all the Euclidean distances between
u(Ni) and u(Nj). A priori neglecting the voxels which are
expected to have small weights tends to speed up the filter and
to improve the results (see Table II). In [52], this selection is
based on the similarity of the mean value of u(Ni) and u(Nj),
and on the similarity of the average over the neighborhoods
Ni and Nj of the gradient orientation at pixel xi and xj .
Intuitively, similar neighborhoods have the same mean and
the same gradient orientation. The computation of the gradient
orientation is very sensitive to noise and thus requires robust

3
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Vi
Nj

Niw(xi,xj)

xi

xj

Vik

w(Bi  ,Bj)

Bi

Bj

k

k

Fig. 1. Left: Classical voxelwise NL-means filter: 2D illustration of the NL-means principle. The restored value of voxel xi (in red) is the weighted
average of all intensities of voxels xj in the search volume Vi, based on the similarity of their intensity neighborhoods u(Ni) and u(Nj). In this example,
we set d = 1 and M = 8. Right: Blockwise NL-means filter: 2D illustration of the blockwise NL-means principle. The restored value of the block Bik

is
the weighted average of all the blocks Bj in the search volume Vik

. In this example, we set α = 1 and M = 8.

Noisy image Map of local means Map of local variances

Fig. 2. Left: noisy image with 9 % of Gaussian noise (see Section IV). Center: map of the mean of u(Ni) denoted u(Ni). Right map of the variance of
u(Ni) denoted Var(u(Ni)). In these examples, we set Ni = 5 × 5 × 5 voxels.

estimation techniques. This is too computationally expensive
for medical applications. For this reason, in our implementa-
tion, the preselection of voxels in Vi is based on the mean and
the variance of u(Ni) and u(Nj) which allows to decrease the
computational burden. Figure 2 shows that the maps of local
means and local variances are simple estimators allowing to
discriminate different tissue classes and edges in images. In
this way, the maps of local means and local variances are
precomputed in order to avoid repetitive calculations for the
same neighborhood. The selection tests can be expressed as
follows:

w(xi, xj) =

8

>

>

<

>

>

:

1
Zi

e
−

‖u(Ni)−u(Nj )‖2
2

2βσ̂2|Ni| if µ1 <
u(Ni)

u(Nj)
<

1
µ1

and σ
2
1 <

Var(u(Ni))
Var(u(Nj))

<
1

σ2
1

0 otherwise.
(7)

where u(Ni) and Var(u(Ni)) represents respectively the mean
and the variance of the local neighborhood Ni of voxel xi. As
suggested in [52], with this kind of selection, the NL-means
filter tends to better preserve the detailed regions while slightly
spoiling the denoising of the flat regions. Indeed, in flat regions
increasing the number of voxels tends to improve denoising
because there are a large number of similar voxels. In more
cluttered regions, increasing the number of voxels tends to
remove the details during smoothing because there are very

few similar voxels.
3) Blockwise implementation: A blockwise implementation

of the NL-means is developed as suggested in [1]. This
approach consists in a) dividing the volume into blocks with
overlapping supports, b) performing NL-means-like restoration
of these blocks and c) restoring the voxels values based on the
restored values of the blocks they belong to.

a) A partition of the volume Ω3 into overlapping blocks Bik

of size (2α + 1)3 is performed, such as Ω3 =
⋃

k Bik
, under

the constraint that the intersections between the Bik
are non-

empty (see Fig 3). These blocks are centered on voxels xik

which constitute a subset of Ω3. The xik
are equally distributed

at positions ik = (k1n, k2n, k3n), (k1, k2, k3) ∈ N
3 where

n represents the distance between the centers of Bik
. To

ensure a global continuity in the denoised image, the support
overlapping of blocks has to be non empty: 2α > n.

b) For each block Bik
, a NL-means-like restoration is

performed as follows:

NL(u)(Bik
) =

∑

Bj∈Vik

w(Bik
, Bj)u(Bj) (8)

with

w(Bik
, Bj) =

1

Zik

e
−

‖u(Bik
)−u(Bj )‖2

2

2βσ̂2|Ni| (9)

4

H
A

L author m
anuscript    inserm

-00169658, version 1



where Zik
is a normalization constant ensuring that

∑

Bj∈Vik

w(Bik
, Bj) = 1 (see Fig. 1 (right)).

c) For a voxel xi included in several blocks Bik
, several

estimations of the restored intensity NL(u)(xi) are obtained
in different NL(u)(Bik

) (see Fig 3). The estimations given
by different NL(u)(Bik

) for a voxel xi are stored in a vector
Ai. The final restored intensity of voxel xi is then defined as:

NL(u)(xi) =
1

|Ai|

∑

p∈Ai

Ai(p). (10)

Ai

ik

Bj

B

x

Bi2

Bi3

i1

Fig. 3. Blockwise NL-means Filter. For each block Bik
centered on voxel

xik
, a NL-means like restoration is performed from blocks Bj . In this way,

for a voxel xi included in several blocks, several estimations are obtained.
The restored value of voxel xi is the average of the different estimations
stored in vector Ai. In this example α = 1, n = 2 and |Ai| = 3.

The main advantage of this approach is to significantly
reduce the complexity of the algorithm. Indeed, for a volume
Ω3 of size N3, the global complexity is O((2α + 1)3(2M +
1)3(N−n

n
)3). For instance, with n = 2, the complexity is

divided by a factor 8. The voxels selection principle can also
be applied to the blockwise implementation:

w(Bik
, Bj ) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1
Zik

e

−
‖u(Bik

)−u(Bj )‖2
2

2βσ̂2|Ni| if µ1 <
u(Bik

)

u(Bj )
< 1

µ1

and σ2
1 <

Var(u(Bik
))

Var(u(Bj ))
< 1

σ2
1

0 otherwise.
(11)

where u(Bik
) and Var(u(Bik

)) represent respectively the
mean and the variance of the intensity function, for the block
Bik

centered on the voxel xik
.

4) Parallel computation: Another way to reduce the com-
putational time is to distribute the operations on several
processors via a cluster or a grid. The intrinsic nature of the
NL-means filter makes it perfectly suited for parallelization
and multithreading implementation. One of the main advan-
tage of this filter, when compared to others method such as
Anisotropic Diffusion or Total Variation minimization, is that
the operations are performed without any iterative schemes.
Thus, the parallelization of the NL-means filter is straight-
forward to perform and very efficient. We divide the volume
into sub-volumes, each of them being treated separately by
one processor. A server with 8 Xeon processors at 3 GHz
and a Intel(R) Pentium(R) D CPU 3.40GHz were used in our
experiments.

IV. MATERIALS

A. The BrainWeb Database

In order to evaluate the performances of the NL-means filter
on 3D MR images, tests were performed on the BrainWeb
database1 [2]. Two images were simulated: T1-w MR image
using SFLASH sequence (volume size = 181×217×181) and
T2-w MR image with MS from SFLASH sequence (volume
size = 181 × 217 × 181). As reported previously, it is a
known fact that the MR images are corrupted by a Rician
noise [53], [54], which can be well approximated by a white
Gaussian noise in high intensity areas, typically in brain tissues
[38]. In order to verify if this approximation can be used for
a NL-means based denoising, experiments are performed on
phantom images with Gaussian and Rician noise.

1) Gaussian Noise: A white Gaussian noise was added on
the “ground truth”, and the notations of BrainWeb are used:
a noise of 3% is equivalent to N (0, ν 3

100 ), where ν is the
value of the brightest tissue in the image (150 for T1-w and
250 for T2-w). Several images were simulated to validate the
performances of the denoising on various images (see Fig. 4):

• T1-w MR images for 4 levels of noise 3%, 9%, 15% and
21%.

• T2-w MR images with Multiple Sclerosis (MS) lesions
for 4 levels of noise 3%, 9%, 15% and 21%.

T2-w images were used in order to show that our approach
and its calibration are not specific to T1-w MRI sequences.
Moreover, the tests on T2-w MRI with MS show how the
NL-means filter could be useful in a pathological context due
to its preservation of anatomic and pathologic structures.

2) Rician Noise: The Rician noise was build from white
Gaussian noise in the complex domain. Firstly, two images
are computed:

• Ir(xi) = I0(xi) + η1(xi), η1(xi) v N (0, σ)
• Ii(xi) = η2(xi), η2(xi) v N (0, σ)

where I0 is the “ground truth” and σ is the standard deviation
of the added white Gaussian noise. Then, the noisy image is
computed as:

IN (xi) =
√

Ir(xi)2 + Ii(xi)2 (12)

The notation 3% for the Rician noise means that the
Gaussian noise used in complex domain is equivalent to
N (0, ν 3

100 ), where ν is the value of the brightest tissue in
the image (150 for T1-w). According to the Peak Signal to
Noise Ratio (PSNR) (see Eq. 13) between “ground truth” and
noisy images, for a same level of noise, the Rician noise is
stronger than the Gaussian noise (see Tab. I). Several images
were simulated (see Fig. 5):

• T1-w MR images for 4 levels of noise 3%, 9%, 15% and
21%.

B. Real Data

1) T1-w high field MRI Data: To show the efficiency of the
NL-means filter on real data, tests were performed on image
acquired with a high field MR system (Bruker 3 Tesla). The
data used was a 256× 256× 256 T1-w image.

1http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 4. Synthetic data used for validation with Gaussian Nnoise. Example
of the Brainweb Database. Top: T1-w images without any noise (left), and
corrupted with a white Gaussian noise at 9% (right). Bottom: T2-w images
with MS lesions without noise (left), and corrupted with a white Gaussian
noise at 9% (right).

Noise level PSNR with Gaussian PSNR with Rician
noise in dB noise in dB

3% 35.09 35.05
9% 25.64 25.57
15% 21.30 21.17
21% 18.49 18.29

TABLE I
PEAK SIGNAL TO NOISE RATIO (PSNR) BETWEEN “GROUND TRUTH”
AND NOISY IMAGES FOR GAUSSIAN AND RICIAN NOISES. FOR A SAME

LEVEL OF NOISE, THE RICIAN NOISE IS STRONGER THAN THE GAUSSIAN

NOISE.

2) T2-w with Multiple Sclerosis lesions: In a pathological
context, the denoising step is crucial especially when the struc-
tures of interest have a small size: the integrity of pathological
structures must be preserved by the denoising method. As
said earlier, one objective of denoising is to include such
processing in complex medical imaging workflows. This kind
of workflows is widely used to process large cohort of subjects
in many neurological diseases such as MS lesions. The data
used for MS lesions qualitative validation was a T2-w MR
image from an axial dual-echo, turbo spin-echo sequence
(Philips 1.5 Tesla).

V. VALIDATION ON A PHANTOM DATA SET WITH ADDED
GAUSSIAN NOISE

In the following, let us define:
• NL-means is the standard voxelwise implementation with

automatic tuning of the smoothing parameter.
• Optimized NL-means is a voxelwise implementation

with automatic tuning of the smoothing parameter, voxel

Fig. 5. Synthetic data used for validation with Rician noise. Example of
the Brainweb Database. T1-w images without any noise (left), and corrupted
with a Rician noise at 9% (right).

selection and multithreading.
• Blockwise NL-means is the standard blockwise im-

plementation with automatic tuning of the smoothing
parameter.

• Optimized Blockwise NL-means is a blockwise im-
plementation with automatic tuning of the smoothing
parameter, block selection and multithreading.

In this section different aspects of NL-means filter imple-
mentation were investigated. First, the impact of the auto-
matic tuning of the filtering parameter (Section V-A) and
the influence of the size of the search volume and the
neighborhood were studied (Section V-B). Then, the impact
of voxels selection and blockwise implementation is analyzed
via the comparison of the NL-means, Optimized NL-means,
Blockwise NL-means and Optimized Blockwise NL-means
filters (Sections V-C and V-D). Finally, we compare the pro-
posed Optimized Blockwise NL-means filter with other well-
established denoising methods: Anisotropic Diffusion filter
[3] (implemented in VTK2) and Rudin-Osher-Fatemi Total
Variation (TV) minimization process [4] (3D extension of
the Megawave2 implementation3) (Section V-G). The different
variants of the NL-means filter can be freely tested at: http:
//www.irisa.fr/visages/benchmarks

In the following, several criteria are used to quantify the
performances of each method: the PSNR obtained for different
noise levels, histogram comparisons between the denoised
images and the “ground truth”, and finally visual assessment.
For the sake of clarity, the PSNR and the histograms are
estimated only in a region of interest obtained by removing the
background. For 8-bit encoded images, the PSNR is defined
as follows:

PSNR = 20 log10

255

RMSE
(13)

where the RMSE is the root mean square error estimated
between the ground truth and the denoised image.

In this section, the central parameters of interest are:
• β defining the smoothing parameter h: h2 = 2βσ̂2|Ni|

(see section III-B.1).
• M related to |Vi|: |Vi| = (2M + 1)3.
• d related to |Ni|: |Ni| = (2d + 1)3.

2www.vtk.org
3http://www.cmla.ens-cachan.fr/Cmla/Megawave/index.html
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• µ1 and σ2
1 corresponding to the thresholds involving in

the voxel selection.
In each experiment (Sections V-A, V-B and V-C), we let

one parameter vary while remaining the others constant, with
default values: β = 1, M = 5, d = 1 and µ1 = 0.95,
σ2

1 = 0.5. Concerning the blockwise implementation the
default parameters are n = 2 and α = 1.

Our experiments have shown that all the versions of the NL-
means filter (NL-means, Optimized NL-means, Blockwise
NL-means and Optimized Blockwise NL-means) tend to
have a similar behavior with respect to the variation of the
parameters. In that context, all the results are displayed with
the proposed Optimized Blockwise NL-means filter, even
if equivalent conclusions can be drawn with the NL-means,
Optimized NL-means and Blockwise NL-means filters.

Validation was performed on T1-w and T2-w MRI, but the
results concerning the study of the parameter influences are
shown for T1-w MRI only. The results on T2-w MRI are
shown in section V-F in order to underline that the parameters
calibrated for T1-w MRI work fine on T2-w MRI.

A. Influence of the automatic tuning of smoothing parameter
h

Figure 6 shows the influence of the automatic determination
of the smoothing parameter h2 = 2βσ̂2|Ni|. As described
in III-B.1, h is a function of the global standard deviation
of the noise σ̂ in the volume esimated from pseudo-residuals
(see 3 and Eq. 4). Here, β allows to adjust the automatic
estimation of h in order to determine the optimal smoothing
parameter 2βσ̂2|Ni| for each level of noise (see 6). For low
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Fig. 6. Calibration of the smoothing parameter h: Influence of the
smoothing parameter 2βσ̂2|Ni| on the PSNR, according to β and for several
levels of noise. For low levels of noise the best value of β is close to 0.5. For
high levels of noise this value is 1. The default value of β is set to 1, thus the
estimation of h is h2 = 2σ̂2 . These results are obtained with σ̂2 = 3.42%
at 3%, σ̂2 = 7.93% at 9%, σ̂2 = 12.72% at 15% and σ̂2 = 17.44% at
21%.

levels of noise the best value of β is close to 0.5. For high
levels of noise this value is 1. These results show that the
estimation of the standard deviation of the noise is correctly
performed by pseudo-residuals. These observations underline
(a) how efficient the automatic estimation of the smoothing

parameter h is, and (b) how the NL-means can be used without
manual parameter tuning.

B. Influence of the size of the search volume and the neigh-
borhood

Figure 7 shows the influence of the size of the search
volume and the local neighborhood. Increasing the number
of voxels in the search volume Vi does not seem to affect
the PSNR when M is greater than 5. Indeed, the theoretic
definition of the NL-means filter states that the weighted
average (see Eq. 1) computed for the restoration of voxel
xi should be performed on all voxels xj ∈ Ω3. Practically,
the limit M = 5 prevents useless computations. Moreover,
increasing d degrades the denoising process. When d increases
the NL-means filter drastically slows down. That is why we
have not investigated the impact of d for d > 3.

C. Influence of the voxel selection
The selection of the voxels in the search volume Vi is

achieved by supposing that only the voxels whose the neigh-
borhood is similar to the neighborhood of the voxel under
study could be considered (see Eq. 1). To do so, as defined
in III-B.2, the weight w(xi, xj) is calculated only for voxels
such that: µ1 < u(Ni)

u(Nj)
< 1

µ1
and σ2

1 < Var(u(Ni))
Var(u(Nj))

< 1
σ2
1

. The

influence of the limits µ1 and σ2
1 is studied in Figure 8. In a

first experiment µ1 varies according to γ such as µ1 = 1− γ
while σ2

1 = 0.5. In a second experiment σ2
1 varies according

to γ following σ2
1 = 1 − γ while µ1 = 0.95.

Figure 8 (left) shows that a restrictive selection based on
the mean (low values of γ) increases the PSNR. In other
words, the number of voxels taken into account in the weighted
average is drastically reduced, as well as the computational
time (also see Tab. II). The optimal limits were obtained
for µ1 = 0.95 while σ2

1 = 0.5. Concerning the variance
(Figure 8, right), we observe that a too restrictive selection
degrades the PSNR. In addition, a too permissive selection
does not increase the PSNR while increasing uselessly the
computational burden. A compromise was found by fixing
σ2

1 = 0.5. There is a clear dependency between the bounds
for the mean and the variance. An optimal trade-off was
determined experimentally.

D. Influence of the blockwise implementation
Tab. II shows that the blockwise approach of the NL-

means filter, with and without voxels selection (see Eq. 11),
allows to drastically reduce the computational time. With a
distance between the block centers n = 2, the blockwise
approach divides this time by a factor 23 = 8 (see Tab. II).
However, computational time reduction needs to be balanced
with a slight decrease of the PSNR (see Fig. 9, left). For
the optimized versions, the voxels/blocks selection in the
search volume has several impacts. First, by reducing the av-
erage number of voxels/blocks used in the weighted averages,
this decreases the computational time compared to the non-
optimized versions (see Tab. II). Second, the selection of the
most relevant voxels/blocks increases the quality of denoising
for all the noise levels (see Fig. 9 (left) and Tab. II).
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Fig. 7. Influence of the size |Vi| = (2M + 1)3 and |Ni| = (2d + 1)3 for denoising: Influence of the size of the search volume and the size of the
neighborhood on the PSNR, for several levels of noise. Left: Variation of the size M of the search volume Vi for d = 1. Right: Variation of the size d of the
neighborhood Ni for M = 5. These results show that the limit M = 5 prevents useless computation. Moreover, increasing d degrades and drastically slows
down the algorithm.
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µ1 = 0.95 and σ2

1 varies accordingly to γ. A too restrictive selection (low values of γ) degrades the PSNR. In addition, a too permissive selection (high
values of γ) does not increase the PSNR while concurrently increasing uselessly the computational burden. A good compromise is found by fixing σ2

1 = 0.5.
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Fig. 9. Impact of the blockwise implementation and voxels selection. Comparison of the different implementations of the NL-means filter, with α = 1.
Left: on T1-w images. For the Optimized Blockwise NL-means filter, as for the Optimized NL-means filter, the selection of voxels/blocks in the search
volume improves the quality of denoising and decreases the computational burden (see Tab. II). The reduction of computational time brought by the blockwise
approach needs to be balanced with a slight decrease in quality of denoising. Right: on T2-w images with MS lesions. The same conclusions can be drawn
for this kind of images. These results suggest that the parameters tuning determined experimentally on T1-w images are not T1-specific.
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E. Multithreading

As described in section III-B.4, the multithreading in the
case of the NL-means filter is particularly adapted due its
non iterative nature. For the classical pixelwise NL-means
implementation, the parallelization allows to divide the compu-
tational time by a factor close to the numbers of CPU. As eight
processors were used for our experiments, the computational
time with multithreading is about 8 times smaller (see Tab.
II, 21790

2780 = 7.84 and 3169
436 = 7.27). For the blockwise

implementations the speedup is less ( 1800
251 = 7.17 and 328

63 =
5.37). The difference of speedup between the classical NL-
means and the blockwise NL-means filters have two origins.

• First, in blockwise version several threads could write
at the same memory location (i.e. vector Ai) at the
same time. In multi-treading programming this kind of
possibilities requires a lock which protects the memory
location during the writing. Unfortunately, to lock a
memory location speeds down the computational process.

• Second, as the required computation time is shorter for
the blockwise than for the voxelwise implementation, the
relative contribution of the non-multithreaded operations
in the overall computation time (opening and closing of
file, computation of the local maps, etc.) is much higher in
the blockwise compared to the voxelwise implementation.
As a consequence, the speed-up factor will be higher in
the latter

In order to underline that the utilization of 8-CPUs is not re-
quired by our filter, the denoising have been also performed on
a more common architecture: a DualCore Intel(R) Pentium(R)
D CPU 3.40GHz. The results show that our filter takes less
than 3 minutes to denoise a volume 181 × 217 × 181 voxels
on this architecture.

To conclude, the different improvements included in the pro-
posed Optimized Blockwise NL-means filter (i.e., blockwise
approach and blocks selection) allow to speed up the denoising
procedure, compared to NL-means filter, by a factor of 66
on 1 Xeon at 3GHz, 44 on 8× Xeon at 3GHz and 31 on a
DualCore at 3.40GHz.

F. Optimized Blockwise NL-means filter on T2-w MRI with
MS

Figure 9 (right) presents the results obtained by the different
NL-means filter versions on T2-w MRI with MS lesions. The
optimal parameters (i.e. the default parameters described in
section V), experimentally determined on T1-w MRI, and
the automatic tuning of h were used on T2-w MRI. The
Optimized NL-means and Optimized Blockwise NL-means
filters outperform the NL-means and Blockwise NL-means
filters also on T2-w MRI. The most important difference
between the optimized and non-optimized versions are ob-
served on T2-w MRI, which could be explained by the higher
level of noise in the simulated T2-w MRI compared to T1-
w MRI. Actually, the variance of noise varies with respect
to the highest intensity tissues which is 150 in T1-w and
250 in T2-w. For 9% the variance of noise is 13.5 in T1-w
images and is 22.5 in T2-w images because the highest tissue
intensity is superior in T2-w images. These results suggest

that the parameters experimentally tuned on T1-w images can
be used for T2-w images. Figure 10 shows an example of
denoising obtained by the optimized blockwise NL-means and
the blockwise NL-means filters. The MS lesions are visually
more preserved with the optimized version; this was confirmed
by an experienced MRI reader.

G. Comparison with other denoising methods

1) Focus on two classical denoising approaches:
a) Anisotropic Diffusion filtering: As reported in Sec-

tion II, the Anisotropic Diffusion filter (AD) was introduced
to overcome the blurring effect of the Gaussian smoothing
approach. First introduced by Perona and Malik [3], in this
approach the image u is only convolved in the direction
orthogonal to the gradient of the image which ensures the
preservation of edges. The iterative denoising process of initial
image u0 can be expressed as:

{

∂u(x,t)
∂t

= div(c(x, t)∇u(x, t))
u(x, 0) = u0(x)

(14)

where ∇u(x, t) is the image gradient at voxel x and iteration
t, ∂u(x,t)

∂t
is the partial temporal deviation of u(x, t) and

c(x, t) = g(‖∇u(x, t)‖) = e−
‖∇u(x,t)‖

K2 (15)

where K is the diffusivity parameter. The AD filter method
produces a good preservation of edges [34], [35]. Nonetheless,
the main disadvantage of Ad filter is to poorly denoise the
constant regions (see Fig. 13).

b) Total Variation minimization scheme: The difficult
task to preserve edges while correctly denoising constant areas
has been addressed also by Rudin, Osher and Fatemi. They
proposed to minimize the Total Variation (TV) norm subject
to noise constraints [4], that is:

û = arg min
u∈Ω3

∫

|∇u(x)|dx (16)

subject to
∫

Ω3

(u(x) − u0(x))dx = 0 and
∫

Ω3

|u(x) − u0(x)|2dx = σ2

(17)
where u0 is the original noisy image, u is the restored image
and σ the standard deviation of the noise. In this model, the TV
minimization tends to smooth inside the image structures while
keeping the integrity of boundaries. The TV minimization
scheme can be expressed as an unconstrained problem:

û = arg min
u∈Ω3

[∫

Ω3

|∇u(x)|dx + λ

∫

Ω3

|u(x) − u0(x)|2dx

]

(18)
where λ is a Lagrange multiplier which controls the balance
between the TV norm and the fidelity term. Thus, λ acts as the
filtering parameter. Indeed, for high values for λ the fidelity
term is encouraged. For small values for λ the regularity term
is desired. In practice, the TV minimization scheme tends to
remove texture and small image structures as seen in Fig. 13
[36]. To solve this problem, iterative total variation schemes
have been recently developed [55], [56].
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Gaussian Noise Computational time (in s) PSNR (in dB) Average number
Xeon 3GHz 8 × Xeon 3GHz DualCore of voxels/blocks

3.40 GHz used in Vi to denoise xi

NL-means 21790 2780 4208 32.59 113 = 1331 voxels
Blockwise NL-means 1800 251 734 31.73 113 = 1331 blocks
Optimized NL-means 3169 436 778 34.44 174.8 voxels

Optimized Blockwise NL-means 328 63 135 33.75 174.8 blocks

TABLE II
COMPARISON OF DIFFERENT IMPLEMENTATIONS OF THE NL-MEANS FILTERS IN TERMS OF COMPUTATIONAL TIME AND DENOISING QUALITY.

THE TIME IS OBTAINED WITH MULTITHREADING ON 8 CPUS AT 3GHZ AND INTEL(R) PENTIUM(R) D CPU 3.40GHZ AND WITHOUT MULTITHREADING

ON 1 CPU AT 3GHZ. THESE RESULTS ARE OBTAINED ON A T1-W BRAINWEB IMAGE WITH 9% OF GAUSSIAN NOISE (σ = 13.5). THE PARAMETERS

USED ARE THE DEFAULT PARAMETERS. THE AVERAGE NUMBER OF VOXELS/BLOCKS USED IN Vi TO DENOISE u(xi) SHOWS THE IMPACT OF

VOXELS/BLOCKS SELECTION. FOR THE NON-OPTIMIZED IMPLEMENTATIONS ALL THE VOXELS/BLOCKS IN Vi ARE TAKEN INTO ACCOUNT TO DENOISE

u(xi). THUS, THE NUMBER OF VOXELS/BLOCKS USED ARE |Vi| = (2M + 1)3 = 113 . FOR THE OPTIMIZED IMPLEMENTATIONS THE VOXEL SELECTION

ALLOWS TO DRASTICALLY REDUCE THIS NUMBER.

“Ground truth” Noisy image 9% Optimized Blockwise Blockwise
NL-means NL-means

Fig. 10. Comparison of the optimized and non-optimized blockwise NL-means on T2-w images: NL-means restoration of T2-w Brainweb data with
MS lesions. From left to right: “Ground truth”, noised image at 9% of Gaussian noise, restored images by the Optimized Blockwise NL-means filter and
by the Blockwise NL-means filter. The Optimized Blockwise NL-means filter preserves efficiently the contours of the MS lesions.

2) Quantitative and qualitative comparison: The main dif-
ficulty to achieve this comparison is related to the tuning
of smoothing parameters in order to obtain the best results
for AD filter and TV minimization scheme. In order not to
penalize AD filter and TV minimization scheme, an exhaustive
search for all parameters into a certain range. Then, the
best results obtained with AD filter and TV minimization
have been selected, whereas the fully-automatic results have
been mentioned for the NL-means filters. The results of the
NL-means filters are not “optimal” due to the non perfect
estimation of the noise standard deviation. For AD filter, the
parameter K varies from 0.05 to 1 with a step of 0.05 and the
number of iterations varies from 1 to 10. For TV minimization,

the parameter λ varies from 0.01 to 1 with step of 0.01 and the
number of iterations varies from 1 to 10. The results obtained
for 9% of Gaussian noise are presented Fig. 11, but this
screening have been performed for the four levels of noise.
It is important to underline that the results giving the best
PSNR are used, but these results do not necessary give the best
visual output. Indeed, the best PSNR for AD filter is obtained
for a visually under-smoothed image since this method tends
to spoil the edges. To obtain a high PSNR, the denoised image
needs to balance edge preserving and noise removing. For AD
filter, this trade-off leads to inhomogeneities in flat areas in
denoised image (see Fig. 13). For TV minimization, the best
PSNR is obtained with a visually under-smoothed image since
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Fig. 11. Result for AD filter and TV minimization on phantom images with Gaussian noise at 9%. For AD filter K varies from 0.05 to 1 with step of 0.05
and the number of iterations varies from 1 to 10. For TV minimization λ varies from 0.01 to 1 with step of 0.01 and the number of iterations varies from 1
to 10

noise is present in denoised image (see Fig. 13).
a) PSNR comparison: As presented in Fig. 12 (left),

our block optimized NL-means filter produces the best PSNR
values whatever the noise level. On average, a gain of 1.85
dB is measured compared to TV and Anisotropic Diffusion
methods. The PSNR value between the noisy image and
the ground truth is called “No processing” and is used as
reference.

b) Histogram comparison: To better understand how
these differences in the PSNR values between the three meth-
ods can be explained, the histograms of the denoised images
were compared to the histogram of the ground truth. Figure 12
(right) shows that the Optimized Blockwise NL-means filter
is the only method able to retrieve a histogram similar to the
ground truth. The NL-means-based restoration schemes clearly
distinguish the three main peaks representing the white matter,
the gray matter and the cerebrospinal fluid. The sharpness
of the peaks shows how the Optimized Blockwise NL-
means filter increases the contrast between denoised biological
structures (see also Fig. 13). The distances between these
histograms are estimated with the Bhattacharyya coefficient
(BC) defined as:

BC(p, q) =
255
∑

b=0

√

p(b)q(b) (19)

where p and q are the two histograms be to compared and b
is the bin index. A BC close to 1 means p and q are very
similar. Each histogram of denoised images is compared to
the “ground truth” one (see Tab. III). The distance between the
histogram of the noisy image and the histogram of the “ground
truth” is used as a reference. The BC distance shows that the
restored histogram obtained with the Optimized Blockwise
NL-means filter is the closest to the “ground truth”, as visually
assessed in Figure 12 (right). Finally, Table III suggests that
the NL-means-based approach could improve the registration
of images, since the Mutual Information (MI) computed
between the restored image and the “ground truth” is higher
in comparison with AD filter and TV minimization. The MI
is a similarity measure commonly used in image registration.

c) Visual Assessment: Figures 13 and 14 show the re-
stored images and the removed noise obtained with the three
compared methods. As shown in the previous analysis, we ob-
serve that the homogeneity of white matter is higher when the
image is denoised with the Optimized Blockwise NL-means
filter. Moreover, focusing on the structure of the removed
noise, it clearly appears that NL-means-based restoration
schemes better preserves the high frequency components of the
image corresponding to anatomical structures while removing
efficiently the high frequencies due to noise. According to the
“method noise” introduced in [57], the NL-means is a better
denoising method since the removed noise is the most similar
to a white Gaussian noise. Finally, the difference between the
“ground truth” and the denoised image is presented in order
to show which structures are removed during the denoising
process. In Fig. 13, this difference shows that (a) the AD
filter tends to spoil the edges especially on the skull, (b) the
TV minimization slightly better preserves the edges but does
not remove all the noise, and (c) the Optimized Blockwise
NL-means filter visually better preserves the edges while
efficiently removing the noise (especially for white matter).

VI. VALIDATION ON A PHANTOM DATA SET WITH ADDED
RICIAN NOISE

In this section, the same experiments are performed on
phantom data set corrupted by Rician noise in order to study
the impact of the Gaussian assumption. Table IV shows
the computation time and the denoising performance of the
different compared NL-means filters. These results show that
the optimized NL-means versions outperform the classical
ones also for Rician noise. Figure 15 presents the comparison
with AD filter and TV minimization in terms of PSNR values
and histogram analysis. As for the AD filter and TV mini-
mization, the NL-means-based denoising is able to correctly
restore an image corrupted by Rician noise using a Gaussian
approximation. When the histograms are compared, low values
of intensity (< 20) are incorrectly restored for all the filters;
the Gaussian approximation is not appropriate in that case.
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Fig. 12. Comparison between Anisotropic Diffusion, Total Variation and Optimized Blockwise NL-means denoising: the PSNR values and histograms
for different denoising methods on BrainWeb at 9% of Gaussian noise. Left: the PSNR experiment shows that the Optimized Blockwise NL-means filter
outperforms the well-established Total Variation minimization process and the Anisotropic Diffusion approach. Right: Contrary to others methods, the NL-
means based restoration clearly distinguishes the three main peaks representing the white matter, the gray matter and the cerebrospinal fluid. The sharpness
of the peaks shows how the Optimized Blockwise NL-means filter increases the contrast between denoised biological structures.

Bhattacharyya Coefficient Mutual Information
Noisy image 0.9388 1.282
Anisotropic diffusion 0.9608 2.024
Total Variation 0.9639 1.974
Optimized Blockwise NL-means 0.9756 2.214

TABLE III
COMPARISON OF HISTOGRAMS OBTAINED WITH THE THREE DIFFERENT METHODS AT 9% OF GAUSSIAN NOISE. THIS TABLE PRESENTS (A) THE

BHATTACHARYYA COEFFICIENT COMPUTED BETWEEN THE HISTOGRAMS OF DENOISED IMAGES AND THE “GROUND TRUTH” ONE AND (B) THE MUTUAL

INFORMATION COMPUTED BETWEEN THE DENOISED IMAGES AND THE “GROUND TRUTH”. THE DISTANCE BETWEEN THE NOISY IMAGE AND THE

“GROUND TRUTH” IS USED AS A REFERENCE. COMPARED TO AD FILTER AND TV MINIMIZATION, THE OPTIMIZED BLOCKWISE NL-MEANS FILTER

ALLOWS TO OBTAIN A DENOISED IMAGE WHOSE HISTOGRAM IS MORE CLOSER TO “GROUND TRUTH” HISTOGRAM.

Nevertheless, it seems the underlying assumption is well suited
to high values (> 60).

As for Gaussian noise, the NL-means-based restoration
clearly emphasizes the three main peaks corresponding to
the white matter, the gray matter and the cerebrospinal fluid.
Figure 16 shows the visual results obtained when the methods
are compared on phantom data with Rician noise. Compared
to Fig. 13, the denoising of background is worse in the Rician
case, but the cerebral structures are correctly restored with
the NL-means filter especially the white matter (see Fig. 16).
Finally, Figure 17 shows the PSNR results of the parameter
screening for the AD filter and the TV minimization at 9%
of Rician noise. All these results on Rician noise show that
the PNSR values slightly decrease due to more pronounced
noise compared to Gaussian case for a same level (see IV-A.2
for explanation), but the general performance of the filters is
preserved.

VII. EXPERIMENTS ON CLINICAL DATA

A. High field MRI

The restoration results presented in Fig. 18 show good
preservation of the cerebellum contours. Fully automatic seg-
mentation and quantitative analysis of such structures are still
a challenge, and improved restoration schemes could greatly
improve these processings.

B. MS pathological context

Figure 19 shows that the optimized blockwise NL-means
filter preserves the lesions while removing the noise. The
impact on further processing is not the scope of this paper and
is not studied here. Nevertheless, visually the lesions appears
more contrasted and as seen on the difference image the
proposed NL-means approach does not include any structure
of lesion in the estimated noise image. This was confirmed by
an experienced neurologist.

VIII. DISCUSSION AND CONCLUSION

This paper presents an optimized blockwise version of the
Non Local (NL-) means filter, applied to 3D medical data.
Validation was performed on the BrainWeb dataset [2] and
showed that the proposed Optimized Blockwise NL-means
filter outperforms the classical implementation of the NL-
means filter and some state-of-the-art techniques, such as the
Anisotropic Diffusion approach [3] and the Total Variation
minimization process [4] on both Gaussian and Rician noise.
These first results show that the image-redundancy assumption
required for NL-means based restoration holds for 3D MRI.
Compared to the classical NL-means filter, our implementation
(with voxel preselection, multithreading and blockwise imple-
mentation) considerably decreases the required computational
time (up to a factor of 60 on a Xeon at 3GHz) and increases the
PSNR value of the denoised image. Nevertheless, the problem
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Ground truth Image with 9%
Gaussian noise added

Anisotropic Diffusion Total Variation Optimized Blockwise
NL-means

unoisy − udenoised

ugroundtruth − udenoised

Fig. 13. Comparison with Anisotropic Diffusion, Total Variation and NL-means denoising on synthetic T1-w images. Top: zooms on T1-w BrainWeb
images. Left: the “ground truth”. Right: the noisy images with 9% of Gaussian noise.Middle: the results of restoration obtained with the different methods and
the images of the removed noise (i.e. the difference (centered on 128) between the noisy image and the denoised image. Bottom: the difference (centered on
128) between the denoised image and the ground truth. Left: Anisotropic Diffusion denoising. Left: Anisotropic Diffusion denoising. Middle: Total Variation
minimization process. Right: Optimized Blockwise NL-means filter. The NL-means based restoration better preserves the anatomical structure in the image
while efficiently removing the noise as it can be seen in the image of removed noise.

of the computational burden can still be investigated with other
faster implementations such as the “plain multiscale” scheme
also suggested in [1]. Further works should be pursued for
comparing NL-means based restoration with recent promising
denoising methods, such as Total Variation in wavelet domain
[43] or adaptive estimation method [28], [50]. Moreover,
the efficiency of the technique limiting the staircasing effect
proposed in [58] needs to be studied for MRI.

We show on sample pathological cases (patients with MS
lesions) that the filter preserves the major visual signature

of the given pathology. However, the impact on specific
pathologies needs to be further investigated.

Finally, the impact of the NL-means-based denoising on the
performances of post-processing algorithms, like segmentation
and registration schemes also should be studied. Nonetheless,
the first results presented on the Mutual Information (MI)
suggest that the proposed Optimized Blockwise NL-means
filter could improve the image registration process. Indeed, the
MI computed between the restored image and the “ground
truth” is higher with the Optimized Blockwise NL-means
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Ground truth Image with 21%
Gaussian noise added

Anisotropic Diffusion Total Variation Optimized Blockwise
NL-means

unoisy − udenoised

ugroundtruth − udenoised

Fig. 14. Comparison with Anisotropic Diffusion, Total Variation and NL-means denoising on synthetic T1-w images. Top: zooms on T1-w BrainWeb
images. Left: the “ground truth”. Right: the noisy images with 21% of Gaussian noise. Middle: the results of restoration obtained with the different methods
and the images of the removed noise (i.e. the difference (centered on 128) between the noisy image and the denoised image. Bottom: the difference (centered on
128) between the denoised image and the ground truth. Left: Anisotropic Diffusion denoising. Middle: Total Variation minimization process. Right: Optimized
Blockwise NL-means filter.

filter than with the Anisotropic Diffusion approach and the
Total Variation minimization process.
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intensity (< 20) are incorrectly restored for all the filters; the Gaussian approximation is not appropriate in that case. Nevertheless, it seems the underlying
assumption is well suited to high values (> 60). Contrary to others methods, the NL-means based restoration clearly emphasizes the three main peaks
representing the white matter, the gray matter and the cerebrospinal fluid. The sharpness of the peaks shows how the Optimized Blockwise NL-means filter
increases the contrast between denoised biological structures.
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images. Left: the “ground truth”. Right: the noisy images with 9% of Rician noise. Middle: the results of restoration obtained with the different methods
and the images of the removed noise (i.e. the difference (centered on 128) between the noisy image and the denoised image. Bottom: the “Method Noise”
which is the difference (centered on 128) between the denoised image and the ground truth. Left: Anisotropic Diffusion denoising. Middle: Total Variation
minimization process. Right: Optimized Blockwise NL-means filter. The NL-means based restoration better preserves the anatomical structure in the image
while efficiently removing the noise, it can be seen in the image of removed noise.
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Fig. 18. NL-means filter on a real T1-w MRI. Fully-automatic restoration obtained with the Optimized Blockwise NL-means filter on a 3 Tesla T1-w
MRI data of 2563 voxels in less than 3 minutes on a Intel(R) Pentium(R) D CPU 3.40GHz with 2Go of RAM . From left to right: Original image, denoised
image, and difference image with gray values centered on 128. The whole image is shown on top, and a detail is displayed on bottom.
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Fig. 19. NL-means filter on a real T2-w MRI with MS. Fully-automatic restoration obtained with the Optimized Blockwise NL-means filter on a 1.5T
T2-w MRI data with MS lesions of 512 × 512 × 28 voxels in less than 2 minute on a Intel(R) Pentium(R) D CPU 3.40GHz with 2Go of RAM. From left
to right: Original image, denoised image, and difference image with gray values centered on 128. The whole image is shown on top, and a detail is exposed
on bottom.
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