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Background. Action potentials are the classic mechanism by which neurons convey a state of excitation throughout their
length, leading, after synaptic transmission, to the activation of other neurons and consequently to network functioning. Using
an in vitro integrated model, we found previously that peripheral networks in the autonomic nervous system can organise an
unconventional regulatory reflex of the digestive tract motility without action potentials. Methodology/Principal Findings.

In this report, we used combined neuropharmacological and biochemical approaches to elucidate some steps of the
mechanism that conveys excitation along the nerves fibres without action potentials. This mechanism requires the production
of ceramide in membrane lipid rafts, which triggers in the cytoplasm an increase in intracellular calcium concentration,
followed by activation of a neuronal nitric oxide synthase leading to local production of nitric oxide, and then to guanosine
cyclic monophosphate. This sequence of second messengers is activated in cascade from rafts to rafts to ensure conduction of
the excitation along the nerve fibres. Conclusions/Significance. Our results indicate that second messengers are involved in
neuronal conduction of excitation without action potentials. This mechanism represents the first evidence—to our
knowledge—that excitation is carried along nerves independently of electrical signals. This unexpected ceramide-based
conduction of excitation without action potentials along the autonomic nerve fibres opens up new prospects in our
understanding of neuronal functioning.

Citation: Fasano C, Tercé F, Niel J-P, Nguyen HTT, Hiol A, et al (2007) Neuronal Conduction of Excitation without Action Potentials Based on Ceramide
Production. PLoS ONE 2(7): e612. doi:10.1371/journal.pone.0000612

INTRODUCTION
The prevertebral ganglia (coeliac, superior mesenteric, inferior

mesenteric and major pelvic ganglia) are anatomical relays,

located in the abdominal cavity, along the autonomic sympathetic

fibres innervating the viscera. However, they are physiologically

able to regulate autonomic functions such as digestive tract

motility, vascular motility, secretion and absorption [1–5]. Indeed,

they are established peripheral nervous centres with many well-

recognized integrative properties such as convergence of central

inputs, projections of the visceral inputs at the pre- and post-

synaptic level, gating by the central fibres of the projection of the

visceral inputs, pacemaker activity [5]. These ganglia represent

valuable models for the study of neuronal functioning which

explains why they have been studied for more than 30 years using

electrophysiological, pharmacological, immunohistochemical and

biochemical techniques.

We found previously that peripheral networks connected to the

coeliac plexus can organize an unconventional regulatory reflex of

the digestive tract motility, the gastroduodenal inhibitory reflex

(GIR). This reflex leads to inhibition of the duodenal motility in

response to distension of the stomach and is very likely involved in

gastric emptying. The afferent and efferent limbs of this reflex are

represented by gastric mechanosensitive afferent fibres projecting

on the coeliac plexus and by ganglionic neurons innervating the

duodenum, respectively since the reflex is abolished after section of

the nerve trunks connecting the coeliac plexus to the viscera [1].

We first provided pharmacological and electrophysiological

evidence that this reflex is organized without action potentials

along the autonomic nerve fibres by an unconventional mecha-

nism of excitation which remains unexplained [1]. We then

provided pharmacological evidence that during GIR, the

neurotransmitter released by the afferent fibres to activate the

ganglion neurons is nitric oxide (NO) [2].

It now remains to analyse the molecular mechanisms involved in

the conduction of excitation without action potentials along

autonomic nerve fibres during GIR. For that purpose, we have

used an in vitro preparation consisting of the coeliac plexus connected

to the stomach and duodenum (Figure S1). We hypothesized that

molecules other than ions might be involved in the conveyance of

excitation along the nerve fibres. This suggested that second

messengers could play a role in this mechanism of neuronal

communication. Among them, the sphingolipids represent an

overlooked pool of molecules. One of their metabolites, ceramide,

is produced within the neuronal membrane but activates many

second messengers thus playing a central role in the signalling of

important physiological events such as cell differentiation, growth,
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Toulouse Génopole.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: jean-pierre.miolan@
univ-cezanne.fr

PLoS ONE | www.plosone.org 1 July 2007 | Issue 7 | e612



apoptosis and calcium homeostasis [6–8]. We have therefore looked

for the involvement of ceramide in the mechanism of conduction of

excitation without action potentials.

RESULTS

Gastroduodenal inhibitory reflex
Under our experimental conditions the duodenum showed

spontaneous phasic contractions with a frequency of 10–

20 min21 and an amplitude of 250–650 Pa. Following gastric

distension (2500 Pa for 5 min) the mean amplitude of duodenal

contractions was 68615% of control which revealed a significant

inhibition of duodenal contractions (paired t test, P,0.001, df = 9).

This phenomenon had a mean latency of 562 min and a mean

duration of 1764 min: it characterized the GIR organized by the

coeliac plexus (Fig. 1a, b). In previous studies, we demonstrated

that this reflex is unaffected by selective superfusion of the coeliac

plexus with tetrodotoxin (a sodium channel blocker) 3.1 mM for

10–20 min. Under these experimental conditions, all action

potentials elicited in the coeliac neurons by peripheral nerve

stimulation or by direct stimulation with the microelectrode were

abolished. GIR was also unaffected by selective superfusion of the

peripheral nerves with a sodium free solution for at least 15 min.

Under these conditions, antidromic and synaptic action potentials

elicited by peripheral nerve stimulation were abolished, while the

neurones remained able to fire action potentials when directly

stimulated by the microelectrode. On the basis of these results, the

involvement of sodium action potentials in the organization of the

GIR could be ruled out [1]. We also showed that GIR was

unaffected when the peripheral nerves were selectively superfused

for at least 15 min with cadmium chloride 103 mM (an inorganic

calcium channel blocker), or calcium free solution. Under these

conditions, antidromically, synaptically and directly-induced

action potentials were still elicited in the coeliac neurons. This

ruled out the involvement of calcium action potentials in the

organization of the GIR [1]. Taken together, all these results show

that sodium or calcium action potentials are not involved in the

organization of the GIR. As these action potentials are the only

ones fired by mammalian neurons, we concluded that GIR was

organized without action potentials along the afferent and efferent

neurons. As the prevertebral neurons and the visceral afferents fire

sodium action potentials, we concluded that these neurons have

two levels of activity, one involving the genesis of action potentials

and probably involved in fast regulation and the other without

action potentials and probably involved in slow regulation [4].

Recurrent production of ceramide along the nerve

fibres during the GIR
To investigate whether lipid second messengers were involved in

the conduction of excitation without action potentials, we analyzed

the lipid composition of the nerve trunks connecting the coeliac

plexus to the viscera following gastric distension. We clearly

observed that during the GIR, among all major lipid classes only

ceramide selectively increased 7-fold (unpaired t test, P,0.001,

df = 9, Fig. 1c). This production is 0.4260.07 nM/mg of nerve

trunks (unpaired t test, p,0.001, df = 9, Fig. 1d). Interestingly,

ceramide production involved mainly long-chain (12.6-fold in-

crease in C16 species) and to a lesser extent very long-chain

ceramides (3 and 5.7-fold increase for C24:0 and C24:1 species,

respectively, Fig. 1d). In addition, in two experiments where

gastric distension did not trigger the GIR, the ceramide content

only increased less than 2-fold (Fig. 1d). These results suggest that

ceramide production in the nerve fibres is necessary for the

organisation of GIR. To confirm this assumption, we treated the

preparation with different compounds known to interfere with the

ceramide pathway. As shown in Fig. 2a, in the absence of gastric

distension, after superfusion of the coeliac plexus with 6 mM C2-

ceramide, a permeant analogue of ceramide [9,10], the mean

amplitude of duodenal contractions was 6668% of control which

revealed a significant inhibition of duodenal contractions (paired t

test, P,0.01, df = 5). This phenomenon had a mean latency of

861 min and a mean duration of 1563 min, thus mimicking the

GIR organized by the coeliac plexus. In one additional experi-

ment, we checked that section of the nerve trunks connecting the

coeliac plexus to the viscera abolished the inhibition of duodenal

contractions following superfusion of the coeliac plexus with 6 mM

C2-ceramide. These data allow us to exclude any paracrine

signalling in the propagation of the excitation. It confirms the

results of a previous study where we showed that GIR was blocked

after section of the nerve trunks connecting the coeliac plexus to

the viscera [1]. Concomitantly to the inhibition of the duodenal

contractions, superfusion of the coeliac plexus with 6 mM C2-

ceramide induced an increase in the ceramide level in the nerve

trunks 4.7 fold (unpaired t test, P,0.01, df = 9, Fig. 2a). This

increase is similar to that obtained following gastric distension and

involves C16 as well as C24 molecular species. Moreover, both the

inhibition of the duodenal contractions and the ceramide

production were abolished when the nerve trunks were superfused

for at least 30 min with 16 mM GW4869, a selective inhibitor of

neutral sphingomyelinase [11,12] before superfusion of the coeliac

plexus with C2-ceramide (Fig. 2b). Therefore a local increase in

the concentration of ceramide along the nerve fibres fails to affect

duodenal motility if ceramide production downstream is blocked.

We confirmed the involvement of ceramide in the organisation of

the reflex by showing that superfusion of the nerve trunks with

GW4869 blocked the GIR triggered by gastric distension (Fig. 2c).

However, in the absence of gastric distension, superfusion of the

nerve trunks with GW4869 did not significantly affect the

amplitude of duodenal contractions (paired t test, non significant,

df = 4, Fig. 2d). This result indicates that under our experimental

conditions, the basal sphingomyelinase activity and the ceramide

production were too low to produce an inhibition of duodenal

motility. When C2-ceramide was superfused on the nerve trunks in

the presence of 3 mM tetrodotoxin, the mean amplitude of

duodenal contractions was 6667% of control which revealed

a significant inhibition of duodenal contractions (paired t test,

P,0.01, df = 4, Fig. 2e) indicating that the effect of C2-ceramide is

independent of action potentials. Superfusion of the nerve trunks

with 6 mM C2-dihydroceramide, an inactive analogue of ceramide

[9,10], did not affect duodenal contractions, indicating that the

effect of C2-ceramide was specific (paired t test, non significant,

df = 4, Fig. 2f). Nowadays it is acknowledged that permeant short-

chain ceramides mimic the effect of natural ceramide [7,13–16].

C2-ceramide can in fact be converted to long chain ceramide

[15,16], a process that we observed in the ganglion treated with

C2-ceramide (18-fold increase in total ceramide, unpaired t test,

P,0.01, df = 10, Fig. 2g). C2-ceramide may also activate a neutral

sphingomyelinase which in turn generates endogenous ceramide

within minutes [17], a process compatible with the latency of the

duodenal inhibition triggered by C2-ceramide in our study.

Finally, in the absence of gastric distension, superfusion of the

nerve trunks with 1 UI/100 mL sphingomyelinase (Fig. 2h)

revealed a significant decrease in the mean amplitude of duodenal

contractions (7865% of control, paired t test, P,0.05, df = 3) as

well as a 12-fold increase of ceramide (unpaired t test, P,0.01,

df = 7). Taken together, all these results indicate that the

conduction of excitation without action potentials requires the

recurrent production of ceramide along the nerve fibres.

Ceramide and Neurone
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Interestingly, some membrane proteins and sphingolipids are

organized in sphingolipid/cholesterol-rich microdomains [18–20].

One of these types of domains, also called lipid rafts, may be

involved in the conduction of excitation without action potentials

along the nerve fibres. We first determined the presence of lipid

rafts in the nerve trunks connecting the coeliac plexus to the

viscera. Detergent resistant membranes (DRMs) were successfully

isolated from the nerve trunk membranes treated with 0.5%

Triton X-100 at 4uC. After sucrose gradient fractionation, the light

density membrane fraction was obtained and was significantly

enriched in cholesterol and ganglioside GM1 as expected for the

lipid raft characterization [18,21], (Figure 3a, b). Furthermore,

a different protein pattern was determined by SDS-PAGE

between the low and the high density fractions (Figure S2). A

proteomic approach by MALDI-TOF/MS investigations of the

prominent bands from the low density fractions led to the

identification of two known lipid raft proteins annexin II [22] and

tubulin [23]. The details of the m/z peptides profile of these lipid

raft markers are given in Figure S3. As shown in Figure 3c, further

analysis using the monoclonal antibody against annexin II

confirmed that the lipid raft fraction 3 was enriched in annexin

II. After 10 mM methyl-b-cyclodextrin (MbCD) treatment which

disrupts the lipid rafts by cholesterol depletion [24–26], cholesterol

content in the lipid raft fraction decreased significantly (4063%

from control, P,0.01, df = 10, Fig. 3d). In addition, the

immunoblot of annexin II showed a decrease in the lipid raft

fraction 3 and a shift of annexin II from the low to the high density

fractions (Fig. 3c). Taken together these results strongly support

the presence of lipid rafts in the nerve fibres organizing the GIR.

We then checked whether the lipid rafts disruption would affect

Figure 1. Gastric distension triggers gastroduodenal inhibitory reflex and concomitant production of ceramide in the nerve fibres. a, Schematic
representation of the organ bath (S, stomach; D, duodenum; GD, gastric distension: see Materials and Methods) and manometric recordings of
duodenal contractions before and during GIR. GD triggered a decrease in the amplitude of the duodenal contractions characterising the GIR. The
dashed horizontal line is the control indicating the mean amplitude of the duodenal contractions over the period preceding the distension shown in
the recordings. b, histogram of the mean amplitude of the duodenal contractions expressed as % of control6SEM. DC, duodenal contraction; Ctrl,
control; GD, GIR after gastric distension. c, lipid content of the nerve trunks before and during GIR (see Materials and Methods). PL, phospholipids; SM,
sphingomyelin; Cer, ceramide; chol, cholesterol; DAG, diacylglycerols; TG, triglycerides. White bars, control, n = 3; black bars, during GIR, n = 8. Results
are given as the percentage of control6SEM. d, quantification of ceramide production during GIR expressed in nM/mg of nerve trunks. Ctrl, control;
GD-, after gastric distension not triggering GIR; GD+ , after gastric distension triggering GIR; *** results are significant in a Student’s t test with
p,0.001.
doi:10.1371/journal.pone.0000612.g001

Ceramide and Neurone
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the GIR. When the nerve trunks were superfused with 10 mM

MbCD, the mean amplitude of duodenal contractions following

gastric distension was 93611% of control (paired t test, non

significant, df = 6) which revealed an inhibition of the GIR

(Fig. 3e). We also found that 10 mM MbCD treatment of the

nerve trunks prevented the increase in ceramide during GIR

Figure 2. Recurrent production of ceramide during the organization of the GIR. Recording of duodenal contraction (DC) and determination of
ceramide content (Cer) on the nerve trunks were performed as in Fig. 1 following different treatments. Results are expressed as the percentage of
control6SEM for each series of experiments. a, superfusion of the ganglion compartment with 6 mM C2-ceramide for 5 min. Ctrl, control; C2, C2-
ceramide. b, superfusion of the nerve trunks compartment with 16 mM GW4869 for 30 min, then of the ganglion with 6 mM C2-ceramide. Ctrl-GW,
control in the presence of GW; GW+C2, C2-ceramide in the presence of GW. c, GD performed before and after superfusion of the nerve trunks with
16 mM GW4869 for 30 min. Ctrl, control; GD, gastric distension; Ctrl-GW, control in the presence of GW; GD+GW , gastric distension in the presence of
GW. d, recording of duodenal contractions before and after superfusion of the nerve trunks with 16 mM GW4869 for 30 min.Ctrl, control; GW,
superfusion of the nerve trunks with GW. e, superfusion of the nerve trunks with 6 mM C2-ceramide in the presence of 3 mM tetrodotoxin. Ctrl-TTX,
control in the presence of TTX; C2+TTX, C2-ceramide in the presence of TTX. f, superfusion of the nerve trunks with 6 mM C2-dihydroceramide. Ctrl,
control; C2-dihydro, superfusion of the nerve trunks with C2-dihydroceramide. g, superfusion of the ganglion compartment with 6 mM C2-ceramide
for 5 min. Ctrl, control; C2, superfusion of the coeliac plexus with C2-ceramide, . h, superfusion of the nerve trunks with sphingomyelinase (1 UI/
100 ml). Ctrl, control; SMase, superfusion of the nerve trunks with SMase . Differences with control were significant in a Student’s t test, *** p,0.001;
** p,0.01; * p,0.05 or non significant (ns).
doi:10.1371/journal.pone.0000612.g002
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(unpaired t test, non significant, df = 6) while decreasing signifi-

cantly their cholesterol content (60.6611% from control, unpaired t

test, P,0.05, df = 6, Fig. 3e). All these results support the idea that

the integrity of lipid rafts is critical for the neuronal conduction of

excitation without action potentials. Ceramide being a hydrophobic

second messenger is located within the neuronal membrane [27]. So

it is likely that other second messengers located in the cytoplasm are

activated in cascade to ensure the recurrent production of ceramide

leading to the conduction of excitation.

Involvement of the intracellular calcium stores and

of NO-cGMP pathway
We have previously demonstrated that superfusion of the nerve

trunks with cadmium chloride or with low calcium solution did not

affect the GIR, which ruled out the involvement of extracellular

calcium in the conduction of excitation [1]. To determine whether

ceramide could activate the release of intracellular calcium, we

analysed the effects of BAPTA/AM, a permeant calcium chelator

[28–30]. When the nerve trunks connecting the coeliac plexus to

the viscera were selectively superfused with 13 mM BAPTA/AM

for at least 30 min, gastric distension failed to affect significantly

the duodenal contractions which revealed an inhibition of the GIR

(paired t test, non significant, df = 3, Fig. 4a). This leads to the

conclusion that intracellular calcium release is required for the

neuronal conduction of excitation without action potentials.

The neuronal nitric oxide synthase (NOS) being calcium

dependent [31], the increase in intracellular calcium concentration

could have led to nitric oxide production. To check this hypothesis

we analysed the effects of drugs interfering with the NO–cGMP

(nitric oxide- guanosine 39, 59-cyclic monophosphate) pathway.

When the nerve trunks were selectively superfused with 1 mM Nv-

nitro-L-arginine methyl ester (L-NAME), a permeant inhibitor of

the NO synthase, for at least 30 min, gastric distension did not

significantly affect the duodenal contractions which revealed an

inhibition of the GIR (paired t test, non significant, df = 4, Fig. 4b).

This indicates that the activation of the NO synthase and then the

production of NO are required for the neuronal conduction of

excitation without action potentials. To determine the specificity of

the conduction of excitation, we hypothesized that the NO

Figure 3. Characterization of lipid rafts isolated from the nerve trunks and their role in the organization of GIR. a, quantification of the total
protein N and cholesterol % in sucrose gradient density fractions. The low density fraction (3) exhibited high cholesterol content and low protein/
cholesterol ratio compared to the high density fractions. b, c, Western blot analysis of the gradient fractions showed the enrichment of the fraction 3
in ganglioside GM1 and annexin II. c, d, decrease in annexin II (Western blot) in the rafts fraction isolated from the nerve trunks and depletion of
cholesterol by 10 mM MbCD (mean of four assays from one experiment, see methods). Ctrl, control; MbCD, after treatment with MbCD. e, effects of
superfusion of the nerve trunks with 10 mM MbCD for 30 min on GIR, ceramide and cholesterol content of the nerve trunks. Ctrl, control; GD, gastric
distension; Ctrl-MbCD, control in the presence of MbCD; GD+MbCD, gastric distension in the presence of MbCD. Differences with control were
significant in a Student’s t test, *** p,0.001; ** p,0.01; * p,0.05 or non significant (ns).
doi:10.1371/journal.pone.0000612.g003
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production remained essentially located within the intracellular

compartment. So we predicted that the use of 2-(4-carboxyphenyl)-

4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (Carboxy PTIO),

a NO scavenger of too great a size to penetrate the intracellular

compartment from the superfusing solution, would not affect the

GIR. Indeed, when the nerve trunks were selectively superfused

with 3 mM Carboxy PTIO for at least 20 min, following gastric

distension the mean amplitude of duodenal contractions was

6967% of control which revealed a significant inhibition (paired t

test, P,0.01, df = 4, Fig. 4c). So Carboxy PTIO was without effect

on the GIR which indicates that NO produced within the nerve

fibres during the conduction of excitation without action potentials

does not diffuse sufficiently through the neuronal membranes to

activate other fibres. This explains why the conduction of excitation

remains limited to the specific network activated by gastric

distension. In a previous work we have shown that superfusion of

the coeliac plexus with carboxyPTIO inhibited the GIR [2]. This

indicated that NO is the neurotransmitter released in the

extracellular space by the gastric afferent fibres to activate the

ganglionic neurons. Taken together, these results and those of

the present study show that a same molecule, NO, is involved in the

conduction of excitation along the autonomic nerve fibres and in

neuronal communication within the prevertebral ganglia.

Interestingly, in the absence of gastric distension, superfusion of

the nerve trunks with 40 mM diethylamine/nitric oxide complex

sodium (DEA/NO, a NO donor) significantly decreased the mean

amplitude of duodenal contractions (6767% of control, paired t test,

P,0.01, df = 3, Fig. 4d). This phenomenon occurred with a mean

latency of 761 min, lasted 1764 min and mimicked the GIR. In the

absence of gastric distension, superfusion of the coeliac plexus with

40 mM DEA/NO also significantly decreased the mean amplitude of

duodenal contractions (6669% of control, paired t test, P,0.05,

df = 2, Fig. 4e). This inhibition was blocked by superfusion of the

nerve trunks with 16 mM GW 4869 (paired t test, non significant,

df = 2, Fig. 4e). All these results confirm that production of NO

within the nerve fibres is involved in the conduction of excitation

without action potentials and in ceramide production.

When the nerve trunks were selectively superfused with 2 mM

1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a selective

inhibitor of the NO-activated soluble guanylate cyclase) for at least

30 min, the gastric distension failed to affect the duodenal

contractions significantly (paired t test, non significant, df = 3,

Fig. 4f). This suggested that the activation of the NO-cGMP

pathway is required for the neuronal conduction of excitation

without action potentials.

Finally, in the absence of gastric distension, superfusion of the

nerve trunks with 200 mM 8-bromo-guanosine 39, 59-cyclic

monophosphate (8-Br-cGMP, a permeant analogue of cGMP)

significantly decreased the mean amplitude of duodenal contrac-

tions (7966% of control, paired t test, P,0.05, df = 3, Fig. 4g).

This process occurred with a mean latency of 862 min, lasted

2365 min and mimicked the GIR. This result shows that an

increase in cGMP within the nerve fibres can trigger a conduction

of excitation without action potentials leading to an inhibition of

the duodenal motility. This result supports the involvement

of cGMP in the conduction of excitation without action

potentials.

Activation by ceramide of the Ca++-NO-cGMP

pathway
Once the involvement of the Ca++-NO-cGMP pathway during the

neuronal conduction of excitation without action potentials was

established, it remained to demonstrate that this pathway was

Figure 4. Calcium, NO and cGMP are activated in cascade within the nerve fibres during the organization of the GIR. The GIR is blocked by
superfusion of the nerve trunks with 13 mM BAPTA A/M (a), 1 mM L-NAME (b), 2 mM ODQ (f) and is unaffected by 3 mM carboxy-PTIO (c). Inhibition of
duodenal contractions mimicking the GIR is triggered by superfusion of the nerve trunks with 40 mM DEA/NO (d) or 200 mM 8Br-cGMP (g). Inhibition
of duodenal contractions triggered by superfusion of the ganglion compartment with 40 mM DEA/NO is blocked by superfusion of the nerve trunks
with 16 mM GW4869 for 30 min (e). Differences with control were significant in a Student’s t test, *** p,0.001; ** p,0.01; * p,0.05 or non significant
(ns).
doi:10.1371/journal.pone.0000612.g004
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activated by the ceramide produced within the nerve fibres. To

check this hypothesis, we tried to trigger a neuronal conduction of

excitation by superfusing the coeliac plexus with C22ceramide

while the release of intracellular calcium or the NO synthase or

guanylate cyclase activity downstream was blocked by superfusion

of the nerve trunks with BAPTA/AM, L-NAME or ODQ

respectively.

In the absence of gastric distension, selective superfusion of the

nerve trunks with 13 mM BAPTA/AM for at least 30 min

abolished the inhibition of duodenal contractions triggered by

superfusion of the coeliac plexus with 6 mM C22ceramide (paired t

test, non significant, df = 2, Fig. 5a). This result indicates that the

neuronal conduction of excitation without action potentials

triggered by C22ceramide is inhibited when the release of

intracellular calcium downstream is blocked.

In the absence of gastric distension selective superfusion the

nerve trunks with 1 mM L-NAME for at least 30 min, abolished

the inhibition of duodenal contractions triggered by superfusion of

the coeliac plexus with 6 mM C22ceramide (paired t test, non

significant, df = 4, Fig. 5b). This result indicates that the neuronal

conduction of excitation without action potentials triggered by

C22ceramide is inhibited when the NO synthase activity

downstream is blocked.

Finally, in the absence of gastric distension, selective superfusion

the nerve trunks with 2 mM ODQ for at least 30 min abolished

the inhibition of duodenal contractions triggered by superfusion of

the coeliac plexus with 6 mM C22ceramide, (paired t test, non

significant, df = 2, Fig. 5c). This result indicates that the neuronal

conduction of excitation without action potentials triggered by C2-

ceramide is inhibited if the activity of the guanylate cyclase

downstream is blocked.

All these results lead to the conclusion that during the neuronal

conduction of excitation without action potentials endogenous

ceramide activates the Ca++-NO-cGMP pathway.

Recurrent activation of the NO-cGMP pathway
To conduct the excitation without action potentials, the activation of

the NO-cGMP pathway could occur in cascade along the whole

length of the nerve fibres. To check this hypothesis we tried to trigger

a neuronal conduction of excitation by superfusion of the coeliac

plexus with 8-Br-cGMP while the NO synthase activity downstream

was blocked by superfusing the nerve trunks with L-NAME.

In the absence of gastric distension, selective superfusion of the

nerve trunks with 1 mM L-NAME for at least 30 min abolished the

inhibition of duodenal contractions triggered by superfusion of the

coeliac plexus with 200 mM 8-Br-cGMP (paired t test, non signifi-

cant, df = 3, Fig. 5d). So the excitation without action potentials

triggered by 8-Br-cGMP failed to propagate when NO synthase

activity downstream was blocked. However, it has never been

demonstrated that cGMP could directly activate NO synthase.

Therefore the most likely explanation for our result is that 8-Br-

cGMP had activated downstream a cascade of other sequences

including ceramide then NO production and cGMP synthesis.

These sequences had been interrupted at the NO synthesis level

which blocked the cascade and prevented the conductance of

excitation.

DISCUSSION
Our study based on an integrated physiological model proposes

a new neuronal mechanism: the conduction of excitation without

action potentials. From the mean latency of the reflex (4 min) and

Figure 5. Activation by ceramide of the Ca++-NO-cGMP pathway. Inhibition of duodenal contractions triggered by superfusion of the ganglion with
6 mM C2-ceramide was blocked after superfusion of the nerve trunks with 13 mM BAPTA/AM (a), 1 mM L-NAME (b) or 2 mM ODQ (c). Inhibition of
duodenal contractions triggered by superfusion of the ganglion with 200 mM 8Br-cGMP was blocked after superfusion of the nerve trunks with 1mM
L-NAME (d). Differences with control were significant in a Student’s t test, ** p,0.01; * p,0.05 or non significant (ns).
doi:10.1371/journal.pone.0000612.g005
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the length of the afferent and efferent fibres connecting the

stomach to the duodenum via the coeliac plexus (4 cm), we

estimated that this conduction occurs at a mean speed of 1 cm per

minute [1,2]. This is intermediate between the fastest axonal flow

described (400 mm a day) [32] and the lowest speed of propaga-

tion for action potentials (0.1 m per second for unmyelinated

fibres). The excitation propagates over considerable distances

along the nerve fibres (several centimetres) which is fundamentally

different from all the previously described mechanisms of neuronal

communication without action potentials. These mechanisms are

based on slow electrotonic variations in the membrane potential of

non-spiking neurones propagating only over very short distances

[33–36].

The mechanism we propose requires the recurrent production

of ceramide, probably from rafts to rafts along the fibres. This is

achieved through the activation in cascade of the same second

messenger sequence involving calcium, NO and GMPc (Fig. 6).

This adds a new role for ceramide which is already known to be

involved in major biological processes such as cell growth,

differentiation, apoptosis and senescence [37–39] as well as

modulation of neuronal synaptic activation [40,41]. The mechan-

osensor triggering the neuronal conduction of excitation still

remains to be determined. It could be sphingomyelinase itself since

it has been demonstrated in vascular endothelial cells that neutral

sphingomyelinase was activated by a transient mechanical stimulus

[42,43].

We have demonstrated previously that during the GIR, NO is

the neurotransmitter released by the gastric afferent fibres to

activate the ganglionic neurons [2]. So during the functioning of

the autonomic networks involved in the organization of the GIR,

the same molecule, NO, is involved in both the conduction of

excitation without action potentials within the nerve fibres and

in the communication between the neurons of the ganglionic

networks. This is fundamentally different from the classic

functioning of the neuronal networks which involves a conduction

of excitation based on the propagation of action potentials (due to

ionic fluxes) and the activation of membrane receptors due to the

release of neurotransmitters. Thus, the properties of the mechan-

ism we propose open up new prospects concerning the functioning

of neuronal networks.

MATERIALS AND METHODS
All procedures regarding the handling of experimental animals

have been approved by the French Ministry of Agriculture and are

in agreement with the European Communities Council Directive

(86/609/EEC).

In vitro experimentation
We have used an in vitro integrated physiological model. Experi-

ments were performed on 174 rabbits as already published [2].

The organ bath has been modified and now has three adjacent

compartments (Figure S1): the first contained the coeliac plexus

and the proximal part of the peripheral nerve fibres connecting the

coeliac plexus to the viscera, the second contained the main part of

these fibres and the third the distal part of these fibres and the

viscera (stomach and duodenum). A myotomy was performed in

the pyloric region to interrupt the enteric nervous pathways

between the stomach and duodenum. All these compartments

could be superfused independently with drugs, their separation

being achieved with Vaseline grease. The technical characteristics

of this set-up make it possible to trigger excitation without action

potentials in the proximal part of the nerve fibres (by agonist

superfusion of the coeliac plexus) and to block it downstream by

selectively superfusing with drugs the compartment containing the

main part of these fibres. This protocol was used in particular to

identify the endogenous molecules involved in the conduction

along the nerve fibres of excitation without action potentials.

Gastric distensions used to trigger the GIR were within a physio-

logical range since they bring the stomach to a volume similar to

Figure 6. Model of a neuronal conduction of excitation without action potentials. Activation of neutral sphingomyelinase triggers ceramide
production in rafts then the release of calcium from intracellular stores which activates the NO-cGMP pathway. This pathway activates downstream
sphingomyelinase in neighbouring rafts which ensures the propagation of the excitation. L-Arg: L-arginine, NOS: NO synthase, GC: guanylate cyclase,
nSmase: neutral sphingomyelinase.
doi:10.1371/journal.pone.0000612.g006
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that observed when full of nutriments. Intraluminal duodenal

pressure was measured with a water-filled balloon connected via

a catheter to a home-made pressure transducer (M. Manneville).

The duodenal contractions were stored using the PowerLab

system (ADInstruments Pty Ltd, Castle Hill, Australia) with the

Chart v4.1.2 software. Data were then exported in the Matlab

format for processing using a home-made software (Dr P.

Sanchez). The time of occurrence and the amplitude of each

duodenal contraction were detected. The mean of the amplitude

per minute was then calculated and used to assess the duodenal

motility during the periods of time to analyse.

Lipid analysis. Lipids were analyzed at the Lipidomic

Platform of IFR30- Toulouse Génopole
The nerve trunks (6 mm length) connecting the coeliac plexus to

the viscera (stomach and duodenum) were harvested 5 min

following gastric distension or the different treatments, washed

in Phosphate Buffer Saline and immediately frozen in liquid

nitrogen. Lipids were extracted in chloroform/methanol/water

(1:2:0.9, v:v:v) in a Dounce homogenizer in the presence of

standards, then analysed by gas liquid chromatography for neutral

lipids including cholesterol [44] or for sphingomyelin and ceramide

[15] mass content. Phospholipid content was determined by total

lipid phosphorus [45]. Results are expressed as the mean6SEM

according to the number of experiments. Comparison with controls

were analysed using a Student’s unpaired t test and differences

were significant at P,0.05

Lipid rafts isolation
The nerve trunks were harvested and rinsed in cold homogeni-

zation buffer (HB) consisting of 20 mM Tris-HCl pH 7.4,

150 mM NaCl, 10 mg leupeptin, 10 mg/ml aprotinin, 1 mM

benzamidine, 1 mM PMSF and 5% sucrose. Unless otherwise

stated, all the experiments were performed at 4uC with the

appropriate protease inhibitor concentration. For total membrane

fractionation, the nerve trunks were homogenized in about 3 vol.

(w/v) of HB with a Potter-Elvehjem homogenizer as previously

reported [21]. The homogenate was then centrifuged at

10,000 rpm for 10 min and the pellet was adjusted to 1–

1.5 mg/ml protein with HB. The resulting membrane preparation

then underwent a detergent treatment with 0.5% Triton X-100 for

30 min. The extract (2 ml) containing 1.3 mg/ml protein was

mixed in a 12-ml centrifuge tube with an equal volume of 80%

sucrose in the same buffer, giving a suspension of 40% sucrose. A

discontinuous gradient was prepared by overlaying 5 ml of 30%

sucrose and then 2 ml of 5% sucrose both in 20 mM Tris HCl

pH 7.4 buffer. The tubes were centrifuged at 35,000 rpm for 17 h

at 4uC in a TH-641 Sorvall rotor. Fractions (11 each of 1 ml) were

harvested gently from the top of the gradient. Control experiments

were run as follows: without detergent, DRMs prepared with 1%

Brij 98 at 37uC or 60 mM octyl glucoside at 4uC.

Raft protein and cholesterol content determination
The protein concentration was determined by using either the

BCA protein assay kit (Pierce biotechnology, Inc) with bovine

serum albumin as the standard or by the Bio-Rad DCTM

(detergent compatible) protein assay with immunoglobulin G as

the standard. For cholesterol depletion, MbCD was applied to the

nerve trunks as previously reported [46]. The cholesterol

concentration in lipid raft fractions and membrane preparations

was enzymatically determined by using the colorimetric method

from Boehringer Mannheim following manufacturer’s instruc-

tions. The results are expressed as the mean6SEM. Comparison

with control was analysed using a Student’s unpaired t test and

difference was significant at P,0.01

Electrophoresis and Western blotting
SDS-PAGE on 4–20% Tris-HCl precast gels (Bio-Rad) were

performed under reducing conditions according to Laemmli [47].

The separated proteins were transferred to a nitrocellulose

membrane and probed with the primary antibody against annexin

II (from Santa Cruz Biotechnology, Germany) and HRP-

conjugated secondary antibody. For lipid rafts ganglioside GM1,

2.5 ml of each sucrose gradient fraction was spotted on

a nitrocellulose membrane before incubation with 1 mg cholera

toxin B-HRP conjugated. Blots were developed by electrochemi-

luminescence (ECL) detection reagents according to manufac-

turer’s instructions (Amersham Biosciences, France).

Mass spectrometry analysis
Proteins in excised gel plugs were digested as described previously

[21] using sequencing grade modified porcine trypsin (12.5 ng/ml,

Promega, Madison, WI). The peptides were extracted, dried in

a vacuum, centrifuged, and redissolved in 10 to 20 ml of 0.1%

TFA (trifluoric acid). The peptide mixture resulting from protein

digestion was analyzed using an Ettan pro MALDI time-of-flight

mass spectrometer (Amersham biosciences, Uppsala, Sweden) in

positive ion reflector mode. 0.3 ml of the peptide mixture was co-

crystallized on the MALDI target with an equal amount of matrix

solution (3 mg/ml of a-cyano-4-hydroxycinnamic acid in 50%

acetonitrile) in the presence of 0.5% TFA. Alternatively, peptide

mixtures derived from proteins were desalted and concentrated

using zip tips (Millipore Bedford, MA) and deposited onto the

MALDI target by elution with the matrix solution. Proteins were

identified by the Profound (ProteoMetrics, LLC, New-York, NY)

and the Mascot (Matrix science Ltd, London, UK) software that

query comprehensive sequence databases. The presented data is

representative of at least four experiments with similar results.

Statistical analysis during in vitro experimentation
Under our experimental conditions, the duodenal motility was

maintained in a satisfactory state for 6–7 h during which the

amplitude of contractions decreased slowly. This slight diminution

with time of the duodenal contractions was taken into account

when comparing the successive effects of gastric distension. For

this purpose, the mean amplitude of the duodenal contractions

preceding each distension or agonist superfusion was taken as

100% and no more than 5 distensions or superfusions were

performed on the same preparation. The effects of gastric

distension or superfusions were analysed from the mean amplitude

of the duodenal contractions. For statistical analysis, the mean

values of this parameter before and after distension or superfusion

were then compared using Student’s paired t test, including

variance analysis (ANOVA). Values, expressed as mean6SEM,

were taken to be statistically different if P,0.05.

SUPPORTING INFORMATION

Figure S1 In vitro set up used to study GIR. The organ bath

contains three adjacent compartments receiving the coeliac plexus,

the nerve fibres and the viscera (stomach and duodenum). Each

compartment is superfused independently. The duodenal motility

is recorded by manometric technics.

Found at: doi:10.1371/journal.pone.0000612.s001 (0.12 MB TIF)

Figure S2 SDS-PAGE protein patterns of raft and non-raft

fractions from the nerve trunks. Equal total protein of each
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fraction (5 mg) from the low density fractions (3 and in some

experiments 4), the high density fractions (9–10), the pelleted

fraction (11) and total material from the starting detergent-

resistant membrane (T) were separated by 4–20% SDS-PAGE and

the gel was visualized by silver staining. Molecular weight

standards are indicated (M).

Found at: doi:10.1371/journal.pone.0000612.s002 (4.02 MB TIF)

Figure S3 Peptide mass fingerprints of Annexin II. Mass

spectrograms of the indicated polypeptides bands digested by

trypsin and subjected to MALDI-TOF/MS analysis as described

in Materials and Methods. The molecular masses of the peptides

originating from the identified protein are indicated. Ty indicates

the molecular mass of the trypsin peptides.

Found at: doi:10.1371/journal.pone.0000612.s003 (0.28 MB TIF)
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