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SUMMARY 

Background: Apoptosis of vascular cells is considered to be a major determinant of 

atherosclerotic plaque vulnerability and potential rupture. Plasmin can be generated in 

atherosclerotic plaques and recent in vitro data suggest that plasminogen activation may trigger 

vascular smooth muscle cell (VSMC) apoptosis. 

Objective : To determine whether plasminogen activation may induce aortic VSMC apoptosis ex 

vivo and in vivo.  

Methods and results: Mice with single or combined deficiencies of ApoE and PAI-1 were used. 

Ex vivo incubation of plasminogen (1.3 µM) with isolated aortic tunica media from PAI-1-

deficient mice induced plasminogen activation and VSMC apoptosis, which was inhibited by α2-

antiplasmin. In vivo, levels of plasmin, active caspase 3 and VSMC apoptotic index were 

significantly higher in atherosclerotic aortas from mice with combined ApoE-/- and PAI-1-/- 

deficiencies than in those from littermates with single ApoE deficiency. A parallel decrease in 

VSMC density was also observed. 

Conclusions: These data strongly suggest that, in vivo, plasminogen activation may contribute to 

VSMC apoptosis in atherosclerotic plaques. 

  

Keywords : apoptosis ; atherosclerosis ; genetically altered mice ; plasminogen; 

 vascular smooth muscle cell.  
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Apoptosis is considered to be a major determinant of atherosclerotic plaque vulnerability and 

potential rupture1-3. Little is known, however, about the mechanisms that trigger apoptosis of 

vascular cells in atherosclerotic plaques. In human atherosclerotic specimens, apoptotic vascular 

smooth muscle cells (VSMC) were observed in areas with loss of pericellular adhesion 3, 

indicating that pericellular proteolysis could be involved 4. Proteases capable of degrading 

pericellular matrix components are indeed secreted by resident vascular cells and infiltrating 

inflammatory cells.5 Components of the fibrinolytic system, including plasmin(ogen), 

plasminogen activators (either tissue-type, t-PA, predominantly expressed by VSMC6-8, or 

urokinase-type, u-PA, predominantly expressed by infiltrating macrophages), and plasminogen 

activator inhibitor-1 (PAI-1),9-11 are present in human atherosclerotic lesions. The activity of 

plasmin promotes cell migration, regulates growth factor activity (e.g. Transforming Growth 

Factor-β, TGF-β)12 and induces extracellular matrix proteolysis, either directly, via degradation 

of adhesive glycoproteins, such as fibronectin 13 or laminin 14  or indirectly, via activation of 

matrix metalloproteinases 15. Actually, it was recently demonstrated, using primary cultures of rat 

and human arterial VSMCs, that t-PA constitutively secreted by these cells can generate plasmin 

on the cell surface and induces thereby the proteolysis of extracellular matrix proteins, cell 

retraction and finally cell detachment leading to VSMC apoptosis8. 

The fibrinolytic system plays a complex role in atherosclerosis, as assessed in experimental 

models using mice with targeted inactivation of its main components.16 Thus, lack of PAI-1 in 

transgenic mice with combined apolipoprotein E and PAI-1 deficiencies (ApoE-/-:PAI-1-/-) 

resulted in elevated plasmin levels, accompanied with extracellular matrix desorganization, 

increased accumulation of macrophages and a reduced density of myofibroblasts in advanced 

atherosclerotic lesions17. On the basis of the deleterious effect of plasmin on VSMC survival,8 we 
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sought to investigate if plasminogen activation by VSMCs ex vivo on the one hand, and the 

increased plasmin generation within ApoE-/-:PAI-1-/- aortic plaques in vivo on the other hand 

could lead to VSMC apoptosis. We demonstrate that aortic VSMC apoptosis can be induced ex 

vivo by plasminogen activation. In vivo, VSMC apoptosis and plasmin activity were colocalized 

within atherosclerotic plaques. This mechanism may contribute to plaque destabilization and 

rupture. 
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METHODS 

Reagents and animals 

Ten weeks old mice with targeted inactivation of the gene encoding PAI-1 (PAI-1-/-) and wild-

type (WT) mice of the same genetic background (75% C57Bl/6 and 25% 129SV) and of either 

sex were obtained as described elsewhere 18. 

Human or murine plasminogen, plasmin, and α2-antiplasmin were obtained as described 19, 20.  

Primary monoclonal antibodies used are described below. Secondary antibodies used were goat 

anti-mouse-Alexa fluor® 568 (Molecular Probes, Eugene, Oregon, USA) and biotinylated rabbit 

anti-mouse Ig (Dako, Glostrup, Denmark). 

Animal models 

For ex vivo experiments, WT and  PAI-1-/- mice were anesthetized and exsanguinated by 

perfusion at physiological pressure via cardiac puncture with a 0.9% NaCl solution. The aorta 

was dissected, the adventitia was extruded as described 21, and the aorta was cut first 

longitudinaly (to achieve de-endothelialization), and then transversely in 6 pieces of equal size. 

These sections were incubated in a humidified CO2 incubator at 37°C for 4 hours in Dulbecco’s 

modified Eagle’s Medium (without phenol red) containing 2 mM glutamine, 100 IU/ml penicillin 

and 0.1 mg/ml streptomycin, with and without 1.3 µM plasminogen, and in the absence or the 

presence of 1µM α2-antiplasmin. The aorta fragments were transferred to Jung tissue freezing 

medium™ (Leica Instruments, Nussloch, Germany) and snapfrozen in precooled 2-methyl 

butane.  

For in vivo experiments, ApoE +/+:PAI-1-/- mice were intercrossed with ApoE-/-:PAI-1+/+ mice to 

generate breeding pairs with heterozygous deficiency of ApoE and PAI-1 (ApoE+/-:PAI-1+/-), 

which sired ApoE-/-:PAI-1-/- mice and ApoE-/-:PAI-1+/+ littermate offspring with a mixed genetic 

 

H
A

L author m
anuscript    inserm

-00160756, version 1



 6

background of 87.5% C57Bl/6 and 12.5% 129/SvJ, as described 17. Mice were kept on a regular 

chow diet for 5 weeks, and then fed a cholesterol /cholate rich diet for 25 weeks, as described 17. 

Aorta embedding procedures were previously described 17. 

For all surgical procedures, mice were anesthetized by intraperitoneal injection of Nembutal (60 

mg/kg ; Abbott Laboratories, North Chicago, IL, USA). All procedures were approved by the 

University Ethical Committee (P03112) and were performed in accordance with the guidelines of 

the International Society on Thrombosis and Haemostasis 22. 

Protein assays 

For immunoblotting of plasmin(ogen) and active caspase 3, equal protein amounts from whole 

protein extracts (from in vivo experiments) were electrophoresed on a 15% acrylamide gel, under 

reducing conditions. The nonspecific sites of the membranes were blocked with 10% non-fat dry 

milk in Tris Buffered Saline (TBS) containing 1% Tween 20 (TBST). The membranes were 

incubated with a rabbit anti-human/mouse active caspase 3 antibody (R&D systems) or a rabbit 

anti-murine plasmin(ogen)23 antibody overnight at 4ºC in TBST containing 1% non-fat dry milk. 

Then, the membranes were washed and incubated with an anti-rabbit peroxidase-conjugated 

secondary antibody in TBST containing 1% non-fat dry milk. The membranes were washed with 

TBST, followed by detection with enhanced chemiluminiscence (ECL kit, Amersham).  

Fibrinolytic activity was monitored by fibrin overlay (containing traces of plasminogen, with and 

without aprotinin) of non-fixed 8-µm arterial cryostat sections at 37°C for 24 hours 24.  

Histological and immunohistochemical studies 

Tissue sections (8 µm thick) were stained with hematoxylin-eosin under standard conditions.  

The following primary antibodies were used: for immunodetection of plasmin-α2-antiplasmin 

complexes, 7 AP (a mouse monoclonal antibody that recognizes neoantigen epitopes in the 
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complexes but neither free plasmin nor α2-antiplasmin 25), for plasmin(ogen) a rabbit anti-murine 

plasminogen/plasmin 23, for active caspase 3 a rabbit anti-human/mouse active caspase 3 (R&D 

systems) and for VSMC detection a mouse anti-human smooth muscle actin (DAKO). 

Biotinylated secondary antibodies were applied in combination with the Vectastain system (ABC 

kit, Vector Laboratories Inc, Burlingame, CA, USA), using the appropriate negative controls. 

VSMC were detected in paraffin embedded sections from in vivo experiments using a primary 

mouse monoclonal antibody against human α-actin and a secondary goat anti-mouse antibody 

labelled with Alexa fluor ® 568. A TUNEL reaction, using the appropriate negative controls 

(yielding FITC staining of apoptotic nuclei, with negligible background), and a nuclear 

counterstaining with DAPI were then performed. Cryosections from ex vivo experiments were 

also submitted to the TUNEL and DAPI reactions. Apoptotic VSMCs were defined as doubly 

(FITC and DAPI: ex vivo) or triply labelled cells (DAPI, FITC, and Alexa fluor 568: in vivo), 

and an apoptotic index was calculated using the formula: (number of TUNEL-positive 

VSMC/total VSMC)x100.  

Images of the same microscopic (Zeiss Axioplan 2) fields were taken with each filter set (DAPI, 

FITC and Alexa 568), using a Zeiss AxioCam HRc digital camera with Zeiss Axiovision 3.0.6.38 

SP4 Imaging Software, and were merged by using Adobe Photoshop software. Quantifications 

(areas and cell numbers) were performed by computer-assisted image analysis with the Zeiss 

KS300 Version 3.0 SP6 software. Briefly, the positive and negative cells within a defined area 

were counted automatically using a fixed threshold contrast. The operating system and the video-

adaptor were Microsoft Windows 2000 SP1, and Matrox Meteor_II PCI frame grabber, 

respectively. Morphometric analyses were performed blinded for the genotype; for ex vivo 

experiments 18 areas in 6 sections (each 160 µm apart) randomly selected through the aortic 
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segment were analyzed, and for in vivo experiments 18 areas randomly chosen in 3 sections 

(each 160 µm apart) were analyzed, the first one taken at the point where the cardiac valves were 

first visible. 

Transmission electron microscopy was performed as described 26. 

 

Statistical analysis 

The statistics were performed with the Statview 5.0 software. Results are expressed as mean ± 

SEM or median (range). Comparisons were made by one-way analysis of variance with Scheffe’s 

F test, or Wilcoxon signed ranks, or Mann-Whitney U-test, as appropriate. Statistical significance 

was set at P < 0.05. 
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RESULTS 

Aortic VSMC apoptosis parallels plasminogen activation ex vivo 

In order to isolate the effect of plasminogen activation on VSMC apoptosis from other cellular 

components of the vascular wall, we performed ex vivo experiments on isolated aortic tunica 

media from WT and PAI-1-/- mice. The tunica media were incubated with plasminogen at 1.3 µM 

for 4 h, with or without 1 µM α2-antiplasmin. Plasmin generation developed faster in PAI-1-/- 

than in WT aortas, as assessed by in situ fibrin zymography (Fig. 1A). VSMC apoptotic levels, as 

assessed by TUNEL, was not significantly different between both genotypes in the absence of 

plasminogen (n=9, P=0.1). Following plasminogen activation, PAI-1-/- aortas displayed a five-

fold increase in VSMC apoptosis (n= 9, P= 0.03) that was inhibited by α2-antiplasmin, thus 

suggesting a plasmin-dependent effect (Fig. 1B-C). In contrast, apoptotic levels in WT aortas 

remained unchanged following the incubation with plasminogen (n=9, P>0.99; Fig. 1 B-C).  

 

Increased plasmin generation and VSMC apoptosis in atherosclerotic plaques from ApoE-/-

:PAI-1-/- mice. 

To investigate the involvement of the plasminogen activation system in apoptosis of vascular 

cells in vivo and its relevance for atherosclerosis, we analyzed atherosclerotic and non-

atherosclerotic aorta fragments from ApoE-/-:PAI-1+/+ and ApoE-/-:PAI-1-/- mice. In both 

genotypes, plasmin activity was increased in extracts from aortic areas with plaques, as compared 

to areas without plaques, being six-fold more abundant (n=4, P<0.05) in plaques from ApoE-/-

:PAI-1-/- mice as compared to plaques from ApoE-/-:PAI-1+/+ mice (Fig. 2A, upper panel). 

Activated caspase-3 (Fig. 2A, lower panel) was barely detectable in areas without plaques, in 

 

H
A

L author m
anuscript    inserm

-00160756, version 1



 10

either genotype (n=4, P= 0.96) but was concomitantly increased six-fold in plaques from ApoE-/-

:PAI-1-/- mice (plaque vs non plaque, n=4, P= 0.003) but not in ApoE-/-:PAI-1+/+ mice (n=4, P= 

0.24). Similarly, caspase-3 activity levels were higher in plaques from ApoE-/-:PAI-1-/- as 

compared to plaques from ApoE-/-:PAI-1+/+ mice (n=4, P= 0.04). In short, active caspase-3 levels 

paralleled plasmin levels in atherosclerotic plaques. Tissue section analysis confirmed that 

plasminogen activation as assessed by plasmin-α2-antiplasmin complexes (data not shown), 

plasmin detection (Fig. 2B) and apoptosis (activated caspase 3 in Fig. 2C, TUNEL in Fig. 2D and 

electron microscopy analysis in Fig. 2E), were present within the aortic intima only in areas with 

plaques, in both genotypes. Apoptosis within atherosclerotic plaques was a patchy phenomenon, 

but apoptotic cells were mainly located in the fibrous cap and were predominantly foam-cells. 

We used the TUNEL to quantitatively compare the VSMC index in plaques from both genotypes. 

Since about 25 % of the examined areas did not contain α-actin positive cells, to overcome a 

potential bias, we calculated the VSMC apoptotic index as a ratio (apoptotic VSMC/ total 

VSMC)x100, each parameter being the average of the 18 values collected from the 18 areas 

(from 3 sections, 100 µm apart) evaluated per mouse. ApoE-/-:PAI-1-/- plaques had a significantly 

lower VSMC density (13±1% vs. 23±2%, P<0.05, n=5) but the total cellular density was not 

significantly different between both genotypes. Although the overall apoptotic cell density was 

not significantly increased in ApoE-/-:PAI-1-/-mice plaques, the VSMC apoptotic index was 

significantly higher within atherosclerotic plaques from ApoE-/-:PAI-1-/-(1.5% (0-9.5), n=8) as 

compared to ApoE-/-:PAI-1+/+ mice (0% (0-0.5), n=7, P<0.03). Averaging in each mouse the 

indices calculated in each individual area (i.e omitting areas without α-actin positive cells, where 

the apoptotic index could not be calculated) yielded similar trends (not shown). 
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DISCUSSION 

Cell death by apoptosis is considered to be a major determinant of atherosclerotic plaque 

vulnerability 1-3. VSMCs can stabilize atherosclerotic plaques by maintaining the tensile strength 

of the fibrous cap via the synthesis of collagen isoforms and protease inhibitors. VSMC apoptosis 

may therefore potentially contribute to the instability and rupture of plaques. Although apoptosis 

has been detected in human plaques, the mechanisms that trigger this apoptosis and its 

contribution to VSMC loss, remain unclear. 

It has been reported that VSMCs in atherosclerotic lesions may undergo apoptosis in response to 

effectors secreted by infiltrating inflammatory cells. Macrophages, for instance, may contribute 

to VSMC apoptosis by direct cell-cell contact, Fas-L/Fas signaling, nitric oxide and TNF-α 

production27, 28. However, VSMC autocrine destruction has not been demonstrated as yet, 

although a study suggested that self autodestruction may occur via Fas-mediated apoptosis by 

relocating Fas-L to the VSMC surface.29 t-PA, an other glycoprotein constitutively expressed by 

VSMCs30, can be located at the cell surface where it transforms plasminogen into plasmin, which 

triggers proteolysis-induced cell detachment and apoptosis.8 The hypothesis that this sequence of 

reactions may be participating in the apoptosis of vascular cells on atherosclerotic plaques in 

vivo, was evaluated in this study. The well characterized ApoE-/- atherosclerosis prone mouse 

model mimics several features of human atherosclerosis31, 32, including the lack of VSMC 

apoptosis in the normal media 1,2,35. Moreover, apoptosis is a heterogeneous and patchy 

phenomenon in this murine model, as also observed in humans 2,36. The combined deficiency of 

PAI-1 with ApoE-/- allows a better assessment of the effects of plasminogen activation on 

atherosclerosis progression in vivo while discarding possible direct effects of PAI-1 on 
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apoptosis33 34. Indeed, in both genotypes VSMC apoptosis was undetectable in aortic areas 

without atherosclerotic plaques. 

Corroborating previous in vitro studies8, our ex vivo experiments revealed that, in the presence of 

physiological circulating plasminogen concentrations, VSMC apoptosis was associated with 

plasmin generation in PAI-1-/- aortic tunica media. In the absence of plasminogen, similar 

apoptotic rates were observed in WT and PAI-1-/- VSMCs, suggesting that PAI-1 is not a pro-

apoptotic factor in this model. Furthermore, we recently showed that fibroblasts in two or three 

dimensional culture systems became resistant to plasminogen activation-induced cell detachment 

and apoptosis when transfected either with PAI-1 or protease-nexin-1; these serpins inhibited 

plasminogen activation at the cell surface and subsequent pericellular proteolysis35. These 

findings are in agreement with previous data indicating that addition of PAI-1 inhibited 

plasminogen activation-induced gel contraction and capillary regression, whereas anti-PAI-1 

antibodies potentiated these processes36. 

Expression of the main components of the plasminogen/plasmin system has been documented in 

the atherosclerotic arterial wall of mice and humans 9, 17. To test whether this system may be 

involved in vivo in VSMC apoptosis within plaques, we have compared VSMC apoptosis in 

ApoE-/-:PAI-1+/+ and ApoE-/-:PAI-1-/- mice. Our data show that PAI-1 deficiency is associated 

with strongly enhanced apoptosis within advanced atherosclerotic plaques in ApoE deficient 

mice, as assessed by active caspase 3 generation. Electron microscopy revealed that most 

apoptotic cells were foam cells, probably of macrophage and VSMC origin. Our TUNEL results 

suggest that among the plaque cells, VSMCs maybe particularly sensitive to plasmin-induced 

apoptosis, since the overall and non-VSMC apoptotic rates were not significantly different 

between both genotypes. In contrast, VSMCs were almost only detected within plaques from 
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ApoE-/-:PAI-1-/- mice. Moreover, we observed an associated decrease in VSMC cell density in 

ApoE-/-:PAI-1-/- mice, whereas the overall cell density did not significantly differ between both 

genotypes. A similar decrease in VSMC content and increase in caspase activity, was also 

observed in the inflammatory region of human carotid atherosclerotic plaques as reported 

recently 37. 

The apoptosis observed in ApoE-/-:PAI-1-/- plaques appears to be dependent on plasminogen 

activation, as suggested by the six-fold higher plasmin activity detected in atherosclerotic extracts 

of ApoE-/-:PAI-1-/- as compared to ApoE-/-:PAI-1+/+ mice, and by the colocalization of plasmin 

and active caspase 3 in situ. An extracellular pathway leading to plasmin induced cell detachment 

and apoptosis of VSMCs has recently been described.8 A similar plasmin(ogen)-dependent cell 

detachment mechanism has also been described for retinal ganglion cells 38, endothelial cells 36, 

39, fibroblasts 35, and cerebrovascular smooth muscle cells 7, thus suggesting that autocrine 

production of plasminogen activators by VSMCs and other cell types may induce apoptotic 

autodestruction by cell surface-formed plasmin. As in vitro studies have revealed that plaque-

infiltrating inflammatory cells may degrade pericellular matrix components 4, it is possible that in 

our atherosclerotic plaque mouse model, paracrine expression of urokinase by macrophages may 

also contribute to vascular cell detachment and apoptosis. Of note, macrophages overexpressing 

urokinase show accelerated atherosclerosis in ApoE-/- mice and had elevated lesion proteolytic 

activity that may causes plaque rupture40. Other proteases (elastase, chymase, granzyme B, 

matrix metalloproteinases) secreted by macrophages, T-lymphocytes and mast cells, may also 

trigger apoptosis by breaking-down cell-extracellular matrix interactions 4. 

Plasmin may also activate growth factors such as latent TGF-β, which may induce VSMC 

apoptosis 41. Interestingly, we found, in ApoE-/-:PAI-1-/- mice, more pronounced extracellular 
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matrix disorganisation, proMMP activation, and activation of latent TGF-β, as compared to 

ApoE-/-:PAI-1+/+ mice 17.  

Detection of cell apoptosis by TUNEL may have some potential limitations. Firstly, it is known 

that the TUNEL technique may overestimate the apoptotic rate, especially in highly proliferative 

cells 42. However, the proliferation rate of VSMC is known to be low in advanced atherosclerotic 

plaques 2, 43, 44. Comparing the two ApoE-/-:PAI-1 genotypes, we observed no significant 

background, and our VSMC apoptotic rates were comparable to those observed in other studies 

using stringent criteria to define apoptosis 42. Secondly, VSMCs within atherosclerotic plaques 

may lose α-actin immunoreactivity, thus compromising identification of VSMC-derived foam 

cells and determination of the apoptotic rate 1, 42, 44.  However, active caspase 3 detection within 

atherosclerotic extracts corroborated our TUNEL data and, most importantly, it parallelled 

plasmin activity. 

In summary, we have found that ex vivo plasmin generation may lead to apoptosis of murine 

VSMCs. In vivo, plasmin activity in atherosclerotic plaques was associated with VSMC 

apoptosis in ApoE deficient mice, suggesting that plasmin may induce VSMC apoptosis during 

atherogenesis. Bot et al. 45 reported that the serine protease inhibitor Serp-1 (which inhibits 

plasmin and plasminogen activators) impaired atherosclerotic lesion formation and stabilized 

plaques in ApoE-/- mice. Therapeutic strategies aimed at preventing pericellular plasminogen 

activation might thus be beneficial to stabilize atherosclerotic plaques. 
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FIGURE LEGENDS 
Figure 1 : Plasminogen activation within the aortic wall leads to ex vivo VSMC apoptosis. 

A. In situ fibrin zymography for 24 hours on de-endothelialized aortic tunica media 

from a PAI-1 -/- mouse in the absence (left panel) or in the presence of 10 k.I.U/ml 

aprotinin (right panel). The scale bar corresponds to 100 µm.  

B, C. De-endothelialized aortic tunica media from WT and PAI-1 -/- mice were 

incubated for 4 hours without (Pg 0) or with 1.3 µM plasminogen (Pg+), without and 

with 1 µM α2-antiplasmin (Pg+AP). n= 5 to 9 in each condition tested. 

B. Representative WT (upper panels) and PAI-1 -/- (lower panels) mouse de-

endothelialized aortas, stained with DAPI (blue, for DNA detection) after the TUNEL 

reaction (green, for DNA fragmentation). No increased apoptosis was detectable in 

WT aortas after 4 hours of plasminogen incubation, whereas PAI-1-/- aortas displayed 

increased apoptotic levels (Pg+), inhibited in the presence of α2-antiplasmin (Pg + 

AP). The scale bar corresponds to 20 µm.  

C. VSMC apoptotic index (%) in aortas of WT and PAI-1-/- mice. 

Figure 2: Differential expression patterns of plasmin and active caspase 3 in aorta 

compartments of ApoE-/-:PAI-1+/+ and ApoE-/-:PAI-1-/- mice.  

A. Plasminogen (Pg), plasmin (Pn) (upper gel) and active caspase 3 (lower gel) were 

detected by Western blot under reducing conditions in the same extracts from aortic 

areas with (+) and without (-) atherosclerotic plaques of ApoE-/-:PAI-1+/+(ApoE-/-) and 

ApoE-/-:PAI-1-/- mice.  

B,C. Light microscopic analysis of an ascending aorta section in a representative 

ApoE-/-:PAI-1-/- mouse, after immunostaining for plasmin(ogen) (B) or active caspase 
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3 (C). Both were detected within atherosclerotic plaques but not in the tunica media 

nor in areas without atherosclerotic plaques.  

 D (TUNEL reaction) and D’ (staining with DAPI) focused on a fibrous cap within 

an atherosclerotic plaque in a representative ApoE-/-:PAI-1-/- mouse. Magnification 

bar: 20 µm. 

E. Transmission electron micrograph of the aortic intima of a representative ApoE-

/-:PAI-1-/- mouse showing the presence of a VSMC with chromatin condensation and 

fragmentation (arrow), which represent distinctive ultrastructural features of apoptotic 

cells. A VSMC with normal nucleus is marked with asterisk. Magnification bar: 10 

µm. 
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