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Abstract 

Chromosome 1 is involved in quantitative anomalies in 50-60% of breast tumors. However, 

the structure of these anomalies and the identity of the affected genes remain to be deter-

mined. To characterize these anomalies and define their consequences on gene expression, 

we undertook a study combining array-CGH analysis and expression profiling using special-

ized arrays. Array-CGH data showed that 1p was predominantly involved in losses and 1q 

almost exclusively in gains. Noticeably, high magnitude amplification were infrequent. In an 

attempt to fine map regions of copy number changes we defined 19 shortest regions of over-

lap (SRO) for gains (1 at 1p and 18 at 1q) and of 20 SROs for losses (all at 1p). These 

SROs, whose sizes ranged 170 Kb to 3.2 Mb, represented the smallest genomic intervals 

possible based on the resolution of our array. 

The elevated incidence of gains at 1q, added to the well established concordance between 

DNA copy increase and augmented RNA expression made us focus on gene expression 

changes at this chromosomal arm. To identify candidate oncogenes, we studied the RNA 

expression profiles of 307 genes located at 1q using a home-made built cDNA array. We 

identified 30 candidate genes showing significant overexpression correlated to copy number 

increase. In order to substantiate their involvement, RNA expression levels of these candi-

date genes were measured by quantitative RT-PCR in a panel of 25 breast cancer cell lines 

previously typed by array-CGH. Q-PCR showed that 11/29 genes were significantly overex-

pressed in presence of a genomic gain in these cell lines, while 21/28 genes were overex-

pressed when compared to normal breast. 
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 Introduction 

Chromosome 1 is recurrently altered in a number of human malignancies. In solid tumors 

structural aberrations include several recurrent chromosomal translocation sites, as well as 

frequent gains or losses involving either chromosomal arm (Struski et al., 2002; Teixeira et 

al., 2002). In breast cancer, chromosome 1 is the site of rare stereotypic rearrangements; 

isochromosome i(1)(q10), and der(1; 16)(q10; p10) (Tsarouha et al., 1999). More signifi-

cantly, it has been shown, by either LOH or CGH work, to be frequently involved in copy 

number changes (CNC) (Kerangueven et al., 1997; Osborne & Hamshere, 2000). Fifty to 

60% of breast tumors analyzed by CGH presented gains at 1q, while the short arm showed 

predominantly losses, except the 1p31-p32 region which presented occasional gains 

(Courjal & Theillet, 1997; Tirkkonen et al., 1998). Gains at 1q frequently affect the whole 

arm, however, a number of tumors or cell lines exhibit interstitial gains sometimes reduced 

to a chromosomal band or subband (Courjal & Theillet, 1997; Larramendy et al., 2000). 

These data suggesting the existence at 1q of several regions of gains were thus concordant 

with LOH studies indicating the occurrence of at least 4 regions of allelic imbalance in breast 

tumors (Kerangueven et al., 1997). Because gains at 1q were observed both in low and high 

grade breast tumors, its implication in early stages of disease development has been shown 

(Cummings et al., 2000; Tirkkonen et al., 1998). Recent data using BAC based array-CGH 

on independent sets of breast tumors have confirmed the frequent nature of gains on chro-

mosome 1, as well as the existence of multiple cores of amplification (Stange et al., 2006). 

Altogether these data suggested the presence of several important cancer genes on chro-

mosome 1. Several known oncogenes (NRAS, JUN, MYCL, TAL1, BLYM, LCK) map on 

chromosome 1q, but  their implication in breast cancer has remained elusive, while genes 

like MUC1 and PLU-1/JARIB1 were proposed as candidates (Bieche et al., 1997; Lu et al., 

1999). However, it seems clear that most genes involved remain to be identified. This notion 

was reinforced by recent expression profiling studies in breast tumors that showed that 25 
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genes located on the long arm of chromosome 1 showed increased expression levels in 

conjunction to DNA copy number increase (CNI) (Hyman et al., 2002). 

Our goal in this work was to determine more precisely the boundaries of regions of chromo-

some 1 showing copy number changes (CNC) in breast tumors and gain insight on genes 

involved. To achieve this, we built a genomic array covering both arms of chromosome 1 at 

an average density of 1 BAC clone/0.85 Mb and analyzed 30 breast cancer cell lines and 30 

primary breast tumors by array-CGH. Based on the array-CGH profile we defined shortest 

regions of overlap of copy number gain or loss. A total of 20 regions of loss, all located at 

chromosome 1p, and 19 regions of gain, 1 at 1p and 18 at 1q, were defined. Because gains 

at 1q were found in over 60% of the analyzed samples and increased copy number are 

clearly related to augmented gene expression, we focused our expression study on the iden-

tification of candidate genes at 1q. To this aim we studied expression profiles of 307 known 

genes located on the long arm of chromosome 1. Using a supervised analysis method we 

selected 30 genes showing significantly increased RNA expression in relation to genomic 

gains. RNA expression levels of 28/30 genes were verified by Q-RT-PCR and the overex-

pression in relation to gains was confirmed for 11/28 genes, while 20/28 showed overex-

pression compared to normal breast. 
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Material and methods 

Tumors and blood samples 

30 breast tumors were obtained from the Pathology Department at the Val d’Aurelle Cancer 

Center of Montpellier (France). Tumor biopsies were snap-frozen in liquid nitrogen upon 

surgical removal and stored at –80°C until DNA and RNA extraction. Tumor cohorte was 

composed of 63.7% invasive ductal carcinoma, 18% invasive lobular carcinoma, 15% inva-

sive adenocarcinoma of unspecified type and 3.3% others types carcinomas of the breast. 

The mean age of patients was 58 years. Tumors were mostly grade 2 and 3 (46,7% and 

29,2% respectively), whereas 13,9% were grade 1 and 10% were uninformed. 

Cell lines and tumors 

Breast cancer cell lines  used in this study included BRCAMZ01, MDAMB175, MDAMB453 

(D. Birnbaum, Inserm U119, Marseille, France), CAL51, MDAMB435, SKBR7, ZR7530 (P. 

Edwards, Department of Pathology, Cambridge, UK), BT474, MCF7Rich (F. Vignon, Inserm 

U540, Montpellier, France), HS578T, MDAMB436, (A. Puisieux, Inserm U590, Lyon, 

France), SUM149, SUM185, SUM52 (S. Ethier, University of Michigan, Ann Arbor, MI, USA), 

EFM19, (DSMZ, Braunschweig - Germany), BT20, BT483, HCC1187, HCC1395, HCC1428, 

HCC1937, HCC1954, HCC2218, MDAMB157, MDAMB361, MDAMB468, SKBR3, T47D, 

UACC812, ZR751 (ATCC, American Type Culture Collection, Manassas, VA, USA). All cell 

lines were cultured as recommended by suppliers.  

Genomic arrays 

We built a genomic array covering chromosomes 1, 8 and 17. Coverage of chromosomes 8 

and 17 has been described in (Gelsi-Boyer et al., 2005; Orsetti et al., 2004). Chromosome 1 

was covered by 257 BAC clones selected as follows; 225 BAC clones from the Barbara 

Trask collection (CHORI) http://www.ncbi.nlm.nih.gov/genome/cyto/hbrc.shtml and 32 clones 

selected according to their cytogenetic position and content in genetic markers. Clones were 

arranged according to the human genome freeze of april 2003 (complete list available on 

request). This resulted in an average density of 1 clone/0.85Mb +/- 0.95Mb. However, clone 
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distribution was uneven and thus could produce local variations in resolution (a complete list 

of BAC clones with precise coordinates is available in Supplementary Table S1) 

Arrays were produced according to the following procedure. BAC, PAC and Cosmid DNA 

was isolated using Nucleobond® BAC100 from Macherey-Nagel (Hoerdt, France). Probe 

DNA to be spotted was prepared by DOP-PCR amplification on 10 ng of BAC matrix DNA in 

a final reaction volume of 100 !l. Primer sequences and DOP-PCR protocol used are avail-

able on the Sanger Center web site 

(http://www.sanger.ac.uk/HGP/methods/cytogenetics/DOPPCR.shtml) (Orsetti et al., 2004) . 

We performed this with slight modifications : the second round DOP-PCR primer was not 

aminolinked. Purification of PCR products was done using Nucleofast® 96 PCR plates (Ma-

cherey-Nagel, Hoerdt, France). Purified PCR products were resuspended in dd H2O at 

2!g/!l. An aliquot was run on an agarose gel in order to ascertain even distribution of the 

product in all the wells.  Prior spotting products were diluted 1:1 in spotting solution (GE-

Healthcare, Orsay, France) and spotted in quadriplicate onto Corning GapsII slides (Schi-

phol-Rijk, The Netherlands) using a Lucidea array spotter IV (Amersham Biosciences, Or-

say, France). 

Array-CGH probe labeling, hybridization, image capture and data analysis. 

Genomic DNA was digested by NdeII according to the supplier’s recommendations (Roche 

Diagnostics, Meylan, France). 300 ng of digested genomic DNA was labelled by random-

priming in a 50!l reaction containing: 0.02mM dATP, 0.02mM dGTP, 0.02mM dTTP; 

0.05mM dCTP; 0.04mM Cy3-dCTP or Cy5-dCTP; 25 Units of  Klenow Fragment (50U/!l, 

New England Biolabs, Ozyme, Saint Quentin Yvelines, France), 10 mM -mercaptoethanol, 

5mM MgCl2, 50mM Tris-HCL pH 6.8 and 300!g/ml random octamers.  The reaction was 

incubated at 37°C for 20 hours and stopped by adding 2.5!l EDTA 0.5M pH8. The reaction 

product size was about 100 bp. We purified labeled products using microcon 30 filters (Ami-

con, Millipore, Molsheim, France).  Abundance of the labeled DNA was checked using a 

spectrophotometer and incorporation of dyes was calculated using Molecular Probes soft-

ware (http://www.probes.com/resources/calc/basedyeratio.html). A mix of 700 pmol Cy5 and 
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700 pmol Cy3 labeled probes was ethanol precipitated in the presence of 250-300!g of hu-

man Cot-1 DNA (Roche Diagnostics, Meylan, France) and 100!g herring sperm DNA 

(Promega, Charbonnières, France). The pellet was dried and re-suspended in 110!l Hy-

brisol VII (Appligene Oncor, Qbiogen, Illkirch, France). The probes were denatured at 80°C 

for 10 min, and repetitive sequences were blocked by pre-annealing at 37°C for 30 min.  

Slide processing was done using a HS4800 hybridization station (Tecan, Lyon, France). Sli-

des were treated with a blocking buffer (5XSSC, 0.2%SDS, 1%BSA) at 42°C for 30 min and 

washed 3 times at 42°C using 2XSCC,0.2%SDS. Preannealed probes were injected in the 

chambers and hybridization took place at 37°C for 16h with mild agitation. Posthybridization 

washes were as follows: 3 washes at 52.5°C in solution 1 (2XSSC, 0.2%SDS), followed by 3 

washes in solution 2 (0.5XSSC, 0.2%SDS) and 1 wash in solution 3 (0.1XSSC) at 52.5°C. 

To remove salt and detergent residues a brief wash with dd water was performed at 37°C 

and slides were dried within the chambers by an injection of N2 at 30°C. 

Arrays were scanned by a GenIII Array Scanner  (Amersham Biosciences, Orsay, France). 

Images were analyzed by ARRAY-VISION 6.0 software (Amersham Biosciences, Orsay, 

France). Spots were defined by use of the automatic grid feature of the software and manu-

ally adjusted when necessary. Fluorescence intensities of all spots were then calculated af-

ter subtraction of local background. These data were then analyzed using a custom made 

MS-Excel VBA script. Cy3 and Cy5 global intensities were normalized with the entire set of 

spots on the array, Cy3/Cy5 ratios were calculated, each BAC clone was spotted in 4 repli-

cates, the median values of replicate spots were calculated and these values were used to 

define the selection threshold for individual spots. Only replicates showing less than 15% of 

deviation from the median were kept and a clone was taken into consideration when at least 

3 of 4 replicates showed values within the 15% deviation limit. Representation of profiles 

with log2 ratios in Y-axis and Mb position of clones (http://genome.ucsc.edu, April 2003 

freeze) along the chromosome in X-axis. For each sample, at least two experiments were 

performed (Cy3/Cy5 and Cy5/Cy3), and the final profile corresponds to the mean of two ex-

periments.  
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RNA  expression profiling of chromosome 1q using cDNA arrays 

Variations in gene expression levels were analyzed by large-scale measurement with home-

made cDNA mini-arrays (7.5 x 9 cm; 720 human genes; 11 genes/cm2) produced as de-

scribed (Nugoli et al., 2003). More specifically our mini-arrays comprised 319 ESTs corre-

sponding to 307 known genes mapping at 1q (Supplementary Table S2). Selection of cDNA 

clones was done according to Information gathered (and crosschecked) from different web 

based data bases Genemap: http://www.ncbi.nlm.nih.gov/genemap99/, Genecards: 

http://genecards.weizmann.ac.il/, Genelynx: http://www.genelynx.org/ or UCSC Genome 

Browser, release april 2003: http://genome.ucsc.edu/. Hybridization signals were quantified 

using the HDG Analyzer software (Genomic Solutions, Ann Arbo, MI, USA) by integrating all 

spot pixel signal intensities and removing spot background values determined in the neigh-

boring area.  

Quantitative RT-PCR  

RNAs from cell lines and normal breast samples used for real-time PCR were isolated using 

the RNeasy Minikit (Qiagen, France) in accordance with the supplier’s conditions. One g of 

total RNA, treated beforehand with RNase-free DNase (Promega, France), was reverse 

transcribed using the SuperScript™ II RT and 250 ng of random hexamers (Invitrogen, 

France). Q-PCR reactions were carried out in an ABI Prism 7000 instrument (Applied Bio-

systems, France) in a final volume of 15 l according to the supplier’s recommandations using 

SYBR Green as a detector. Primers were as described in Supplementary Table S3 in the 

supplementary data. We designed the primers for 17 genes, with  the assistance of the  

Primer Express software (Applied Biosystems, France), and for the remaining 14 we used 

the Quantitect Primer Assays from the Gene Globe database (Qiagen, France). ESRRG 

primers were as described by (Ariazi et al., 2002). Standard curves were determined for 

each gene analyzed by use of serial dilutions from the same pool of cDNAs. Relative quanti-

ties were calculated referring to these curves and relative expression levels of each target 

gene was normalized to 28 S RNA.  

H
A

L author m
anuscript    inserm

-00157275, version 1



Orsetti et al. BJC 

 9 

 
Identification of aberrantly expressed genes in regions of CNC 

We applied a supervised analysis scheme to identify genes significantly correlated to copy 

number changes. Sample selection was based on array-CGH profiles. For each consensus 

region, samples presenting at least 25% of the BACs included in the region with log2 ratio 

exceeding 0.25 were considered as amplified. For each available gene at 1q, we computed 

a discriminating score by comparing expression levels between the subgroup of samples 

presenting amplification (subgroup 1) and the subgroup of samples without amplification 

(subgroup2). Discriminating score (Golub et al., 1999) was defined as DS = (M1-M2) / 

(S1+S2), where M1 and S1 represent mean and the SD of expression levels of one gene in 

subgroup 1, M2 and S2 in subgroup 2. Confidence levels were calculated by performing 

1,200 iterative random permutations per gene as described previously (Bertucci et al., 

2004). Significance threshold for expression differences was DS>=0.32 corresponding to < 

0.01 false positive. For Quantitative PCR results we applied a t test analysis. 

 

H
A

L author m
anuscript    inserm

-00157275, version 1



 

 10 

 Results  

Patterns of gains and losses at chromosome 1 in breast cancer 

We analyzed genomic profiles of 30 primary tumors and 30 cancer cell lines by array-CGH 

using a home built array covering chromosome 1 at an average density of 1 clone/0.85 Mb, 

with some local variations resulting in higher density locally at 1q. All cell lines studied, pre-

selected on the basis of classical CGH profiles, presented gains and/or losses at either 1p or 

1q. Array-CGH profiles were in good concordance with classical CGH data, confirming the 

prevalence of losses on the short arm combined with gains at 1q. However, in contrast to 

classical CGH data, gains encompassing the whole 1q were rare, with profiles typically sho-

wing multiple subregions of gains (Figure 1 and supplementary data Figure S1). Most 

prevalent gains were at 1q21-q22, 1q23-q24, 1q32 and 1q42-q44, while losses were no-

ticeably rare on the long arm  (Figures 1 and 2). On average tumors and cell lines presented 

1 to 3 regions of gains per sample (Figure 1). 

Our aim was to define the cores of the different regions of CNC on chromosome 1 and, thus, 

it was important to determine their boundaries. Correspondingly, we delineated the shortest 

regions of overlap (SRO) involved in either gains or losses on the whole chromosome 1. We 

overlaid all the array-CGH profiles and searched for shortest overlaps shared by at least 6 

independent tumors or cell lines.  We defined 19 SROs of gains (1 at 1p and 18 at 1q) and 

20 SROs of losses (all at 1p) whose sizes ranged 170 Kb to 3.2 Mb (Figure 1). Precise loca-

tions and BAC content are described in supplementary data (Table S4). However, it must be 

pointed out that the actual sizes of these regions of overlap may changes according to the 

resolution of the array used to define them.  

Although, gains were generally of low to moderate level, high magnitude amplifications were 

observed. Similarly, we observed high magnitude losses (Figure 1). We were interested to 

see whether high magnitude amplifications occurred at recurrent sites and, accordingly, de-

fined 7 peaks of amplification, which all, except that at 1p12, matched with SROs (Figure 1). 

This discrepancy can be explained by the different criteria used to define peaks of amplifica-
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tion and SROs. Whereas SROs required to be shared by at least 6 samples to be retained, 

peaks of amplification needed to occur in at least 3 tumors or cell lines.  

Identification of candidate genes involved in copy number changes at 1q 

Because the relation between genomic gains and increased RNA expression is well estab-

lished and linked to a selective advantage for cancer cells, we concentrated our efforts on 

the identification of the genes showing significantly increased expression levels as a conse-

quence of gains at 1q. To this mean, we analyzed RNA expression profiles of 307 genes lo-

cated on chromosome 1q in 29 cell lines and 26 tumors using self-made cDNA arrays. We 

performed a supervised analysis aiming at selecting genes differentially expressed in tumors 

or cell lines presenting a gain. We formed groups of tumors and cell lines according to their 

“gain” or “no gain” status in each region. However, based on the 19 SROs this resulted in a 

large number of subclasses whose samples were too small to reach statistical significance. 

To obviate this problem we defined larger regions of gains, designated consensus regions, 

which encompassed several SROs. To do this, we determined the occurrence curve for 

gains at each target clone at 1q. We reasoned that ruptures and low points in the curve rep-

resented the boundaries of the different regions (Figure 2). We retained only the events 

whose occurrence exceeded the mean (horizontal bar on Figure 2) and boundaries were 

defined by vertical lines tangential to the occurrence curve. Seven (7) consensus regions of 

gains (G1 through G7), ranging 3.6 to 11 Mb and encompassing two to three SROs on aver-

age were defined at 1q (Table 1 and Figure 2). Gains located between 170 and 180 Mb 

were not considered because their occurrence was below the threshold. Of the 307 genes 

studied, 178 were located within the consensus regions of gains defined at 1q. To identify 

genes whose expression levels were significantly modified in relation to CNC we calculated 

the Discriminating Score (DS) followed by 1200 random permutations (gain vs. no gain) and 

our significance threshold for expression differences was DS>=0.32 corresponding to < 0.01 

false positive. This resulted in the selection of 30 genes distributed in consensus regions G1 

through G7 (Table 2). Interestingly, we noted that a number of the selected genes were lo-
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cated in close vicinity to each other suggesting the existence of local clusters, possibly re-

lated to the existence of core regions of gain.  

Candidate gene verification by Quantitative RT-PCR  

In order to confirm expression profiling results we measured the RNA expression levels of 

28/30 genes by Quantitative RT-PCR (Q-RT-PCR) in 25 cell lines typed by array-CGH. The 

c1orf2 and HNRPU genes could not be studied because of unsuccessful primer design. In 

addition to the 28 genes selected from the cDNA array data we studied the recently identi-

fied candidate oncogene RAB25 (Cheng et al., 2004), which is located in consensus region 

G2, in close vicinity to two of our candidate genes, MAPBPIP and CCT3 (Table 2). A t test 

analysis revealed that only 5/29 genes showed p values =<0.05, indicative of significant ex-

pression differences in relation to gains. We reasoned that this may be due to small sample 

size (we had to restrict our Q-PCR analysis to the 25 cell lines because tumor RNAs were 

no more available) and decided to consider genes with p values =<0.1. This allowed us to 

pick out a total of 11 genes (Table 2). It was, however, noticeable that the RAB25 gene was 

not selected in this test, while it was, when we compared mean expression levels in cancer 

cell lines to that in a series of 5 normal breast tissues expression (t test p value=0.002). We, 

thus, applied this test to the whole set of genes which revealed that 21/29 were significantly 

overexpressed in cancer cell lines compared to normal breast.  
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Discussion 

Chromosome 1 is a prevalent site of numerical anomalies combining losses on the short arm 

and gains on the long one in breast carcinomas (Courjal & Theillet, 1997; Teixeira et al., 

2002). Gains at 1q are found in over 50% of breast tumors. While being frequent in high 

grade breast cancer, they have been related to ER positive cancers (Loo et al., 2004; Renn-

stam et al., 2003) and have been suggested to occur early in the natural history of the dis-

ease (Buerger et al., 1999; Malamou-Mitsi et al., 1999). These particularities fostered our 

interest in characterizing the genomic regions involved in copy number changes and identify-

ing genes at 1q whose expression was modified in relation to gains. 

Array-CGH data presented here confirm chromosomal CGH results showing the duality on 

chromosome 1, with the short arm being mainly involved in losses and the long arm almost 

exclusively in gains. Our data clearly indicated the existence of multiple subregions of losses 

at 1p and of gains at 1q. In an attempt to define these subregions with greater precision and 

possibly delimitate their cores, we determined the shortest regions of overlap for gains (19 

SROs) and losses (20 SROs) on chromosome 1, whose sizes ranged 170Kb to over 3 Mb. 

SROs were defined according to the classical LOH scheme, in order to narrow down genetic 

intervals encompassing candidate genes. Our data thus suggest that numerical anomalies at 

chromosome 1, be it losses or gains, are complex and involve a large number of subregions 

and possibly combinations of anomalies.  

Although losses at 1p were observed in a sizeable portion of the tumors and cell lines, gains 

were notably prevalent. This was in full agreement with previous chromosomal CGH results 

by us and other groups (Courjal & Theillet, 1997; Larramendy et al., 2000; Malamou-Mitsi et 

al., 1999; Tirkkonen et al., 1998). Interestingly, gains at 1q were of low to moderate level 

with a lower prevalence of amplifications compared to other chromosomes. Furthermore, no 

sharp transitions were observed at the boundaries of amplification peaks at 1q, in contrast to 

chromosomes 8p or 17q, where such recurrent breakpoint sites were common  (Gelsi-Boyer 

et al., 2005; Orsetti et al., 2004).  
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The relation between aberrant gene dosage and gene expression is well accepted and is 

best shown in case of copy number increase. The common nature of genomic gains (which 

include DNA amplification) in breast tumors indicates that it is an effective mechanism of 

positive genetic selection in cancer cells (Upender et al., 2004). By cDNA-array expression 

profiling, we identified 30 genes whose RNA expression was significantly increased in rela-

tion to genomic gains. Overexpression in presence of genomic gain could be confirmed only 

for 11 genes by quantitative-RT-PCR. We suspect that these numbers may be related to the 

small size of our sample. We had to restrict our Q-PCR verification to 25 cell line RNAs, be-

cause tumor RNAs were no more available. We noted that 21 genes presented significant 

overexpression when compared to normal breast, suggesting the involvement of a larger 

number of genes within our original selection.  It was interesting to see that, to the exception 

(PLU-1/JARID1B) (Lu et al., 1999), all the genes identified in our study were newly proposed 

as candidate cancer genes. Furthermore, MUC1 (Schroeder et al., 2004), a long known cell 

surface marker overexpressed in a sizeable fraction of breast tumors, and KIF14 (Corson et 

al., 2005), a recently proposed candidate at 1q31, presented Discriminating Scores below 

the threshold and were excluded from our selection. Genes selected in our study belong to 

rather diverse functional groups, of which three appeared prevalent. The first corresponded 

to a broad collection of positive regulators of cell proliferation. They include PIP5K1A, 

MAPBPIP, RAB25A, PCTK3, RAB4 and MPZL1. The second was made of genes whose 

products were related to transcriptional regulation or chromatin remodeling such as USF1, 

JARID1B, TBX19 or CROC4. The third included genes involved in cellular trafficking 

VPS45A, ARF1, LYST, CCT3 or basic cellular metabolism CA14, ALDH9A1. Note that 

RAB25 has also been related to the activation of protein trafficking between the membrane 

and the endoplasmic reticulum (Cheng et al., 2005). Similar functional groups have been 

observed in other selections of genes involved in genomic gains or amplifications, thus, indi-

cating the importance of activated transcription, increased signaling and protein trafficking or 

catabolism in cancer. However, 8/24 overexpressed genes did not belong to any of the 

above mentioned functional groups. While two genes, PDZK1 and MLLT11, were clearly 
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relevant to cancer as both have been proposed as a candidate oncogenes in diverse hae-

matological malignancies (Busson-Le Coniat et al., 1999; Inoue et al., 2004; Tse et al., 

2004), 6 were more difficult to relate to cancer. Three corresponded to genetic determinants 

of genetic syndromes (MTMR, DISC1, MTX1) and the three others bore functions with no 

obvious link to cancer (NENF, ENSA, TARBP1).  

We were interested to verify the concordance between our analysis and the recently de-

scribed “Transcriptome Correlation Map” (Reyal et al., 2005), which defined groups of collin-

ear genes showing coordinated expression. Their dataset indicated 235 genes presenting a 

significant Transcriptome Correlation Score (TCS) at 1q, of which 147 mapped within the 

region of gains defined in our work, of which 72 (48%) were located in G1 and G2 (1q21 or 

1q22). Genes within consensus regions of gains presented a significantly higher TCS, thus 

being in accordance with the existence of a link between increased expression and copy 

number gains at 1q. This was further corroborated by the fact, that 14/30 (43%) genes se-

lected by Discriminating Score showed significant TCS, which is an increase compared to 

the 55/178 (31%) genes common to both studies and located in the regions of gains. This 

suggested an enrichment of genes belonging the transcriptome correlation map in our set of 

candidate genes at 1q and contrasted to our previous findings at 8p (Gelsi-Boyer et al., 

2005).  

Despite their frequent nature, numerical anomalies affecting chromosome 1 in breast and 

other cancers have drawn less attention than deserved. Most studies focussed on specific 

subregions or candidate genes. In this work we characterized at high resolution regions re-

currently involved in copy number alterations on chromosome 1 in breast cancer and identi-

fied 24 candidate genes overexpressed in regions of gains at 1q. To our knowledge, this is 

the first study mapping at high resolution regions of loss and gain on the whole length of 

chromosome 1 and proposing a series of candidate genes affected by copy number 

changes. Further work will need to ascertain the true relevance to breast cancer of these 

candidate genes. This will require bioclinical and functional studies. Moreover, since our 
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screen was based on a set of 307 known genes representing 40-50% of the genes assigned 

at 1q, our selection leaves way to the identification of additional candidate genes.  
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 Legends to Tables and Figures 

Table 1: Description of consensus regions of gain at 1q. Consensus regions of gain were 

defined by the BAC bording them, Mb start corresponds to the 5’ end of the proximal BAC, 

Mb end to the 3’ end of the distal BAC.  

Table 2: Gene expression analysis at 1q and correlation with copy number gain. RNA 

expression profiles of 307 genes located at 1q were analyzed in a total of 29 breast cancer 

cell lines and 26 primary tumors. Genes presented correspond to the 31 genes selected by 

Discriminating Score. Significance threshold was DS > 0.32 corresponding to <0.01 false 

positive. Expression levels were quantified by Q-RT-PCR for 28/30 genes (primer design 

was unsuccessful for c1orf2 and HNRPU). Q-PCR primers sequences are presented in 

supplementary Table S2. The recently reported candidate oncogene RAB25, which was not 

present on our array, was quantified as a positive control. Q-RT-PCR data were analyzed for 

differential expression using two t tests approaches; t test 1 (noted p value 1) indicates cor-

relation with copy number gain; t test 2 (p value 2) differential expression with normal breast. 

Two significance thresholds were used; strict p=<0.05, tolerant p=<0.1, p values> 0.1 were 

considered as non significant and only values within the tolerance limit are indicated. Cell 

lines analyzed were; BRCAMZ01, MDAMB175, CAL51, MDAMB435, SKBR7, ZR7530, 

BT474, MCF7Rich, HS578T, MDAMB436, SUM149, SUM185, BT20, HCC1187, HCC1428, 

HCC1937, HCC1954, HCC2218, MDAMB157, MDAMB361, MDAMB468, SKBR3, T47D, 

UACC812, ZR751. ND = not done and refers to Q-RT-PCR measurements which could not 

be performed. 

 

 
Figure 1: Profiles of gains and losses on chromosome 1 in breast cancer. Definition of 

shortest regions of overlap (SRO) and events of high magnitude. Grey horizontal lines rep-

resent regions of gains (top) or losses (bottom) observed in each tumor or cell line (minimum 

2 BACs involved with a log2 ratio > 0.25 or < 0.25). SROs are indicated as bold grey bars 
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with gains above the chromosome ideogram and losses below. SROs correspond to the 

smallest overlap shared by at least six tumors or cell lines. Arrow heads indicate events of 

high magnitude, either peaks of amplification or loss. They corresponded to events with log2 

ratio > 0.7 in at least 3 tumors or cell lines. Code for cell lines 1: BRCAMZ01, 2 : BT20, 

3 : BT474, 4 : BT483, 5 : CAL51, 6 : EFM19, 7 : HCC1187, 8 : HCC1395, 9 : HCC1428, 10 : 

HCC1937, 11 : HCC1954, 12 : HCC2218, 13 : Hs578T, 14 : MCF7Rich, 15 : MDAMB157, 

16 : MDAMB175, 17 : MDAMB361,  18 : MDAMB435,  19 : MDAMB436, 20 : MDAMB453,  

21 : MDAMB468,  22 : SKBR3,  23 : SKBR7,  24 : SUM52,  25 : SUM149, 26 : SUM185, 27 : 

T47D, 28 : UACC812, 29 : ZR751, 30 : ZR7530.  Code for primary tumors 1 : VA1593, 2 : 

VA4055, 3 : VA4380, 4 : VA4390, 5 : VA4435, 6 : VA4956, 7 : VA5033, 8 : VA5077, 9 : 

VA5101, 10 : VA5410, 11 : VA5450, 12  : VA6088, 13 : VA6190, 14 : VA6204, 15 : VA6219, 

16 : VA6277, 17 : VA6582, 18 : VA6586, 19 : VA6660, 20 : VA7079, 21 : VA7106, 22 : 

VA7417, 23 : VA6052, 24 : VA6094, 25 : VA6138, 26 : VA6143, 27 : VA6270, 28 : VA6403, 

29 : VA6603, 30 : VA7072. 

 

Figure 2 : Definition of consensus regions of gain at 1q. Consensus regions were based on 

the curve of cumulated occurrence of gains (log2.ratio >0.25) at 1q in 30 cell lines and 30 

primary tumors. Low points defined boundaries and high points possible cores. Only regions 

showing an occurrence exceeding the mean (9.0) were considered. Plots are based on the 

Mb positioning of the clones on the array. Hence clones positioned close to each other may 

appear as merged. Consensus regions of gains were designated G1 through G7 and repre-

sented as bold grey lines. Short grey lines represent the position of SROs relative to that 

consensus regions. 
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Table 1

Consensus 

Segments

Genomic 

Positions
Size (bp) Cytoband BAC names

SRO 

included

Number of 

genes on 

our array

G1 2-3

start 143154718 5191576 1q21.1 CTD-2122l24 31

end 148346294 1q21.3 RP11-74C1

G2 4

start 150842537 3669729 1q21.3 RP11-73C10 36

end 154512266 1q23.1 RP11-91g5

G3 5-6-7-8

start 157448999 9571469 1q23.3 RP11-79m15 42

end 167020468 1q24.2 RP11-184n12

G4 11-12-13

start 194594372 7404055 1q31.3 RP11-321M13 33

end 201998427 1q32.1 CTD-2218h7

G5
start 208699401 5211392 1q32.3 RP11-216f1 14-15 8

end 213910793 1q41 RP11-260a10

G6
start 223358648 11257879 1q42.12 CTD-2148o23 16-17 19

end 234616527 1q43 RP11-80p14

G7
start 235845765 8332672 1q43 RP11-130i13 18-19 9

end 244178437 1q44 RP11-172p12
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G1 pdzk1 PDZK1 PDZ domain containing 1 143403500-143439848 1q21.1 0.015

G1 h2bfq HIST2H2BEhistone 2, H2be 146631105-146633327 1q21.2

G1 cra MTMR11 myotubularin related protein 11 146675639-146683822 1q21.2 0.09 0.011

G1 vps45b VPS45A vacuolar protein sorting 45A 146814958-146892599 1q21.2 0.025 0.027

G1 ca14 CA14 carbonic anhydrase XIV 147005313-147012571 1q21.2 0.019

G1 ensa ENSA endosulfine alpha 147370158-147377163 1q21.3 0.05 0.025

G1 anxa9 ANXA9 annexin A9 147729649-147743202 1q21.3

G1 af1q MLLT11 myeloid/lymphoid or mixed-lineage leukemia ; translocated to, 11 147807778-147816066 1q21.3 0.045

G1 pip5k1a PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, type I, alpha 147897780-147948713 1q21.3 0.09

G2 mtx1 MTX1 metaxin 1 151952587-151957144 1q22 0.051

G2 c1orf2 C1orf2 chromosome 1 open reading frame 2 151994882-152003120 1q22 ND ND

G2 hspc003 MAPBPIP mitogen-activated protein-binding protein-interacting protein 152802478-152806168 1q22 0.076

G2 RAB25 RAB25, member RAS oncogene family 152808855-152818122 1q22 0.001

G2 cct3 CCT3 chaperonin containing TCP1, subunit 3 (gamma) 153056634-153085846 1q22 0.0003

G2 croc4 C1orf61 chromosome 1 open reading frame 61 153128056-153153185 1q22 0.075

G3 usf1 USF1 upstream transcription factor 1 157781513-157787199 1q23.3 0.009 0.007

G3 aldh9 ALDH9A1 aldehyde dehydrogenase 9 family, member A1 162327485-162364132 1q24.1 0.088 0.022

G3 mpzl1 MPZL1 myelin protein zero-like 1 164387268-164453994 1q24.2 0.05 0.070

G3 tbx19 TBX19 T-box 19 164946309-164979694 1q24.2 0.027

G4 plu-1 JARID1B Jumonji, AT rich interactive domain 1B (RBP2-like) 199162987-199245053 1q32.1 0.097 0.095

G4 sox13 SOX13 SRY (sex determining region Y)-box 13 200442674-200457500 1q32.1

G4 pctk3 PCTK3 PCTAIRE protein kinase 3 201857380-201862760 1q32.1 0.05 0.001

G5 spuf NENF neuron derived neurotrophic factor 209222493-209235935 1q32.3 0.023

G5 esrrg ESRRG estrogen-related receptor gamma 212723109-213309462 1q41

G6 arf1 ARF1 ADP-ribosylation factor 1 224655969-224672451 1q42.13 0.098

G6 rab4 RAB4A RAB4A, member RAS oncogene family 225806272-225839911 1q42.13 0.020

G6 disc1 DISC1 disrupted in schizophrenia 1 228235748-228635487 1q42.2 0.001

G6 tarbp1 TARBP1 TAR (HIV) RNA binding protein 1 230818923-230906713 1q42.2 0.0009

G6 tbce TBCE tubulin-specific chaperone e 231749924-231831433 1q42.3

G6 chs1 LYST lysosomal trafficking regulator 232120934-232326807 1q42.3 0.010

G7 hnrpu HNRPU heterogeneous nuclear ribonucleoprotein U 241218474-241229338 1q44 ND ND
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