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Abstract

We evaluated the impact of modelling intra-subject variability on the Likelihood Ratio

Test (LRT) and the Wald test based on non-linear mixed effects models in pharmacokinetic

interaction and bioequivalence cross-over trials. In a previous study, these tests were found

to achieve a good power but an inflated type I error when intra-subject variability was not

taken into account. Trials were simulated under H0 and several H1 and analysed with the nlme

function. Different configurations of the number of patients n and of the number of samples per

patient J were evaluated for pharmacokinetic interaction and bioequivalence trials. Assuming
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intra-subject variability in the model dramatically improved the type I error of both interaction

tests. For the Wald test, the type I error decreased from 22%, 14% and 7.7% for the original

(n=12, J=10), intermediate (n=24, J=5) and sparse (n=40, J=3) designs, respectively, down

to 7.5%, 6.4% and 3.5% when intra-subject variability was modelled. The LRT achieved very

similar results. This improvement seemed mostly due to a better estimation of the standard

error of the treatment effect, related to a better estimation of the total and residual variability.

Power was satisfactory for both tests. For bioequivalence trials, the type I error of the Wald

test was 6.4%, 5.7% and 4.2% for the original, intermediate and sparse designs, respectively,

when modelling intra-subject variability. We applied the Wald test to the pharmacokinetic

interaction of tenofovir on atazanavir, a novel protease inhibitor. A significant decrease of the

area under the curve and of the absorption duration of atazanavir were found when patients

received tenofovir.

1 Introduction

Pharmacokinetic (PK) interaction and bioequivalence are usually tested in cross-over studies by

comparing the log(AUC) and the log(Cmax) of the drug of interest R given alone (or with placebo)

versus R given with an additional drug S, drug association that we call the test drug T. The stan-

dard method, recommended in guidelines [1, 2, 3], is the comparison of log(AUC) and log(Cmax)

using a Student test or a Schuirmann’s two-one sided test (TOST) to test interaction or absence

of interaction, respectively. In order to take benefit of the knowledge accumulated on the PK of

the studied drugs and to decrease the number of samples taken per patient, we proposed in a

previous paper [4] to use tests based on non-linear mixed effects models (NLMEM) in cross-over

trials, focusing on the comparison of the log(AUC) between treatment groups. We proposed two

approaches to test PK interaction, depending on whether concentration data of the two treatment

groups are analysed separately or simultaneously. In the first case, we proposed to perform the

paired parametric and non parametric tests between the two groups on the individual Empirical

Bayes (EB) estimates of log(AUC). In the second case, the likelihood ratio test (LRT) compared

the results obtained with and without estimating an interaction effect on log(AUC), and the Wald
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test was directly performed on the interaction parameter. We adapted these approaches to test PK

bioequivalence, except for the LRT. More precisely, we extended the method of the TOST to the

EB tests and to the Wald test, the latter using the estimated standard error (SE) of the interaction

parameter.

In that previous paper, we evaluated the type I error and power of these tests for both interac-

tion and bioequivalence cross-over trials. The main conclusions were first that EB tests achieved

satisfactory type I error and power for comparison tests, but were not of a great value for testing

equivalence, and second that the LRT (except for equivalence) and the Wald test suffered from

an inflation of their type I error up to 22 %, but that they were the most powerful, even after

correction of the corresponding significance threshold.

It should be noted that in this previous study, intra-subject variability (also called inter-occasion

variability) was not modelled, since the simulated one was small: 5% for log(V/F ) and 10% for

log(ka) and log(AUC). However, the observed inflation of the type I error for the LRT and the

Wald test motivated the present study. Our objective was to evaluate the influence of modelling

the intra-subject variability on the properties of the LRT and the Wald comparison test (used for

PK interaction), and of the Wald equivalence test (used for bioequivalence). Because EB tests were

based on a separate analysis of the two treatment groups, therefore not making any assumption

on intra-subject variability, which was thus implicitely taken into account, they were not further

studied. We applied this approach to the interaction of tenofovir on atazanavir concentrations

data obtained in a PK substudy of the Puzzle 2 - ANRS 107 trial. Atazanavir is a novel protease

inhibitor (PI) used for the treatment of HIV-1 infection that has recently be approved for patients

previously treated with PIs, with a recommended dose of 300 mg QD associated with 100 mg of

ritonavir. Its drug-drug interaction profile is not well established.

The statistical model and the tests are described in section 2. The simulation settings used to

evaluate the properties of the tests are described in section 3, and the main results of this simulation
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study are exposed in section 4. In section 5, we applied the Wald test based on NLMEM to PK

interaction of tenofovir on atazanavir in HIV patients. The overall results are discussed in section

6.

2 METHODS

2.1 Model and notations

We studied a two period two sequence cross-over PK trial. The two treatments were compared

through the ratio of the geometric mean of the area under the curve. We assumed a period effect

equal to zero. Since it is not recommended to take a carry-over or a time by period interaction [5],

there is no need to take account of the order of administration. The analysis is therefore performed

as for a two period one sequence cross-over. Concentrations are noted yijk where k is the treatment

(k = R, T ), i is the subject (i = 1, · · · , n) and j is the measure performed for that subject at time

tijk, (j = 1, · · · , J). We used identical sampling times for each group and for all subjects so that for

all j in (1, · · · , J), tijk = tj , (i = 1, · · · , n), (k = R, T ) and the same dose D for all patients. We

assumed that we knew a non-linear function f such as the statistical model linking concentrations

to sampling times can be written as:

yijk = f(tj , θik) + εijk (1)

where θik is the vector of the parameters of subject i for treatment k and εijk is the measurement

error. The errors εijk given θik were assumed independent and normally distributed with a null

mean and an heteroscedastic variance σ2
ijk , with:

σ2
ijk = σ2(a+ f(tj , θik))b (2)

This combined error model (additive and proportional) is commonly used in population pharma-

cokinetics with b fixed to 2. We made the hypothesis that the individual parameters θik are random
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vectors and that for each treatment k, θik can be decomposed as:

θik = µk + bi + cik (3)

where θik, µk, bi and cik are vectors of size p; µk is the mean value for treatment k and bi is

vector of the random effect of subject i, which is assumed to be distributed as a normal distribu-

tion with zero mean and variance Ψ. The vector of random effect cik models, for each subject i,

the variability between the two periods of treatment, also called intra-subject variability or inter-

occasion variability. We assumed that cik is distributed according to a normal distribution with

zero mean and variance Γ. The total variance Ω of the PK parameters is thus decomposed be-

tween the inter-subject variance Ψ and the inter-occasion variance Γ. In this study, Ψ and Γ were

assumed diagonal. The parameters θ are the logarithm of the usual pharmacokinetic parameters.

The standard deviations of the random effects are the square roots, noted ψℓ (ℓ = 1, · · · , p) and γℓ

(ℓ = 1, · · · , p) of the diagonal elements of Ψ and Γ, respectively.

We study tests based on log(AUC) which is therefore a component of θ. In this paper we

restricted ourselves to the case were the data are analysed in a global analysis performed by

adding a vector of treatment effect noted β on the vector of parameters. We therefore assumed:

µT = µR + β (4)

We note βAUC and µk,AUC respectively the component of β and µk corresponding to log(AUC).

2.2 Comparison tests

The null hypothesis tested by a comparison test is: H0 : {µT,AUC − µR,AUC = 0}, i.e. H0 :

{βAUC = 0}. The first test based on a global analysis is the likelihood ratio test (LRT). Let

M1 be the model including a treatment effect on all components of θ except AUC, and M2 the

model where the treatment effect on AUC is added. The respective log-likelihoods of M1 and M2

are noted L1 and L2. Under the null hypothesis H0 : {βAUC = 0}, 2(L2 − L1) is asymptotically
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distributed as a χ2 with one degree of freedom, which is the assumption we made here. The other

global test is the Wald test comparing the treatment effect to zero in the model M2 [6]. Let β̂AUC

be the estimator of the treatment effect on log(AUC) in M2 and SEβAUC
its standard error. Under

H0, the statistic t = β̂AUC/SEβAUC
is distributed as a Student distribution with m = n(2J−v)−q

degrees of freedom, where q is the number of fixed effects estimated in the model and v is equal to

2 if the intra-individual variability is estimated and 1 if not. The null hypothesis is rejected if |t|

is greater than the 97.5th quantile of a Student distribution with m degrees of freedom.

2.3 Equivalence tests

The null hypothesis of an equivalence test is: {(µT,AUC−µR,AUC) < −δ or (µT,AUC−µR,AUC) > δ}

were δ belongs to ]0; 1[. δ is usually taken equal to 20%, leading to a rounded equivalence interval

of [0.8; 1.25] for the ratio of the geometric means of the untransformed AUC, as proposed in the

FDA guidelines [3]. H0 can also be formulated as {βAUC < −δ or βAUC > δ}.

The test recommended by the FDA guideline leads to the rejection of H0 if the 90% confidence

interval of (µT,AUC − µR,AUC), calculated on non-compartmental log(AUC), belongs to [−δ; δ].

We did not develop a test based on loglikelihood for the case of equivalence tests, as no simple

extension of the LRT for that kind of composite null hypothesis exists. The extension of this

approach for the Wald test is to reject H0 if the 90% confidence interval of β̂AUC is included in

[−δ; δ].

3 EVALUATION OF THE TESTS BY SIMULATION

3.1 Simulation settings

We used the same theophyllin data set than for the previous study to simulate concentration data.

A one compartment model with first order absorption and elimination, with a combined error

model, was fitted to the data using using Lindström and Bates’ algorithm [7], implemented in the

nlme function of R 2.0 software [8]. We fixed the dose for all subjects to the rounded median

dose (4 mg) of the above study. We used the values of the estimated parameters estimates for
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the simulations. The estimated values for the fixed effects were µ̂V/F = −0.73, µ̂ka
= 0.39 and

µ̂AUC = 4.61. We kept the same value of the mean parameters for treatmentR and modify the mean

of log(Cl/F ) and log(V/F ) for treatment T in order to mimic modifications of bioavailability. For

inter-subject variabilities, we chose ψka
=ψAUC=0.2 and ψV/F =0.1. The intra-subject variability

was chosen equal to half the inter-subject variability, i.e. γka
=γAUC=0.1 and γV/F =0.05. The

corresponding global standard deviation of the PK parameters were therefore ωka
=ωAUC=0.224

and ωV/F =0.112. The combined error model was similar to that of the parent study, with σ

rounded to 0.1, a = 1 and b fixed to 2. Data sets were simulated using the same method than for

the previous study, using R 2.0 [4]. Data were simulated for the original design (n=12, J=10), an

intermediate design (n=24, J=5) and a sparse design (n=40, J=3). In order to study the evolution

of the type I error when n increases for a fixed J , we also simulated datasets with n equal to 24,

40 and 60 with J=10. We also simulated datasets for the original design (n=12, J=10) with no

simulated intra-individual variability.

3.2 Evaluation of type I error and power

The LRT (only for comparison tests) and the Wald test were evaluated on trials simulated under the

null hypothesis H0 and under several alternatives H1, in both interaction and bioequivalence case.

All data of both treatment groups of each simulated trial were analysed using two different NLME

models: a global model M1 of both treatment groups with a treatment effect on ka and V but not

on AUC and a global model M2 with a treatment effect added on AUC. Intra-subject variability

was assumed in M1 and M2. We also constructed the analog models M
′

1 and M
′

2 where no intra-

individual variability was assumed. More precisely, for M2, we estimated the three fixed effects

log(ka), log(AUC) and log(V/F ), the three corresponding treatment effects βka
, βAUC and βV , the

diagonal element of Ψ, i.e. the inter-subject variances, ψka
, ψAUC and ψV , the diagonal element

of Γ, i.e. the intra-subject variances , γka
, γAUC and γV . For M1, βAUC was not estimated. M

′

1

and M
′

2 correspond to M1 and M2 with no estimation of γka
, γAUC and γV/F . The LRT compares

the loglikelihood of M1 and M2, i.e. when modelling intra-subject variability, and, for comparison

purpose, of M
′

1 and M
′

2, i.e. when not modelling intra-subject variability. The Wald test compares
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the treatment effect on log(AUC) in M2 (and M
′

2) to zero.

For comparison tests, 5000 interaction trials were simulated under H0 in order to evaluate the

type I error of each of the two studied tests, leading to a 95% prediction interval of [4.4%; 5.6%]

around the expected type I error of 5%. The type I error is estimated by the proportion of

simulated trials for which H0 is rejected. The type I error was estimated only for comparison

tests for the designs were n equals 24, 40 and 60 with J=10, and for the case where no intra-

individual variability was simulated. Several alternative hypothesis were evaluated by multiplying,

for treatment T, the fixed effects for both Cl/F and V/F of treatment R by a factor eδ. In this

precise case, a modification of Cl/F corresponds to the same modification of AUC since the dose

is the same for all patients. Trials are simulated for 4 different values of δ: -0.223,-0.105, 0.105,

and 0.223, and for the original design only. These values correpond to a ratio of the geometric

means of the untransformed AUC of 0.8, 0.9, 1.11 and 1.25, respectively. For each alternative, the

power was estimated from 1000 simulated trials by the proportion of studies for which a significant

difference is shown. As in the previous study, we used a correction of the significance threshold for

power evaluation [4].

In the case of equivalence, the null hypothesis is composite; it has been shown that the global

type I error is the supremum of the type I error over the null space [9]. As previously, we there-

fore simulated 5000 trials under each unilateral null hypothesis by multiplying the fixed effects

for log(Cl) (and therefore log(AUC)) and log(V ) by δ = −0.223 or δ = 0.223 respectively for

treatment T . These values correpond to a ratio of the geometric means of the untransformed

AUC of 0.8 and 1.25, respectively. For each case, the unilateral type I error rate of the Wald

test was estimated by the proportion of studies for which the 90% confidence interval of β̂AUC is

comprised in [-0.223; 0.223]. The global type I error rate was estimated by the maximum of these

two ”unilateral” proportions. To evaluate the power, only for the original design, 1000 trials were

simulated for 3 values of δ: -0.105, 0, and 0.105 respectively. These values correpond to a ratio

of the geometric means of the untransformed AUC of 0.9, 1 and 1.11, respectively. As before, the

estimation of the power was corrected by using for each unilateral null hypothesis the empirical

threshold corresponding to a type I error of 5%.
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3.3 Impact of modelling intra-subject variability on parameters estima-

tion

We evaluated performances of parameter estimation under H0 with and without modelling intra-

subject variability in the case of PK interaction trials, in order to better understand the impact of

modelling intra-subject variability. We calculated the bias and root mean square error (RMSE) for

the treatment effect on log(AUC), for the inter-subject and intra-subject standard deviations ψAUC

and γAUC of log(AUC), for the total standard deviation of log(AUC) ωAUC =
√

ψ2
AUC + γ2

AUC ,

and for the residual error σ for the three studied design and for the two types of analysis (with

and without estimation of the intra-subject variability).

We also estimated, for each design and each type of analysis, the empirical standard deviation

SDβ̂AUC
on the 5000 estimated βAUC . We considered it as the true standard error of βAUC . For

each trial h (h = 1, · · · , 5000), we formed the ratio rh =
SE

β̂AUC,h

SD
β̂AUC

. For each dataset h, the standard

error SEβ̂AUC,h
is the diagonal element of the square root of the approximate variance-covariance

matrix of the fixed effects provided by nlme [8]. The mean of the distribution of the rh should be

close to 1 if the standard error provided by nlme is correclty estimated.

4 RESULTS

4.1 Comparison tests

The type I error of the Wald test and of the LRT with and without modelling intra-subject

variability are displayed in figure 1(A) for the original, intermediate and poor designs and in figure

1(B) for the designs with J fixed to 10. The type I errors of the Wald test on the 5000 replications

of interaction cross-over trials were 7.5%, 6.4% and 3.5% in the original, intermediate and sparse

designs, respectively, when the intra-subject variability was estimated, which were much closer to

5% than when intra-individual variability was not taken into account, with results of 22%, 14%

and 7.7%. Very similar results were observed for the LRT. The type I error was found to be closer
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to 5% when n increases with J fixed to 10. The estimation was even in the confidence interval

of the nominal level of 5% for n equal to 40 and 60 for the Wald test, and for n equal to 60 for

the LRT. In the case were no intra-subject variability was simulated, the two tests achieved a

too conservative type I error (3.8% and 3.7% for the Wald test and the LRT, respectively) when

not modelling intra-subject variability. These type I errors further decreased to 3.5% and 3.2%,

respectively, when modelling intra-subject variability.

The powers of the two tests with and without modelling intra-individual variability for the original

design are presented on table I. Power was satisfactory for both tests and for the three considered

designs for δ = ±0.223. The power for δ = ±0.105 is around 40% for both tests and both methods.

These values of δ do not correspond to realistic alternative hypotheses, but they were tested to

observe whether the power curves obtained for the two methods were comparable, which was

the case here. However, the power obtained when modelling intra-subject variability was always

slightly smaller than that obtained without modelling this variability, even with correction of the

significance threshold.

The bias and RMSE for βAUC , ψAUC , γAUC , ωAUC and σ for the three studied design and for the

two types of analysis (with and without estimation of the intra-subject variability) are displayed

on table III. No clear improvement of the bias and RMSE was found when modelling intra-subject

variability. The only exception was for the bias on σ and for the bias and RMSE on the variance

parameter a, which were smaller for the original and intermediate designs when modelling intra-

subject variability. When γAUC was not estimated, the corresponding bias and RMSE were fixed

to the true value of the parameter, i.e. 0.1. For the sparse design, the bias and RMSE on all

parameters were very close between the two methods. The boxplot of the estimated γAUC for the

3 different designs, diplayed in figure 2, shows that the intra-subject variability was in fact often

estimated very close to zero for the sparse design. The median of the 5000 estimated γAUC was

indeed equal to 10−4.

The boxplots of the ratios rh =
SE

β̂AUC,h

SD
β̂AUC

(h = 1, · · · , 5000) obtained under H0 in the case of

comparison for the three designs are displayed in figure 3.A, together with the corresponding

β̂AUC (figure 3.B). When modelling intra-subject variability, r was closer to 1 for the original
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and intermediate designs. The ratio obtained when not modelling intra-subject variability was

systematically underestimated for these two designs, the bigger difference being for the original

design. As the corresponding βAUC were correctly estimated, this might explain the inflation of

the type I error observed for these two designs. For the sparse design, both methods achieved

similar results, with a slightly inflated ratio, which might explain why the corresponding type I

errors are slighlty inferior to 5%.

4.2 Equivalence tests

The type I error of the Wald test with and without modelling intra-subject variability are displayed

in figure 4 for the 3 considered designs for the equivalence tests using the extension of the TOST.

The type I errors of the Wald test on the 5000 replications of bioequivalence cross-over trials were

found to be 6.4%, 5.8% and 4.7% for the original, intermediate and sparse designs, respectively.

These type I errors are also closer to 5% than those obtained without modelling intra-subject

variability, i.e. 13.2%, 9.4% and 5.4%. As for comparison tests, the bigger difference between the

two methods was found for the original design, followed by the intermediate one. The type I error

obtained for the sparse design are very close for the two methods.

The power of the Wald test with and without modelling intra-subject variability for the original de-

sign is presented on table II. Power was satisfactory for the three considered alternative hypothesis.

5 APPLICATION TO THE INTERACTION OF TENO-

FOVIR ON ATAZANAVIR PHARMACOKINETICS

5.1 Study population

The Puzzle 2 - ANRS 107 trial was a randomized open-label, multiple-dose study performed in

HIV-infected patients who had failed previous antiretroviral therapy. A pharmacokinetic substudy

was performed at the beginning of the trial in 11 patients. All these patients gave written informed

consent to participate in the study and the pharmacokinetic study, which was approved by the
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Institutional Review Board of Hopital Saint-Antoine, Paris VI University. HIV-infected adults

were eligible for inclusion if they met the following criteria: no change in antiretroviral treatment

within the last month before inclusion, plasma HIV-1 RNA loads greater than 10 000 copies/ml,

documented failure of previous treatment with at least two PIs and one non-nucleoside reverse

transcriptase inhibitor and the absence of cardiomyopathy or conduction system disease. Patients

were randomized to receive for the first two weeks either unchanged treatment with PIs and nu-

cleoside reverse transcriptase inhibitors (NRTIs) (group 1) or unchanged treatment with NRTIs

in combination with atazanavir (300 mg QD) and ritonavir (100 mg QD) as a substitute for the

failing PI therapy (group 2). For week 3 (day 15) to week 26, patients from either group switched

to atazanavir (300 mg QD) and ritonavir (100 mg QD) plus tenofovir disoproxil fumarate (DF)

(300 mg QD) and NRTIs selected according to the baseline reverse transcriptase genotype of the

HIV isolate infecting each patient.

The pharmacokinetic substudy of ANRS trial 107 was conducted in 11 HIV-infected patients in

group 2. The objective of the study was to measure the pharmacokinetic parameters of atazanavir

(administered with ritonavir) either before (day 14 [week 2]) or after (day 42 [week 6]) initiation of

tenofovir DF in HIV-infected patients in order to detect pharmacokinetic interactions of tenofovir

on atazanavir. A significant decrease of the AUC estimated by a non-compartmental approach

was found with the addition of tenofovir to atazanavir [10]. One patient did not complete the

study because of the occurrence of asymptomatic ventricular bigeminy during sampling for the

pharmacokinetic study on day 14. The plasma drug concenytations of this patient were therefore

excluded from the analysis. We analysed the data of this substudy with a non-linear mixed effect

model, in order to determine which PK parameter is influenced by the addition of tenofovir.

5.2 PK samples and concentration measurement

Blood samples for atazanavir and ritonavir pharmacokinetic assessments were collected on days 14

(period R, week 2) and 42 (period T, week 6) from the 10 patients. Samples were drawn prior to

drug intake in the morning and then after drug administration at times of 1, 2, 3, 5, 8, and 24
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h. The actual times of drug administration and samplings were recorded for samples taken after

drug administration, whereas the dosing interval recorded for the sample taken before drug intake

was declared by the patient and was therefore subject to an important uncertainty. We chose to

exclude it from the analysis.

5.3 Population PK model

We used a one-compartment model with zero-order absorption and first order elimination to de-

scribe atazanavir concentrations. The parameters of this model are F , the bioavailability, the

volume of distribution of atazanavir V , the absorption duration (Ta) and the elimination rate

constant k. The equation of this model after a single administration is:

g(θ, t) =
FD

TaV k
(1 − e−kh(t))e−k(t−h(t)) (5)

where :

h(t) =















t when t < Ta (6)

Ta when t ≥ Ta

From single dose equations, we derived equations at steady state, where we used a dosing

interval τ of 24 hours until the day of the PK visit. The equation used to fit the model to the data

was therefore:

f(θ, t) =
FD

TaV k

(

(1 − e−kt)1t<Ta
+
e−kτ1t<Ta (1 − e−kTa)e−k(t−Ta)

(1 − e−kτ )

)

(7)

The model was then reparametrized in Ta, V and AUC using AUC = DF
kV . Since atazanavir was

orally administered, only Ta, V/F and AUC were identifiable. The vector θ of the PK parameters

was composed of log(Ta), log(AUC) and log(V/F ). As for the simulation study, concentrations

data were analysed using the nlme funciton of R 2.0. For each PK parameter, we assumed a random

effect modelling inter-subject variability, a random effect modelling intra-subject variability and a

treatment effect. Regarding the error model, we tested a homoscedastic error model, a constant

CV error model and a combined error model.
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5.4 Results

Concentration data of both visits are displayed in figure 5. The best fit and the smallest Akäıke

criterion were obtained for the homoscedastic error model, which was therefore kept for the fi-

nal analysis. When analysing concentration data using the full model, i.e. with estimation of all

treatment effects and all inter and intra-subject variances, the estimated inter-patient variability

on log(V/F ) was inferior to 0.01. We therefore fixed it to zero, which resulted in a better AIC.

In this model, intra-subject variabilities were inferior to 0.01 for log(AUC) and log(Ta). Similarly,

the AIC was better when these two variabilities were fixed to zero. No other variance was inferior

to 0.01 in the resulting model, which was therefore kept as the final model.

A significant effect of comedication with tenofovir was found on log(AUC) (p<10−4) and log(Ta)

(p=0.0019), resulting in a decrease of 1.46 fold of AUC and an increase by 1.45 fold of Ta, re-

spectively, when patients received TFV. We also derived the 90% confidence interval for the three

treatment effects. When taking an equivalence interval of [-0.2 ; 0.2], equivalence between the

two treatment periods is rejected for the three PK parameters, even for log(V/F ), for which no

significant interaction was found. Parameters estimates are displayed in table III with their 90

% confidence intervals. The curves of the population parameters corresponding to the PK of

atazanavir with and without tenofovir are overlayed on the plot of concentrations data of figure 5.

The goodness-of-fit plots (population and individual predicted concentrations versus observed con-

centrations; standardized residuals versus predicted concentrations and versus time) were judged

satisfactory, and are displayed on figure 6.

6 Discussion

This study confirmed that NLMEM are a good and useful approach to test PK interaction or

bioequivalence in cross-over trials. Indeed, the Wald test and the LRT achieved adequate type I

error when taking intra-subject variability into account in the model, and also achieved an adequate

power.

We observed, for comparison tests, that modelling intra-subject variability prevented the under-
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estimation of standard error of the treatment effect, essentially for the original and intermediate

designs. This might be due to a better estimation of the global variability of log(AUC), and

can explain the accuracy of the corresponding type I errors for the Wald test, and also for the

LRT, since it behaved almost exactly like the Wald test in this study. For the sparse design, as

intra-subject variability was estimated close to 0, both methods achieved very similar parameter

estimates, and therefore almost equal type I errors.

As far as regulatory considerations are concerned, the guidelines of the FDA and of the EMEA

recommend to test PK interaction and bioequivalence based on both AUC and Cmax. In this study,

we focused on tests based on log(AUC), but the proposed methods can be extended to log(Cmax).

If log(Cmax) cannot be taken as a component of θ, the delta method can be used to derive the

standard error of log(Cmax), and the corresponding Wald test can therefore be performed.

Our main motivation for this work was to study drug-drug interactions between antiretrovirals used

in HIV-infected patients. Some of these interactions are tested in PK trials performed in healthy

volunteers. However, an important concern is that the pharmacokinetics of antiretroviral drugs

seem to be different in patients, partly because of a modification of absorption characteristics during

HIV-infection [11, 12, 13]. The possibility of performing PK interaction and bioequivalence trials

in patients, requiring a reduced number of samples per subject, is therefore of a great importance.

The application to the test of the interaction of tenofovir on the PK of atazanavir confirmed the

impact of tenofovir on the absorption of atazanavir, more precisely a decrease of the AUC and an

increase of Ta. The mechanism of this drug interaction has not been completely elucidated yet,

but the two major hypothesis are the induction by tenofovir of the human multidrug resistance P-

glycoprotein, which plays a key role in reducing the bioavailability of PIs, and/or a physicochemical

interaction between atazanavir and tenofovir in the gut [10].

Tests based on NLMEM allow both to test PK interaction or lack of interaction while greatly

decreasing the number of samples per patient. This point is of great interest when performing

such trials in patients, for instance in HIV patients, as illustrated here, or in special populations

(children, older patients). Our next step is the design of such PK interaction studies. Since

the expected standard error of the interaction effect can be estimated when taking intra-subject
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variability into account using an extension of PFIM [14], the power of the interaction or lack of

interaction test can be derived and thus the sample size for a given power. We also aim at proposing

an adaptation of the LRT based on non-linear mixed effects models for the case of equivalence.

We thank the Puzzle2 - ANRS 107 study team (investigator: Dr Piketti, pharmacology: Dr

Taburet, methodology: Dr Aboulker), who allowed us to use atazanavir concentrations data of the

PK substudy for modelling purpose.

We thank Pr Stephen Senn, Dr Nicolas Frey and the reviewer for their useful comments.
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Test Estimation of intra- δ

subject variability -0.223 -0.105 0.105 0.223

LRT Yes 0.94 0.36 0.39 0.95
No 0.98 0.40 0.41 0.98

Wald Yes 0.97 0.38 0.41 0.96
No 0.98 0.43 0.43 0.98

Table 1: Power of the comparison tests estimated from 1000 simulated interaction trials under
several alternative hypothesis (δ 6= 0) with corrected thresholds, for the original design (n=12,
J=10).

Test Estimation of intra- δ

subject variability -0.105 0 0.105

Wald Yes 0.75 0.97 0.73
No 0.79 0.99 0.75

Table 2: Power of the Wald test for equivalence estimated from 1000 simulated bioequivalence
trials under several alternative hypothesis (δ 6= −0.223 or 0.223) with corrected thresholds, for the
original design (n=12, J=10).
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Design Estimation of βAUC ψAUC γAUC ωAUC σ a

n J intra- individual Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
variability

12 10 Yes -0.000830 0.0514 -0.0200 0.057 -0.018 0.045 -0.019 0.048 -1.87 16.68 0.75 1.35
No -0.000637 0.0525 -0.0063 0.049 0.100a 0.100a -0.030 0.057 -3.91 16.93 1.18 1.64

24 5 Yes 0.000367 0.0369 -0.0097 0.037 -0.025 0.041 -0.016 0.036 0.87 16.64 0.67 1.13
No 0.000564 0.0371 -0.0023 0.034 0.100a 0.100a -0.026 0.043 -1.72 15.33 1.10 1.42

40 3 Yes -0.000013 0.0317 -0.015 0.033 -0.041 0.087 -0.035 0.045 3.37 20.24 1.18 1.64
No -0.000113 0.0317 -0.015 0.033 0.100a 0.100a -0.038 0.048 -4.87 19.96 1.18 1.57

a Fixed to the true value of γAUC , since γAUC was not estimated.

Table 3: Bias and root mean squared error (RMSE) for treatment effect βAUC , inter- and intra-subject (when applicable) variabilities ψAUC and γAUC ,
total variability ωAUC on log(AUC), residual error σ and variance parameter a from 5000 simulated interaction trials under H0 for the original (n=12,
J=10), intermediate (n=24, J=5) and sparse (n=40, J=3) designs.
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Parameter Paramater estimates 90% CI
log(Ta) 1.32 [1.17;1.48]
βTa

0.306 [0.133;0.441]
log(AUC) 10.7 [10.4;11.0]
βAUC -0.380 [-0.523;-0.241]
log(V/F ) 4.01 [3.67;4.34]
βV/F 0.159 [-0.315;0.632]
ψTa

0.217 [0.121;0.369]
ψAUC 0.492 [0.336;0.749]
ψV/F 0a –
γTa

0a –
γAUC 0a –
γV/F 0.535 [0.355;0.775]
σ (ng/mL) 653.5 [567.7;743.0]
a Fixed to zero.

Table 4: Population PK parameter estimates of atazanavir and 90% confidence interval (CI) ob-
tained with the final model.
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Figure 1: Type I error of comparison tests estimated from 5000 simulated interaction trials under
H0 for different designs with (open symbols) and without (plain symbols) estimation of intra-
subject variability (n : number of subjects per treatment group, J : number of samples per
subject) for the Wald test (squares) and the LRT (circles)
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Figure 2: Estimated standard deviation γAUC of the random effect modelling intra-subject vari-
ability for the three designs for the 5000 simulations of PK interaction cross-over trials under
H0.
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Figure 3: Estimated ratio r (A) and βAUC (B) for the three designs for the 5000 simulations of
PK interaction cross-over trials under H0.
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Figure 4: Type I error of the Wald test for equivalence estimated from 5000 simulated bioe-
quivalence trials under H0 for different designs with (open squares) and without (plain squares)
estimation of intra-subject variability (n : number of subjects per treatment group, J : number of
samples per subject)
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Figure 5: Observed atazanavir concentrations administered without (1) or with (2) tenofovir, and
predicted PK profile for the estimated population parameters without (dotted line) or with (full
line) tenofovir.
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Figure 6: Goodness of fit plots for atazanavir final population PK model: population (A) and
individual (B) predicted concentrations (in ng/mL) versus observed concentrations (in ng/mL),
standardized residuals versus predicted concentrations (in ng/mL) (C) and versus time (in hours)
(D).
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