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Abstract 

Reliable estimation methods for non-linear mixed-effects models are now available and, 

although these models are increasingly used, only a limited number of statistical 

developments for their evaluation have been reported. We develop a criterion and a test to 

evaluate nonlinear mixed-effects models based on the whole predictive distribution. For 

each observation we define the prediction discrepancy (pd) as the percentile of the 

observation in the whole marginal predictive distribution under H0. We propose to 

compute prediction discrepancies using Monte Carlo integration which does not require 

model approximation. If the model is valid, these pd should be uniformly distributed over 

[0, 1] which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on 

a standard population pharmacokinetic model, we compare and show the interest of this 

criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects 

models: standardized prediction errors (spe) which are evaluated using a first order 

approximation of the model. Trends in pd can also be evaluated via several plots to check 

for specific departures from the model. 

 
 
KEY WORDS: model evaluation; population pharmacokinetics; predictive 

distribution; prediction errors. 
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INTRODUCTION 

Nonlinear mixed-effects models in drug development 

 Nonlinear mixed-effects models are increasingly used for population analysis of 

pharmacokinetic or pharmacodynamic longitudinal data, especially during drug 

development (1,2). Several assumptions are needed to build these models: (i) for the 

structural model of the process under study, in most cases nonlinear with respect to the 

parameters, (ii) for the model of the inter-individual variability of the parameters, i.e. 

assumptions regarding the model and distribution of the random effects, (iii) for the 

error model.  The model and estimated population parameters obtained from such 

analyses are now often used for simulation of clinical trials, an area which is also of 

growing importance in drug development (3–5). Providing evidence for the quality of 

the results is important for their use both in the different phases of drug development 

before registration and for dose recommendation for patients in routine clinical 

practice. We therefore fully agree with Yano, Beal and Sheiner who wrote (6): “As 

complex models depend on many assumptions, and their sensitivity to these is not 

immediately apparent, evaluation of such models is attaining new importance”. 

 In this paper, we restrict ourselves to the most popular statistical approach in this 

field: maximum likelihood estimation (MLE) with normality assumption for the 

distribution of the random-effects. Because the model is nonlinear, there is no closed 

form for the likelihood. The first estimation method proposed in the context of 

nonlinear mixed-effects models was the First-Order (FO) method, based on a 

linearisation of the model. There are now several estimation algorithms available (7–

9), implemented in different software (10). Dedicated software, such as NONMEM 

(11), P-Pharm (12) or WinNonMix (Pharsight Corporation, Mountain View, CA), 
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have been developed and more standard statistical packages also provide estimation 

tools, such as the nlme function (9) in Splus  or  the NLMIXED procedure (13) in 

SAS.   

 

Model evaluation, validation, adequacy, assessment, checking, appropriateness, 

performance … 

 There is large statistical literature on model evaluation, especially from Bayesian 

statisticians. It is a complex issue in statistical modelling and it has several 

terminologies. Gelfand (14) started the chapter on model determination in a book on 

Monte Carlo Markov Chains applications by: “Responsible data analysis must address 

the issue of model determination, which consists in two components: model 

assessment or checking and model choice or selection. Since, in practice, apart from 

rare situations, a model specification is never ‘correct’ we must ask (i) is a given 

model adequate? and (ii) within a collection of models under consideration, which is 

the best?” . We focus here on question (i), model adequacy.  

 In 1997, Mentré and Ebelin (15) defined in population pharmacokinetics model 

validation as the assessment of the predictability of the model and estimates for further 

inferences. The same definition is used in the guidance on Population 

Pharmacokinetics of the Food and Drug Administration published in 1999 (16), in 

which there is a section devoted to model validation. Mentré and Ebelin (15) also 

noted that in chapter 6 about model checking in their book published in 1995, Gelman, 

Carlin, Stern and Rubin (17) wrote: “We do not like to ask, ‘Is our model true or false 

’, since probability models in most data analyses will not be perfectly true. The more 

relevant question is, ‘Do the model’s deficiencies have a noticeable effect on the 
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substantive inferences?’”.  

 Yano, Beal and Sheiner proposed to use the term model evaluation as they 

explained in a note in their paper published in 2001 (6): “We use the weaker term 

‘evaluation’ rather than the stronger one ‘validation’, as we believe one cannot truly 

validate a model, except perhaps in the very special case that one can both specify the 

complete set of alternative models that must be excluded and one has sufficient data to 

attain a preset degree of certainty with which these alternatives would be excluded. 

We believe that such cases are rare at best”.  

 Williams and Ette, in 2003, used the term model appropriateness in the title of their 

chapter in the book on Simulation for Designing  Clinical trials (18), of which they 

then defined two different aspects: model evaluation and model validation. In the 

present paper, we rather follow the terminology of Yano, Beal and Sheiner (6), i.e. 

model evaluation, with the definition they gave: “The goal of model evaluation is 

objective assessment of the predictive ability of a model for domain-specific quantities 

of interest, or to determine whether the model deficiencies (the final model is never 

the ‘true model’) have a noticeable effect in substantive inferences.”   

 

Methods of evaluation of nonlinear mixed-effects models 

 Although reliable estimation methods for non-linear mixed-effects models are now 

available, only a limited number of statistical developments for evaluation of the 

results or model checking have been reported in this area (15,6,18). 

 Model evaluation can be done either on the original data set used for estimation 

(usually called internal validation), or, preferably, on a separate data set (usually 

called external validation). For “internal validation” several methods have been 
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proposed: one approach is to randomly split the initial data set, others are to use cross-

validation approaches or bootstrap methods (15,6,18). It is not our purpose here to 

discuss whether random splitting, as proposed by the Food and Drug Administration 

(16), is the most appropriate approach for “internal validation”. This debate is beyond 

the scope of this paper, and has been the subject of more general discussion in the 

statistical literature on model checking, as for instance by Evans (19).  

 Here, we are interested in a criterion to evaluate the “distance” between the 

observed values and the model predictions in order to derive a statistical test of model 

adequacy. Most estimation software in nonlinear mixed-effects models evaluate the 

standardized prediction errors (spe). This criterion is currently the most frequently 

used for model evaluation in this area (18). The standardized predictions errors are 

derived, for each observation, from the mean predicted value and its variance, 

computed using a first-order approximation of the model like in the FO approach. A 

test is then often performed to see whether they follow a normal distribution, an 

assumption also based on the FO linearisation.  

 There have been several papers on the problem of investigating whether a given 

null model H0 is compatible with data, in the situation where the assumed model has 

unknown parameters (20,21). These authors proposed and discussed several p-values 

for what they called composite null models in the frequentist or the Bayesian view. To 

our knowledge they did not address the issue of mixed-effects models. Lange & Ryan 

(22) developed a method to assess normality of random effects in linear mixed effects 

models using empirical cumulative distribution of the empirical Bayes estimates of the 

random effects.  
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Predictive distribution 

 The idea of using the whole predictive distribution for model evaluation has been 

proposed by Gelfand, Det and Chang (23) in a Bayesian framework and is also 

discussed by Gelman, Carlin, Stern and Rubin (17). It has been used for example by 

Best, Tan, Gilks and Spiegelhalter (24) to evaluate the model obtained in a population 

pharmacokinetic analysis in children on two separate data sets. Yano, Beal and 

Sheiner extended the idea to the non-Bayesian setting and defined posterior predictive 

check (PPC) which they applied and evaluated in individual nonlinear regression. 

They proposed three approaches to compute the posterior distribution of the 

parameters estimated through MLE. The simplest approach, which we use also here, is 

to use what they called a “degenerate” distribution: the posterior distribution is 

approximated by a discrete distribution with one location at the maximum likelihood 

estimate. That is to say, the estimation error is not taken into account, which can be 

reasonable in large enough data sets. This approach, based only on the maximum 

likelihood estimates, is called the “plug-in” approach in the papers by Bayarri and 

Berger (20) and Robins, van der Vaart and Ventura (21). 

 In the present paper, we propose a criterion to evaluate the predictability of an 

observation by a model without approximation. This criterion can be viewed as a 

“distance” between an observation and its prediction. It is an extension of the notion 

of residuals or of prediction errors which are the differences between observations and 

fitted or predicted values. We evaluate what we call the “prediction discrepancy” (pd) 

which is defined as the percentile of an observation in the whole marginal predictive 

distribution under H0. This approach has already been applied for the evaluation of the 
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population pharmacokinetic analysis of an anti-histaminic drug during its development 

after random splitting of the original data set with 2/3 of the patients for model 

building and 1/3 for model evaluation (25). In that study, a nonparametric estimation 

method was used (26) and the estimated distribution was discrete; there was therefore 

a closed form for the evaluation of the prediction discrepancies. In the more usual case 

of parametric MLE methods which we consider here, we propose to calculate the 

prediction discrepancies by Monte-Carlo integration.This approach has been 

successfully applied to detect the differences of the pharmacokinetics of S1, an oral 

anticancer agent, in Western and Japanese patients using NONMEM (27).  

 The method is described in details in the next section. Because the distribution of 

pd is uniform U[0,1] under H0, a Kolmogorov-Smirnov (KS) test can be used to test 

model adequacy. In the following section, we illustrate the use of pd in the context of 

a basic population pharmacokinetic model and we evaluate by simulation the type I 

error and the power of the proposed test for a number of alternative hypotheses. We 

also compare the performances of the tests based on pd to those based on spe.  

 

METHODS 

Model 

 Let yi be the ni-vector of observations observed in individual i (i=1,…, N). We 

assume that there is a known function f describing the non-linear structural model and 

that the error model is additive. The individual regression model is then given by yi = 

f(θi, ξi) + εi, where  is the nT
ini1 )t,...,(t

i
=iξ i-vector of sampling times for individual i, 

θi is the p-vector of individual parameters and εi is the ni -vector of random errors with 

εi ~ N(0, Σi(θi)). Σi(θi) are assumed to be ni × ni -diagonal matrices.  
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 The model for the variance of the residual error of the jth observation of individual i 

is  assumed to be given by a known function h which may depend on θi but also on 

additional variance parameters σ  and β: var(εij) = σ2 h(tij, θi, β). If a constant error 

model is assumed, the function h is equal to one and σ2 is the variance of the residual 

error. If a constant coefficient of variation error model is assumed, h is equal to f2 and 

σ is the coefficient of variation. In these two cases there is no additional variance 

parameter β, but more complex error models can be used.   

 As usual, εi | θi, i=1,…, N, are assumed to be independent from one individual to the 

other, and for each individual, εi  and θi  are also independent. The model for inter-

individual variability of the parameters involves individual vectors of random effects, 

bi, and a vector μ of fixed effects. The individual parameters are modelled either by 

θi = μ + bi , for an additive random-effects model, or by θi  = μ exp( bi), for an 

exponential random-effects model. It is assumed that bi ~ N( 0, Ω), with Ω  defined as 

a p×p- matrix, where each diagonal element ωkk represents the variance of the kth 

component of the random effects vector.  

 

Predictive Distribution 

 We assume that the population model and the population parameters, 

μ, diag(Ω), σ, β, are given and that they define the null model H0. We want to evaluate 

the predictive distribution of the observations in an individual i. Assuming that the 

population parameters were obtained by maximum likelihood, we consider here only 

the point estimates and discard the estimation error as in the plug-in approach defined 

by Bayarri and Berger (20) and Robbins, van der Vaart and Ventura (21). For each 
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vector of observation yi, given the associated experimental design ξi, the model and 

the population parameters, we can compute the associated predictive distribution pi(y), 

defined as: 

∫i (y)p iii )dθp(θ)θp(y= .                                                       (1) 

Because of the assumptions on the error model, p(y | θi) is normal with mean f(θi , ξi) 

and variance Σi(θi) = diag(σ2 h(tij, θi, β)). When the structural model is nonlinear, there 

is no analytical expression for the integral in pi(y). This is a well known fact which has 

prompted the first-order approximations proposed for maximum likelihood estimation 

in that case.  

 We propose to approximate the distribution pi(y) by a discrete distribution, by 

stochastic simulation of K values of bk in N(0, Ω) and to evaluate θk with the 

appropriate model. The predictive distribution can then be estimated by Monte Carlo 

integration, and approximated  by a mixture of K normal distributions with weights 

1/K, means f(θk, ξi) and variances Σi(θk):  

( )kiik ,)θ(Σ),ξ,θf(;∑∑
==

==
K

1k

K

1k
ki y

K
1)θyp(

K
1)y(p φ                           (2) 

where φ(x; μ, Ω) is the multivariate normal density function with mean μ and variance 

Ω evaluated at x. This expression does not use a linearisation of the structural model 

but uses instead stochastic integration using random samples from the normal 

distribution, and K can be chosen large enough to provide a good approximation. 

 

Prediction Discrepancy 

 We use the full predictive distribution to define the prediction discrepancy for the 

jth observation of individual I, pdij. Let Fij be the cumulative distribution function of 

the predictive distribution pi(yij) given in Eq. (1). The prediction discrepancy is 
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defined by the evaluation of Fij at yij, and is given by:  

.dy)dθp(θ)θp(y iii)(yFpd ijy

ijijij ∫ ∫==     (3) 

pdij is the percentile of the observation yij in the marginal distribution of the 

observations under H0.  If the model and population parameters are correct, these 

prediction discrepancies should follow a uniform distribution over [0, 1]. This well 

known result on the cumulative distribution function is always true under H0 and does 

not require any approximation.  

 The prediction discrepancies can be evaluated by stochastic integration using a 

random sample of values θk as in Eq. (2). Then Fij (yij) is evaluated by: 

∑∫
=

K

1k
k

y
)dy.θyp(

K
1 ij

∫ ∑
=

==
y K

1k
kijij )dyθp(y

K
1)(yF ij

         (4) 

Because of the error model, it can also be expressed as: 

( )kij
2

ij β),θ,h(tσ),t∑
=

==
K

1k
kijijijij ,f(θ;yΦ

K
1)(yFpd ,                       (5) 

where Φ(x; μ, ω) is the cumulative density function of a univariate normal distribution 

with mean μ and variance ω evaluated at x. If the model f has an analytical expression, 

pdij in Eq. (5) can be easily evaluated by any statistical package in which Φ is 

available. 

 

Standardized Prediction Error 

 Prediction errors for each individual are usually derived using a first order 

linearisation of the model, as in the FO estimation methods (15, 17, 16). Indeed, after 

linearisation, the predictive distribution can be obtained analytically. For instance, the 

linearisation in the case of additive random-effects model yields: 
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 .εb
b

)ξ ,f(
iiT

i +)ξ ,f(ε)ξ ,bf(y iiiii +≈++=
μ

∂
∂μμ                         (6)  

Because of this approximation, the predictive distribution is normal with mean: 

),ξ ,f()E(y ii μ≈                                                                                      (7) 

 and variance Vi: 

 ).() ,(' μΣ
b
ξ

i
i +

∂
μ

'
) ,( Ω

b
ξV i

i ≈
∂

∂
μ∂ ff

      (8) 

Then, for a given observation yij, the prediction error is defined as peij = yij -E(yij), 

where E(yij) is given in Eq. (7). The standardized prediction error is defined, in most 

software, as  

 speij = (yij-E(yij))/SD(yij)                                                 (9) 

where SD(yij) is the square-root of the jth diagonal element of the variance Vi given in 

Eq. (8). In NONMEM, the full predicted variance Vi can be used to evaluate the 

“uncorrelated” vector of standardised prediction errors,  

 spei = Vi
-1/2{yi -E(yi)}.        (10) 

This approach provides uncorrelated components speij within an individual i, only if 

the normality of the predictive distribution, which is based on the linearisation, is 

assumed to be valid.  

 Under H0 and based on the first-order approximation, the speij should have a normal 

distribution with mean 0 and variance 1. It is however known that the linearisation 

around the mean is poor if the model is highly nonlinear or if the inter-patient 

variability is large, and then the distribution of speij under  H0 is no longer normal.  

 

 

Tests 
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 We use the theoretical distributions under H0 of prediction discrepancies and 

standardized prediction errors to provide a test of H0 for a given data set of N 

individuals. The idea is to test whether the prediction discrepancies follow a uniform 

U[0,1]  distribution and whether the standardized prediction errors follow a normal 

N(0,1) distribution. Several useful diagnostic plots that were defined for speij can 

easily be applied also for pdij: quantile-quantile plots; histograms; plots of pd versus 

predicted mean concentrations or versus time. 

 A problem arises, when analysing real datasets, for the implementation of  

statistical tests to evaluate whether there is departure from the distributional 

assumption under H0. Indeed, if all observations yij were independent, then all 

prediction discrepancies or errors would be independent and we could use the one-

sample Kolmogorov-Smirnov (KS) test to evaluate the departure from the expected 

distribution under H0. However, in most cases there are several observations within 

one individual, which are only independent given the individual random effects but 

not marginally. In that case the prediction discrepancies and the prediction errors 

(computed as in Eq. (9)) within an individual are not independent. When using 

NONMEM with the prediction errors computed as in Eq. (10) and assuming the first-

order approximation is valid as in a linear mixed-effects model, then they can be 

assumed independent within individuals and this problem no longer holds. These 

correlations within individuals invalidate the previous distributional tests (both on pd 

or spe) because these tests assume a set of independent realisations. The KS test then 

might not be of the expected size, with a wrong type I error.  

 Correlations are often forgotten when validation is performed using speij (15,6). To 

circumvent that problem we propose two approaches. The first one is to apply the test 
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on only one randomly chosen observation per individual, but obviously this leads to 

loss of power because all observations are not used for model evaluation. The other 

approach is to use a Monte Carlo simulation under H0 to define an empirical threshold 

for the test in order to get the chosen type I error. This is of course a computer-

intensive approach.  

 

 

EVALUATION BY SIMULATION 

Model 

 The basic pharmacostatistical model used for the evaluation by simulation is 

similar to the one in Mentré and Gomeni (12). A one compartment pharmacokinetic 

model with first-order absorption is assumed, corresponding to the following equation: 

   ).e(e
)

V
CL

tkt
V

CL
a−−

−
V(k

Dk
t)f(θ(

a

a

−
=                                                    (11) 

It involves three pharmacokinetic parameters ka, the rate-constant of absorption, Cl, 

the oral clearance of elimination, and V, the oral volume of distribution. The dose D is 

fixed to 10. Exponential random effects are assumed for these three parameters and the 

error model variance is a constant coefficient of variation model, i.e. the variance of 

the error is proportional to the square of the prediction: h(t, θ, β) = f2(θ , t). 

 For the basic model, i.e. under the null hypothesis, the following values are used.  

The fixed effects are 5, 5 and 2 for ka, Cl and V, respectively. A coefficient of 

variation of 30% for interpatient variability is assumed, which corresponds to a 

variance of 0.09 for the distribution of the logarithm of the parameters. The coefficient 

of variation of the error model is 15% which corresponds to σ2 = 0.0225.  
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 Six sampling times are defined: 0.05, 0.15, 0.3, 0.6, 1 and 1.4 after dose 

administration. We simulated two types of data sets both with a total number of 300 

observations. In the first case (Case I), simulated data sets are composed of N = 300 

patients with only n = 1 observation at a sampling time randomly chosen among the 

six defined sampling times. In the second case (Case II), simulated data sets are 

composed of N = 100 patients with n = 3 observations at sampling times chosen 

randomly (without replacement within one individual) among the 6. The first case is 

not very realistic and is interesting only because there is no correlation between the 

observations. The second case is closer to real-life data and is used to evaluate the 

methods when there are correlations. We evaluate two approaches to handle the 

repeated observations within individuals in Case II: in Case IIa, all 300 observations 

are kept and an empirical threshold is computed; in Case IIb only one observation per 

individual is used, randomly chosen among the three available, which leads to a total 

of only 100 observations for model evaluation. 

 

Simulation Setting 

 Data sets are simulated under H0 with the basic model and parameters described 

above, and under several alternative hypotheses with modified parameters and/or 

models. For each alternative hypothesis studied, 1 000 datasets for Case I and 1 000 

sets for Case II are simulated. Each set is simulated as follows. First, random effects 

are sampled from a normal distribution and individual parameters are derived. Second, 

sampling times are randomly chosen and predicted concentrations are calculated from 

the model. Third, concentrations are simulated by multiplying the predicted 

concentration by 1 + ε, where ε is a random sample of a zero-mean normal distribution 
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with variance σ2. Fig. 1 displays a typical set of pseudo-observed concentrations for 

the basic model with the prediction for the mean parameters overlaid.  

 In a first stage, simulations are performed under H0 to evaluate the type I error and 

to determine the empirical thresholds to be used in the evaluation of the power. The 

empirical threshold, for a given simulation, is defined as the 95% percentile of the KS 

distances under H0, i.e. the 950th value once the 1 000 KS distances are ordered. 

 In a second stage, data sets are generated under alternative assumptions 

corresponding to the same models but with successive changes in the value of the 

parameters. First, each fixed effect is separately multiplied or divided by two (6 

cases). Second, the coefficient of variation of each random effect is separately 

multiplied or divided by two and then all together (8 cases). Third, the error 

coefficient of variation is multiplied or divided by two (2 cases). Thus we define a 

total of 16 alternative hypotheses based only on numerical modifications of the 

population parameters. The first group of simulations with changes on the fixed effects 

are mostly performed to check the approaches and their implementation. Indeed, such 

important changes in fixed effects can usually be seen visually and do not need such 

complex tests for which we expect a good power. We are indeed more interested in the 

other groups of simulations under H1, where change are made on the variances or on 

the model (see below), because these changes are more difficult to check visually.   

 In a third stage, we assume an alternative pharmacokinetic model. We simulate data 

under a two-compartment model with first order absorption. The parameters of this 

model are chosen in order to be close to the one compartment model. We also chose 

typical values for Cl, V, and ka and variabilities for these parameters similar to those 

from the basic model. The two inter-compartmental rate constants, k12 and k21, are 
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fixed respectively to 2.1 and 2.4, without inter-patient variability. The two mean rate 

constants λ1 and λ2 are then respectively 6 and 1, compared to the mean elimination 

rate constant of 2.5 (k = Cl/V) in the one-compartment model.  

 In the fourth and last stage, we assume that the distribution of the random effects 

for Cl is a mixture of two normal distributions. More precisely, the distribution for 

log(Cl) under the null hypothesis is N(1.6; 0.09). The alternative distribution is a 

mixture of the same distribution N(1.6; 0.09) with a weight of  0.75  and of  N(2.2; 

0.0225) with a weight of 0.25. This intends to mimic a validation set where one fourth 

of the patients would come from a different population. 

 

Evaluation method 

 The simulated sets are considered as validation sets and the null assumption is the 

basic model with the basic population parameters μ, Ω, σ. In a real-life analysis, these 

“basic” parameters could have been for instance those estimated on a separate data set 

(in the case of external validation) or on the same data set (in the case of internal 

validation). As already mentioned we do not take into account the estimation error in 

our predictive distribution, so that we do not need to perform estimation on the 

simulated datasets to evaluate the statistical properties of the prediction criteria.  

 The method proposed to evaluate prediction discrepancies given in Eq. (5), with 

K =10 000 Monte Carlo samples, is applied to each observation of a simulated set 

using the basic values for the population parameters. Similarly, the standardized 

prediction error for each observation of a simulated set is evaluated as in Eq. (9) using 

the analytical expression of the derivatives of the model. In order to get similar 

distributional assumptions for testing pd and spe, the latter are transformed using the 
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normal cumulative density function Φ. More precisely, Φ(spe) are evaluated and, 

under the assumption that spe follow a N(0,1) distribution, Φ(spe) follow a U(0, 1) 

distribution.  

 A KS test for a U(0,1) distribution is then applied on the samples of pd or spe 

evaluated from the pseudo-observations of each simulated set. The distance limit of 

this test for 300 observations (Cases I and IIa) and a type I error of 0.05 is 0.078.  For 

100 observations (Case IIb) the distance limit is 0.136.  

 

Numerical Implementation 

 All computations were done on a Sun Ultra1 Workstation. The procedures used in 

this paper were implemented in the Pascal programming language. The pseudorandom 

generator is that of Sun Pascal Compiler 4.2 release, for Solaris 5.1.1. The algorithm 

for generating normally distributed numbers is the routine named « gasdev » in 

Numerical Recipes. Descriptive statistical analyses were performed in SAS 8.1. 

 

Results 

Type I error 

 The type I errors evaluated on the 1000 replications for cases I (N=300, n=1), IIa 

(N=100, n=3) and IIb (N=100, n=1) are reported in Table I for both evaluation criteria 

(spe and pd). For spe, they are 25.3 % , 34.7 % and 11 % for cases I, IIa and IIb 

respectively, values that are much greater than the nominal 5% level. The increase of 

type I errors for spe in the two cases (I and IIb) when there is no correlation between 

observations is wholly attributable to the first-order approximation of the model. The 

highest type I error is observed for case IIa can also be explained by the correlation 
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within individuals. With the method implemented in NONMEM (as in Eq. (10)) to 

evaluate uncorrelated WRES, the type I error would have been closer to those of the 

two other case. This method is, however, not evaluated here because, first it is only 

implemented in NONMEM and not in other statistical packages, and, second the main 

limitation of using spe is already apparent with independent observations (cases I and 

IIb)  

 Interestingly, for the prediction discrepancies in cases I and IIb (i.e., in the absence 

of correlation in the observations) the empirical type I errors are close to 5 %: 3.8 % 

and 5.8 %, respectively. We anticipated this good behavior because no approximation 

is made in pd evaluation. There is however an increase in the type I error to 10.9% in 

the case of correlated observations within individuals (case IIa), but the type I error 

still remains much lower than for spe. Fig. 2 displays several goodness-of-fit plots for 

spe and pd for one simulated set under the null hypothesis in case IIb.  

 

Power  

 The empirical thresholds of the KS tests estimated from the 1 000 simulations 

under H0 are used for the evaluation of the power of the tests under several 

alternatives. They are .098, .111, .153 for spe in cases I, IIa and IIb respectively and 

.076, .088, .139 for pd.  

 The powers of the tests for the several alternatives are given in Table I. It can be 

seen that the power to detect a systematic deviation on the fixed-effect parameters 

(multiplied or divided by two) is, as expected, very high (greater than 99 %) for V and 

Cl regardless of the case and method used. The power is slightly lower for ka probably 

because of the experimental design where only few samples during the absorption 
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phase are available.   

 For all the alternative assumptions based on changes in the variability of the 

parameters or of the error, it can be seen that the power using spe is consistently lower 

than when using pd, and the loss is sometimes important, especially in case IIa. For 

instance, for increased variability on Cl or V in case IIa, the power is respectively 36.6 

and 52.4 % for spe versus 75.8 % and 87.3 % for pd. This is partly due to the fact that 

the empirical threshold used in order to maintain a type I error of 5% is greater for spe 

than for pd. In general, the powers of tests based on pd to detect increased variability 

on Cl and V are satisfactory, except for case IIb where the loss of power compared to 

case I, and even to case IIa with a corrected threshold, is obvious and is due to the 

decrease of the number of samples. We note that the power to detect a decrease of 

variability for Cl or V is lower than for an increase of variability. This may be a 

consequence of the low variability assumed here, 30%, which is then reduced to 15%. 

However, when the variability changes for all three parameters (multiplied or divided 

by two), the power is again close to 100% for both methods. Fig. 3 displays the same 

goodness-of-fit plots than Fig. 2, but one simulated set of case IIa where variability on 

Cl is multiplied by two. These plots illustrate the use of pd also graphically without 

formal testing. 

 The power to detect changes in the variability on ka is smaller than for V and Cl, 

and again this could be explained by the experimental design. The power to detect 

changes in the variance of the residual error is lower than for the changes on the 

variability of the random effects, and again is much smaller when it is divided by two 

than when it is multiplied by two. It is also lower for spe compared to pd.  

 The last two lines of Table I report the power for changes not in the parameters 
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values but in the population model itself. First, a two-compartment model is simulated 

instead of a one-compartment model. The power for cases I and IIa is high, greater 

than 90%, although the alternative hypothesis is chosen to be not too far from the null. 

It is interesting to notice that this is the only case where spe have similar (or even 

greater) power than pd. Fig. 4 displays the goodness-of-fit plots for spe and pd for one 

simulated set in case IIa with a two-compartment model. It can be seen in the graph of 

box-plot of errors versus time, a clear trend towards smaller errors for times just after 

the peak (0.3, 0.6) and larger errors for later times (1.4). The last alternative 

assumption is when Cl is distributed as a mixture on the validation set and the power 

is again very high, except for case IIb where the total number of observations is only 

one third that of cases I and IIa. 

 

 

DISCUSSION 

 We develop a criterion and a test for nonlinear mixed-effects model evaluation 

based on prediction discrepancies. The evaluation of these discrepancies by Monte 

Carlo integration, that is to say based on simulated samples from the distribution of the 

random effects, is not difficult, especially if the structural model f has an analytical 

solution. For more complex models, the pd in Eq. (3) can also be evaluated using the 

simulated capacities of the estimation software as for instance in NONMEM. In that 

case, K sets of observations with the same design features as the validation set are 

simulated under the null population model. Then, for each observation, its percentile 

on the sample of simulated observations is evaluated, and it is an estimate of the 

associated pd.  This method was used by Comets et al (27) in a recent application of 
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the use of prediction discrepancies for comparison of real pharmacokinetic data 

obtained in two different populations of patients.  

 We do not incorporate covariates in the method section and in the simulations, but 

it is straightforward to extend the method to models with additional fixed effects 

quantifying the relationship between parameters and individual covariates zi. In the 

evaluation of the predictive distribution, the observed value zi of each individual is 

then used. 

 To test a null model H0 using pd, we propose to use a KS test to check for 

departures from a U[0, 1] distribution. We evaluate that test and compare its 

performance to a test based on spe in a simulation study. In the simulation study, we 

mimic the case where the validation data set is a separate data set and not the one used 

for model development and for parameter estimation. Therefore no estimation is 

performed during the simulation because the null model H0 was given, and only 

validation sets are simulated. We also illustrate that prediction discrepancies can be 

used in graphs to visually assess the distance between model and data (similarly to 

graphsfor residuals or for errors) without testing formally model’s correctness as 

suggested by Gelman (28). These diagnostic plots can help to detect where the model 

may fail. 

 The simulations under H0 have shown, for validation sets with independent 

observations, a type I error close to the nominal level for the test based on pd. Using 

spe the type I error is greatly increased (25.3 % in Case I), which can be only 

explained by the poor statistical property of this criterion which uses a linearisation of 

the model.  We do find an increased type I error, for both pd and spe, in the more usual 

case where there are repeated measurements within individuals (Case II.a), but less for 
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pd (10.9 %) than for spe (34.7 %). The increased type I error is the result of the 

correlation between the errors within one individual, which invalidates the assumption 

of the KS test, and appears for both criteria since it is not related to model linearisation 

but to the distributional test itself. In this paper, we propose to solve that problem of 

repeated observations by using an empirical threshold estimated using a Monte Carlo 

simulation under H0, a procedure that can be rather cumbersome. 

 The simulations show the satisfactory power of the proposed approach, for a 

validation sample of a total of 300 observations, to detect departure from H0 either in 

the parameter values or in the model assumptions. It is interesting to note that the 

power is satisfactory in the case when there is only one observation per individual but 

in 300 patients (Case I). The power is much lower when only one third of the 

observations are used (case IIb). The power for spe is lower than for pd, and this could 

be simply a consequence of using a higher threshold for spe because of the increased 

type I error under H0. Consequently, even though pd may be more complex to evaluate 

than spe, the use of the latter not only implies to always estimate an empirical 

threshold, but also leads to a lower power.  

 The main limitation of the proposed approach based on pd is that it does not take 

into account the correlation within individuals with repeated observations, which are 

the most usual cases in population PK. We did not perform simulations for a richer 

design with for instance 10 samples per individual, because the problem is already 

apparent with 3 observations per individual and it would have been even bigger. We 

did not computed uncorrelated spe as proposed in NONMEM, because spe showed 

rather poor properties even for only one observation per patient. It is fair to note that 

for Case II.a, doing a test based on uncorrelated spe as in NONMEM would have lead 
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to a better Type I error than the one with standard spe as evaluated here. The tests 

could have performed better, in that case, than using pd. We propose here to use 

empirical thresholds, but we think that other statistical developments are needed. One 

idea would be to use a rather similar approach than in NONMEM, in order to obtain 

uncorrelated pseudo-observations in each patient. Using K simulated data sets under 

the null model, the expected variance matrix for each vector of observation of an 

individual could be empirically estimated without linearisation. Then using a Cholesky 

decomposition as in Eq. (10), uncorrelated vector of pseudo-observations could be 

derived. These vectors would have independent observations within one individual. 

Then, for each pseudo-observation a pd could be computed using the predictive 

distribution of the pseudo-observation instead of the predictive distribution of the real 

observation. This method should be implemented and evaluated. It could then be 

compared to spe as computed in NONMEM where the evaluation of the mean and 

variance are based on a linearization of the model.  

 We can also suggest a model evaluation “strategy” based on pd in order to try to 

avoid the computer intensive estimation of the empirical threshold in the present form 

of the test. In a first step, the KS test is performed with only one sample per individual 

randomly chosen in the validation set. If there is a significant departure from H0, the 

model is rejected and no correction of the threshold is needed because there is no 

correlation between pd. If it is not rejected, then, in a second step, the approach should 

be applied to all observations, to avoid a lack of power of the previous test, using then 

a Monte Carlo p-value approach. 

 It should be noted that the null hypothesis in all the proposed approaches is that the 

model is correct, so that we can only invalidate a model when we reject H0. When H0 
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is not rejected, it can always be due to a lack of power because for instance of a poor 

design in the set used for ‘evaluation’. It is for instance illustrated here with a small 

power to detect changes in ka. There is a strong link between design and model 

evaluation: for instance a linear model is only valid for a given range of doses. 

Therefore, as H0  is never accepted, ‘Absence of evidence is not evidence of absence’, 

a model will never be significantly correct with these methods. Approaches based on 

the idea of equivalence testing could perhaps be developed, in which the alternative 

hypothesis would be that the observations are close enough to the model.  

 There are several similarities between the proposed criterion, i.e. prediction 

discrepancy, and the approach proposed by Yano, Beal and Sheiner (6). They also 

used random samples of the parameters to do Monte Carlo integration for evaluation 

of posterior predictive checks (PPC). The cumulative distribution of the predictive 

distribution for one observed statistic was also evaluated. Here we restrict ourselves to 

the observations themselves, which would correspond to a two-sided PPC. Like us, 

Yano Beal and Sheiner used a KS test (6). Other tests of distributional assumptions 

could be used like the Anderson and Darling test or the Cramer van Mises test, which 

would perhaps have greater power (29). There are also similarities with the approach 

proposed by Lange and Ryan (22) who tested the distributional assumption of the 

random effects in linear mixed-effects models by comparing the expected and 

empirical cumulative distribution functions of the random effects. They used weighted 

empirical cumulative distribution functions of linear combinations of random effects 

and they adjusted the covariance to take into account both the correlation within 

individuals and the estimation of the unknown parameters. This idea could perhaps be 

extended to empirical cumulative distribution functions on observations, as done here, 
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in order to try to take account correlations within individuals. Again, the nonlinearity 

of the model makes it not straightforward to apply.  

 The present work concerns the evaluation of a composite null model where the 

parameters are unknown and have been estimated by MLE. As recalled in the 

introduction, we do not evaluate an exact predictive distribution. As in the plug-in 

approaches (20,21), the posterior distribution of the parameters is assumed to be 

located only at the MLE which is the simplest approach in this framework. This 

limitation is the same for errors based on pd or on spe but is perhaps not major. 

Indeed, in their evaluation by simulation of PPC in individual nonlinear regression, 

Yano, Beal and Sheiner (6) showed that this approach to evaluate the posterior 

distribution in the maximum likelihood framework was “as good as either of the 

others” and that the test was conservative. Also, Bayarri and Berger (20) pointed out 

the fact that the criterion mostly used by Bayesian statisticians, which is based on the 

full posterior predictive distribution, makes somehow a “double use” of the data. They 

concluded their paper by suggesting that, in practice, p-values based on this plug-in 

approach seem preferable over those based on the posterior predictive distribution, 

even though they may be conservative. This explains why both they and Robins, van 

der Vaart and Ventura (21) proposed, compared and evaluated new criteria based on 

partial predictive, conditional predictive or conditional plug-in distributions, which we 

do not study here.  

 The problem of how model evaluation should be performed when there is not 

clearly an external dataset is not clear. Prediction discrepancies can be evaluated either 

on observations used for model building and estimation or on separate observations. 

We believe that it is preferable to randomly split the data to perform model evaluation 
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on data not used for model building. This is the approach we mimic in our simulation 

study. Evans (19) recommends that approach and proposes that the validation set be 

randomly chosen as 25% of the total data set. In the FDA guidance, random splitting is 

also suggested (16).  

  All these discussion points confirm that model evaluation is a difficult task 

which depends of the objective of the analysis. The best way to conclude may be to 

quote McCullag and Nelder who wrote in the introduction of their book on 

Generalized Linear Models in 1989 (30): “Modelling in science remains, partly at 

least, an art. A first principle is that all models are wrong; some, though, are more 

useful than others and we should seek those. A second principle (which applies also to 

artists!) is not to fall in love with one model to the exclusion of alternatives. A third 

principle recommends thorough checks on the fit of a model to the data. Such 

diagnostic procedures are not yet fully formalised, and perhaps never will be. Some 

imagination or introspection is required in order to determine the aspects of the model 

that are most important and most suspect.”  We think that that prediction discrepancies 

as developed here could be helpful in these diagnostics steps and are a good 

alternative to usual standardized prediction errors.   
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 Table I. Type I error and power under several alternative assumptions (in %) of the 

KS test for standard prediction errors (spe) and for prediction discrepancies (pd) 

evaluated on 1000 simulated data sets under the 3 studied cases with various 

number of individuals (N) and number of samples per individual (n). 

 
Assumptions Case I (N=300, n=1) Case II (N=100) 

   Case IIa (n=3) Case IIb (n=1) 

       spe pd   spe pd spe pd 

H0 25.3 3.8 34.7 10.9 11.0 5.8 

       

V × 2 100 100 100 100 100 100 

Cl × 2 100 100 100 100 100 100 

ka × 2 98.7 99.7 93.6 98.8 54.4 69.3 

V / 2 100 100 100 100 96.2 99.0 

Cl / 2 100 100 100 100 100 100 

ka  / 2 100 100 100 100 94.4 96.5 

       

CVv × 2 54.7 91.3 36.6 75.8 20.4 33.8 

CVCl × 2 73.2 97.3 52.4 87.3 23.0 40.1 

CV ka × 2 18.6 42.1 10.5 28.6 10.2 11.9 

All CV × 2 100 100 99.8 100 85.1 96.6 

CVv / 2 14.2 21.5 7.6 15.4 4.3 5.1 

CVCl / 2 37.7 53.6 15.6 32.5 10.7 11.5 

CVka / 2 8.8 9.0 6.1 6.8 4.8 3.6 

All CV / 2 100 100 100 100 78.6 85.0 

CVε × 2 25.1 59.2 15.5 38.8 10.5 16.8 

CVε / 2 7.7 8.2 4.7 8.7 3.3 4.8 

       

2cp model 99.8 99.7 96.9 93.1 77.1 71.3 

Cl mixture 96.8 98.0 85.9 98.1 58.8 30.9 
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Figure captions 

 

Fig. 1. Typical data set containing 300 simulated pseudo-observed concentrations and 

mean-predicted concentrations for the basic model, in case IIa (N=100, n=3). 

 

Fig. 2. Goodness-of-fit plots under H0, for standardized prediction errors (top) or for 

prediction discrepancies (bottom), for one simulation in case IIa (N=100, n=3). Left: 

quantile-quantile plot for a uniform distribution; middle: histograms of errors; right: box 

plots of the 50 errors at each sampling time versus time.  

 

Fig. 3. Goodness-of-fit plots under the alternative assumption that the variability of Cl is 

multiplied by two, for standardized prediction errors (top) or prediction discrepancies 

(bottom), for one simulation in case IIa (N=100, n=3) (see legend of Fig. 2 for more 

details). 

 

Fig. 4. Goodness-of-fit plots under the alternative assumption that the pharmacokinetic 

model is a two-compartment model, for standardized prediction errors (top) or prediction 

discrepancies (bottom), for one simulation in case IIa (N=100, n=3) (see legend of Fig. 2 

for more details).   
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