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Abstract  

 

In nonlinear mixed-effects models, estimation methods based on a linearization of the 

likelihood are widely used although they have several methodological drawbacks. Kuhn 

and Lavielle (2005) developed an estimation method which combines the SAEM 

(Stochastic Approximation EM) algorithm, with a MCMC (Markov Chain Monte Carlo) 

procedure for maximum likelihood estimation in nonlinear mixed-effects models without 

linearization. This method is implemented in the Matlab software MONOLIX which is 

available at http://www.math.u-psud.fr/~lavielle/monolix/logiciels. In this paper we apply 

MONOLIX to the analysis of the pharmacokinetics of saquinavir, a protease inhibitor, 

from concentrations measured after single dose administration in 100 HIV patients, 

some with advance disease. We also illustrate how to use MONOLIX to build the 

covariate model using the Bayesian Information Criterion. Saquinavir oral clearance 

(CL/F) was estimated to be 1.26 L/h and to increase with body mass index, the inter-

patient variability for CL/F being 120%. Several methodological developments are 

ongoing to extend SAEM which is a very promising estimation method for population 

pharmacockinetic / pharmacodynamic analyses.   
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Introduction 

Population pharmacokinetics (PK) and pharmacodynamics are increasingly 

performed in drug development and for therapeutic drug monitoring. They are based on 

nonlinear mixed-effects models (NLMEM) and the most popular software in that area is 

NONMEM which was developed by Lewis Sheiner and Stuart Beal (1). In these mixed-

effects models, the problem is that the individual random effects are not observed and 

should be treated as missing data. The usual statistical approach is to integrate them 

out of the joint distribution of the response and the random effects in order to allow 

maximum likelihood estimation. However, for models that are nonlinear with respect to 

the parameters, this integral does not in general have a closed form expression and the 

first ideas was to used first-order approximations. The First-Order (FO) method was 

developed in NONMEM in 1977 (2). The first order conditional estimation method 

(FOCE) was arguably the most significant parametric method to emerge after. Davidian 

and Giltinan (3) explained in detail the technical differences between the various FOCE 

approaches as well as their implementation in various software applications and more 

recent complex approximations. These methods based on an approximated model are 

not true maximum likelihood estimation methods, so that all the nice statistical 

properties of maximum likelihood estimators are not true although they are applied in 

practice, e.g. standard errors derived from the Fisher information matrix, confidence 

intervals based on normality of the estimators, likelihood ratio test for nested models 

and Akaike criterion for model comparisons.  Also, inconsistency of the FOCE 

estimators was demonstrated when the number of subjects increases with a  fixed 

number of observations per subject (4, 5), although it was shown that it was not that 

bad when the residual error variance is "small" compare to the inter-individual 

variability (6). 
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The EM algorithm was first proposed and developed for problems with missing 

data. These are two-step algorithms: the E-step for conditional expectation of the 

needed statistics for the complete data likelihood given the observed data, and the M-

step for maximum likelihood of the complete data (7). They were applied to linear 

mixed-effects models considering the random effects as the missing data (8). However, 

again because of the nonlinear structural model, there was no clear extension of the 

EM algorithm to NLMEM except with approximation during the E-step (9).  

The Bayesian approach fro NLMEM was the first to use computer intensive 

procedures based on Markov Chain Monte Carlo (MCMC) techniques in order to 

propose a solution without approximation. As new and much more rapid software and 

statistical developments became available, interest grew.  

In the maximum likelihood framework, Wei and Tanner (10), Walker (11) and 

Wu (12, 13) propose a Monte Carlo EM (MCEM) where the intractable E-step of EM is 

approximated with an empirical average based on simulated data. Unfortunately, 

MCEM is very time-consuming in computation since it requires a huge amount of 

simulated data. Alternatively, Delyon et al. (14) introduced a stochastic approximation 

version of EM (SAEM), which is more efficient in terms of computation. The stochastic 

approximation method achieves an approximation to the E-step by computing a 

weighted average of the approximation in the current iteration and the ones from all the 

previous iterations. Delyon et al. (14) show that this method converges to the maximum 

likelihood estimate under very general conditions. 

 

Kuhn and Lavielle (15) develop for NLMEM an algorithm which combined the 

SAEM (stochastic approximation version of EM) algorithm (14), with a Markov Chain 

Monte Carlo procedure. They showed the good statistical convergence properties of 

this algorithm. They showed that it is also possible to obtain an approximation of the 
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Fisher information matrix. Then, the inverse of this estimated Fisher information matrix 

provides an estimate of the variance of the maximum likelihood estimator.  

Model selection using AIC and/or BIC and hypothesis testing using the log-

likelihood ratio test (LRT) require the computation of the likelihood of the observations 

under the various models tested. The likelihood however is particularly complex and 

has no close form for nonlinear models. It is accurately estimated by Monte-Carlo 

approaches, using an importance sampling method to reduce the variance of the 

estimation. 

Lavielle developed in 2005 the software MONOLIX which implements this 

algorithm for maximum likelihood estimation in NLMEM without linearization. This 

Matlab software is available at http://www.math.u-psud.fr/~lavielle/monolix/logiciels. 

The objective of this software is to perform: 1) parameter estimation by computing the 

maximum likelihood estimator of the parameters without any approximation of the 

model (linearization, quadrature approximation...) and standard errors for the maximum 

likelihood estimator; 2) model selection by comparing several models using some 

information criteria (AIC, BIC), or testing hypotheses using the Likelihood Ratio Test, or 

testing parameters using the Wald Test; 3) goodness of fit plots; 4) data simulation. 

Because of the absence of linearization in the estimation method, the results are true 

maximum likelihood estimates for which all the statistical properties applied. 

 Saquinavir (SQV) is a protease inhibitor used in treatment of HIV patients. As 

for all protease inhibitors, there is a large PK inter-patient variability. To study more 

specifically the sources of the large inter-patient  PK variability, a specific mono-centric 

trial was performed in patients which received a single dose of saquinavir (16). In order 

to get large variability of the covariates in the studied sample, patients from three 

different groups were included (see Methods).  
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The objectives of the present study were to apply and illustrate MONOLIX on a 

real data set, to estimate the population pharmacokinetic parameter of saquinavir in 

HIV patients in a global population analysis and to test the effects of several covariates 

on saquinavir pharmacokinetics. These data have been previously analyzed with a 

population approach using P-Pharm (9) but with a separate analysis in each group of 

patients, the relationship with covariates being in a second step performed on the 

Empirical Bayes estimates (EBE) of the individual parameters. The same statistical 

model was used with MONOLIX but a preliminary analysis of the data with another 

software is of course not necessary.  

The aim of this paper is not to compare MONOLIX and the SAEM algorithm 

with other existing estimation methods but to show with a real and rather difficult PK 

example that maximum likelihood estimation and model selection is possible with this 

algorithm. Indeed, comparison of estimation methods should be done mainly on 

simulated data where the true answer is known. A blind simulation study comparing 

several software on simulated PK or PD data has been performed by Girard and 

Mentré and presented in 2005 (17); this study showed the very good estimation results 

of SAEM.  

 

 

Methods 

Data 

Concentration data were obtained after single administration of 600 mg of SQV-

HCV alone after a breakfast including 200 ml of grapefruit juice to enhance SQV 

absorption,  in 100 HIV patients who never received protease inhibitor before (16). 

Each patient had three samples collected in 3 periods:  0 to 1.5 h, 2 to 4 h, and 5 to 12 

h. There were a total of 240 concentrations.  Concentrations were assayed by 
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( ; ) ( ; )ij ij i ij i ijy f x g x

radioimmunoassay. The trial design and evaluation biological measurement are more 

detailed in (16). Three groups of patient were enrolled in this prospective trial:  i) 

asymptomatic patients, ii) AIDS symptomatic subjects without diarrhea, iii) AIDS 

symptomatic subjects with diarrhea, but we did not take into account this group effect 

here. Indeed, we focused our study to the estimation of the parameters and the 

selection of the covariate model. 

Eleven covariates were recorded: gender, age, Body Mass Index (BMI), 

creatinine clearance (CLCR) estimated from serum creatinine using the Cokcroft and 

Gault formula, diarrhea (yes/no), mean weight of stools per 24 h, plasma albumine, 

xylose, lactulose/mannitol ratio (L/M), alkaline phosphate level  (APL) and CD4 count. 

Xylose and L/M were obtained as described in (16) to evaluate intestinal absorption 

and permeability, respectively.  

 

Statistical Modelling 

The nonlinear mixed effects model was defined as  

ϕ ϕ ε= + 2~ (0, )ij Nε     ;   σ

i i iA

 

where f is the parametric function of the structural model, g is the parametric function 

for the error model, yij is the jth observation in the ith subject, φI is the p-dimensional  

vector of model parameters for the ith subject, xij are the design variables for the jth 

observation in the ith subject, εij is the residual error for the jth observation, in the ith 

subject and σ2  is the  variance of the residual unidentified variability. In most cases g=f, 

i.e. a proportional error model, or g=1, i.e. an additive error model. 

The random effect and covariate model was defined as  

( )φ μ η= +    ,    
. .
~ 0,  i i i d

Nη Ω ,    i=1, …, N, 
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iAwhere  is the covariate (or design) matrix for the ith subject and assumed to be 

known, μ  is a d-vector of fixed population parameters, iη  is a  p-vector of random 

effects, Ω is the pxp  variance-covariance matrix of the random effect parameters. The 

unknown set of parameters of the model is ( )2, ,θ μ σ= Ω  which is of size P. 

As in [16], a one compartment model with first order absorption after a time-lag was 

used to model saquinavir pharmacokinetics: 

( )( , ; , , , ) exp ( ) exp ( )f D t V Cl ka Tlag t Tlag ka t Tlag
V ka Cl V

+ +D ka Cl× ⎡ ⎤= − − − − −⎜ ⎟
⎛ ⎞

⎢ ⎥× − ⎝ ⎠⎣ ⎦

max(0, )a a+ =

( ),1 ii N j n≤ ≤ ≤

 

where D = 600 mg is the dose and t the time, and where . The design 

variables are  xij = (Di , tij ) (cf remarques ci dessus).Because lognormally distributed 

random effects for each PK parameter (V/F, CL/F, ka and Tlag) was assumed, the 

vector of Gaussian individual parameters φi was composed of  the logarithm of V/F, 

CL/F, ka and Tlag. Two models for the variance of the residual error were tested (g=1 

and g=f). 

 

SAEM algorithm 

We are in a classical framework of incomplete data: the observed data 

is , whereas the random effects, ,1ijy y= ≤ ( ),1i i Nφ φ= ≤ ≤ , are the 

non observed data. Our purpose is to compute the maximum likelihood estimator of θ 

by maximizing the likelihood of the observations ( ),y θl

( )

. 

In the case of a nonlinear function f, the E-step of the standard EM algorithm, 

that consists in computing ( ( ) )( )E log , ; | ;k
k ky yQ pθ φ θ θ= , cannot be performed in a 

closed-form. The SAEM (Stochastic Approximation version of EM algorithm), proposed 
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( )k

by Delyon et al. (14) consists in replacing the usual E-step of EM by a stochastic 

procedure (see Kuhn and Lavielle (15) and the user’s guide of MONOLIX for more 

details on SAEM). At iteration k, SAEM consists in three steps:  

• Simulation-step: draw φ  from the conditional distribution ( )1. ; kp y θ − .  

( )• Stochastic approximation-step : update kQ θ  according to  

(( ) ( ) ( ) ( ))( )
1 1log , ;k

k k k kQ Q p y Qθ θ γ φ θ θ− −= + −

)k

 

   where (γ  is a decreasing sequence of positive numbers.  

( )maxk kArg Qθ• Maximization-step : update kθ  according to    θ θ=   

  For NLMEM, the Simulation-step cannot be performed directly because 

( )1. ; kp y θ −  cannot be found explicitly. To deal with this problem, Kuhn and Lavielle 

(15) propose to combine this algorithm with a MCMC (Markov chain Monte Carlo) 

procedure.  The Hastings-Metropolis algorithm used in MONOLIX combines several 

proposal distributions: the marginal distributions ( )1 1~ ,  i i k kN Aφ μ − −Ω
. .i i d

and the 

symmetric Gaussian distributions  ( )( 1)

. .
~ ,  k

i ii i d
Nφ φ − Γ where  Γ is a diagonal matrix such 

that the probability of acceptance is about 0.3. 

It is recommended to set 1kγ =  for 1 k K≤ ≤  and 
1

kγ =
k K−

 for k K   (the 

default value in MONOLIX is K=500). Indeed, the initial guess of 

1≥ +

θ  may be far from the 

maximum likelihood value we are looking for and the first K iterations with 1kγ =  allow 

the method to converge quickly to a neighborhood of a maximum of the likelihood. 

Then, smaller step sizes ensure the almost sure convergence of the algorithm to this 

maximum. We combine this stochastic algorithm in MONOLIX with a Simulated 
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( ,1)k

Annealing procedure in order to avoid local maxima and converge to the global 

maximum likelihood estimator. 

 It is possible to slightly improve the results by running L Markov chains instead 

of only one (in MONOLIX, the default value is L=3). The Simulation-step then requires 

to draw L sequences φ , …,  at iteration k and to combine stochastic 

approximation and Monte Carlo in the Stochastic approximation-step: 

( , )k Lφ

( ) ( ) ( ) ( )( , )
1 1

1

log , ;k l
k k k k

l

Q Q p y Q
L
1 L

θ γ φ θ θ− −
=

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑  θ

The complete log-likelihood can be written 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

1

log , ; log 2 log log
2 2 2

1 1                        

tot tot

N
T ij

n Np N np y

y f
A A

,

2

2
1 ,

log( ( ; ))

;
2 2 ( ; )

ij i
i j

ij i
i i i i

i i j ij i

g x

x
g x

φ θ π

φ μ φ μ−

+
= − − Ω − −

−
− − Ω − −∑ ∑

σ φ

φ
σ φ=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

1

N

tot i
i

n n
=

= ∑

 

where  is the total number of observations. If we consider a diagonal 

covariance matrix  Ω, , the Stochastic Approximation-step consists in updating the 

sufficient statistics of the complete model as follows: 

( )( )
, 1 ; 1,2,...,k

i i ks i Nγ φ− −− =

( ) ( )
1 1

N Tk k
kc c cγ φ φ− −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑

( ) 2( )
1 1

,

; k
k k k ij ij i k

i j

r r y f x rγ φ− −

⎛ ⎞
⎡ ⎤= + − −⎜ ⎟⎣ ⎦⎝ ⎠

∑

, , 1i k i k ks s= +  

   
1

k k k i i
i=
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( )Here, si,k  is a p-vector that approximates 1| ;i kE yφ θ −

T
i i

i

E φ φ⎜ ⎟∑

( ) 2

1
,

; | ;ij ij i k
i j

E y f x yφ θ −

⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦
⎝ ⎠
∑

,  ck  is a p x p-matrix that 

approximates  and r1| ; ky θ −
⎛ ⎞

⎝ ⎠
,k is a scalar that approximates 

. 

Then, kθ  is obtained in the Maximization-step as follows: 

1N N
T T ,

1 1
k i i i i k

i i

A A A sμ
−

⎛ ⎞= ∑ ∑
= =

⎜ ⎟
⎝ ⎠

, 

 ( ) ( ) ( ) ( ), ,
1 1 1

1 N N N
T TT

k k i k i k i k i k i k i k
i i i

Diag c A s s A A A
N

μ μ μ μ
= = =

⎧ ⎫⎛ ⎞Ω = − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∑ ∑ , 

 2 k
k

tot

r
n

σ = , 

where Diag(A) is the diagonal matrix formed with the diagonal elements of A.  

It is also possible to obtain an estimation of the Fisher information matrix using 

the Louis’ missing information principle (18, 15). This estimated Fisher information 

matrix converges to the true unknown observed Fisher information matrix when the 

number of iterations increases (see (15) for more details).The inverse of this 

information matrix provides an estimate of the variance of the maximum likelihood 

estimator and the standard errors are obtained without any approximation of the model. 

These standard errors can be used to perform directly a Wald test, for instance for the 

fixed-effects of covariates (19).  

The likelihood is estimated by Importance Sampling also without any 

approximation of the model (15). Then, the likelihood ratio test can be used for testing 

the significance of a covariate in the model. For the test of a variance component to 0, 
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the asymptotic distribution of the likelihood ratio test under the null hypothesis is an 

even mixture of two chi-square distributions with 0 and 1 degree of freedom (20). 

Individual estimates of the parameters are provided by MONOLIX as the mean 

of their posterior distribution. The standard deviations of this posterior distribution, i.e. 

the standard errors of these individual estimates are also provided.  

  

Model Building 

There is no real consensus on the way to do model building in population 

pharmacokinetics (21). We used an approach based on a full population analysis. 

First an univariate analysis was performed using SAEM with the test of each 

covariate on each individual parameter using both a Wald test and a LRT test. Second, 

all population models with all combinations of covariates found significant in the 

univariate analysis were fitted and the best ones were chosen according to the 

Bayesian Information Criteria. This model selection procedure is decomposed in two 

stages: i) for a given dimension of the model, that is for a given number of covariates, 

select the model with the greatest likelihood (or several models if their likelihoods are 

very close), ii) compare these best models using an information criteria (we used BIC) 

for selecting the dimension of the final model.  

Third we tested using both a Wald test and a LRT whether each covariate that 

remained in the final model was significant and we looked at the change in interpatient 

and residual variability when this covariate was included or not.  

 

 

Results 

Observed concentrations of saquinavir are displayed Figure 1. Without any 

covariate in the model, the best error model was an homoscedastic additive error 
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model as in Trout et al. (16). The Wald test and the LRT test also led us to keep 

random effects on all the parameters. SAEM as implemented in MONOLIX was able to 

estimate the four fixed effects and the variance of the four random effects with good 

precision. As in Trout et al. (16), the inter-patient variability was found to be very large 

especially for CL/F and V/F with coefficient of variations (CV), approximated as the 

standard deviation of η, of 127% and 176%, respectively. We then fit the eleven 

models with only one covariate in the model: in the univariate analysis, the Wald test 

and the LRT always agreed and six covariates were found to be significantly 

associated with CL/F (Table 1): BMI (p=0.0024), diarrhea (p=0.0027), CD4 count 

(p=0.014), creatinine clearance (p=0.021), lactose/mannitol ratio (p=0.033) and xylose 

(p=0.037). All these covariates are highly correlated and in Trout et al. (16), in the 

analysis of log(AUC), only BMI and log(xylose) were found to remain significant.  

We then estimated with SAEM all the models with several of these six 

covariates (Table I). The lowest BIC was found for model 4 with only the covariate BMI 

which was positively associated with CL/F and with a change in BIC compared to the 

basic model with no covariate of 3.82 which can be considered as an important 

improvement (22). The second best model, model 6, had the effect of diarrhea 

decreasing CL/F and had a slightly higher BIC (change of 3.47). All models with two or 

more covariates had higher BIC and some of these models with BMI and/or diarrhea as 

a covariate are displayed in Table I. The best model with two covariates was with both 

BMI and diarrhea (model 14) but with a change of BIC from the basic model of only 1.1 

and the Wald test for diarrhea was no longer significant. When BMI (diarrhea 

respectively) was incorporated in the model the inter-patient variability on CL/F 

dropped only to 119% (118% respectively) and inter-patient variability on V/F dropped 

to 156% (157% respectively). Because the model with BMI and the model with diarrhea 
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had very closed BIC we chose that to present the results of those two models. The 

choice of a final model between model 4 and model 6 depends on the purpose of the 

model building. The distribution of BMI conditionally to diarrhea is displayed Figure 2. 

We see that these two covariates are strongly negatively correlated: the BMI mean 

(SD) is 22.47 (0.42) in the group without diarrhea and 18.16 (0.80) in the group with 

diarrhea (p-value = 6 10-6).  

The estimated parameters of these two models are given in Table II, and the 

standard errors of estimation were good even for all the inter-patient variances. The 

standard deviations of the residual error were 9.24 ng/ml (model 4) and 9.26 ng/ml  

(model 6) which is rather small compared to the range of observed concentrations.  

The increase (respectively decrease) of individual estimated values of log(CL/F) 

and of the corresponding random effect with BMI (respectively diarrhea) in the fitted 

model without covariate is displayed Figure 3. The model for CL/F without covariate is 

log(CL/F)=μCL/F+bCL/F with μCL/F=0.23, then the left-hand and right-hand sides of this 

figure are identical, up to a shift on the y-axis of μCL/F=0.23. These relationships 

obtained with model 4 (BMI as a single covariate) are displayed Figure 4. The 

relationship between log(CL/F) and BMI is well described with the linear model as no 

relationship remained between the individual random effects and BMI.  Also, the means 

of log(CL/F) in the groups with and without diarrhea are significantly different but not 

the means of the individual random effects, which show that the model with BMI 

captures the diarrhea effect. Similar results obtained with model 6 (diarrhea as a single 

covariate) are displayed Figure 5, but it can be seen that with this model the BMI effect 

is not totally explained by diarrhea as some  relationship between individual random 

effects and BMI remained. 
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Several goodness of fit plots are displayed in Figure 6 and illustrate the quality 

of model 4 with BMI. Very similar goodness of fit plots are obtained with diarrhea 

instead of BMI. 

An example of the convergence of the SAEM algorithm for model 4 with BMI 

from rather poor estimate is displayed on Figure 7. In this example, the total number of 

iterations is 2000 decomposed into K=1000 iterations with γk = 1 and 1000 iterations 

with γk = 1/(k-1000). We used L = 5 independent Markov chains. Using these 

parameters, the computing time of the SAEM algorithm is about 1 minute on a labtop 

with a 1.6 GHz processor. A logarithmic scale is used for the x-axis to show that SAEM 

converges in very few iterations to a neighborhood of the maximum likelihood estimate 

when the stepsize γk = 1. The default values proposed in Monolix (L=3, K=300) are 

convenient for estimating roughly the parameters of the model, but not large enough in 

this example to compute accurate estimations of the standard errors and of the 

likelihood of the model.  

 

 

Discussion  

The results found on the population PK of saquinavir in this sample of patients 

are in accordance to those of the previous analysis (16), although we used here a 

different approach. Indeed we analyzed all the patients together and covariate model 

building was not based on individual estimates but on full population models at each 

step. We found that CL/F increased with BMI, or decreased with the presence of 

diarrhea which can be explained by a higher bioavailability of saquinavir in patients with 

severe body loss or diarrhea, although no effect was found of V/F. The physiological 

reasons have been discussed deeply by Trout et al. (16). The enhancement in 
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g( ) log( )totL P n

saquinavir bioavailability could be due to the destruction of the transporters in 

enterocytes and/or to the enlargement of their tight junctions, allowing a paracellular 

crossing of saquinavir as the illness spreads. It should be noted that in this analysis, by 

construction of the three groups of inclusion, a third of the patient had severe body loss 

and/or diarrhea. The inter-patient variability of saquinavir was very high for V/F and 

CL/F even in the final models with BMI and/or diarrhea taken into account. 

 We defined the best error model based on the Bayesian Information Criteria 

which is usually defined in the literature (23) as 2lo− +

2 log( ) 2

, where L is the 

likelihood, ntot the total number of observations and P the total number of parameters to 

be estimated in the model. This choice is quite arbitrary and several other information 

criteria could be used. First, there is a discussion of which size should enter in the 

penalty function since BIC is a consistent criteria when the number of patients N 

increases. Thus, for testing the inclusion of covariates, the total number of patients N 

might be more appropriate than the total number of observations ntot in the penalization 

term of BIC. The Akaike Information Criteria (AIC) defined as L P− + is also 

very popular, but it is not consistent and usually overfits the model. AICc is a second 

order bias correction version of AIC defined as AICc = AIC + 2P(P+1)/(N-P+1) and that 

should be used instead of AIC when N is small (see 24 for more details). In AICc we 

use N for the correction but, as for BIC, it is not clear whether N or ntot should be chose. 

These four different information criteria are displayed Figure 8 as a function of the 

number of covariates in the model with, for each number of covariate, the best model. 

We see that the model with the lowest BIC was the same with the two penalties (ntot or 

N) and includes only one covariate while the model with the lowest AIC and the lowest 

AICc includes three covariates (model 23). This model has an effect of CD4, BMI and 

diarrhea, but with the Wald test none of these three covariates are significant, 
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illustrating the overfit described for model bulding based on AIC. A more complete 

analysis of these criteria is beyond the scope of this paper. 

There is no real consensus on the strategy to perform model building in 

population PK/PD analysis and the number of models to evaluate could be quite large. 

For instance here there are four PK parameters and eleven covariates that were 

tested. We did a first screening of the covariate using the Wald test which had here 

similar results as the LRT. Further developments on covariate model building in 

nonlinear mixed effects models should be done and of course model selection depends 

of the purpose of the model. 

 One main feature of the SAEM algorithm is that it does not need an 

approximation of the likelihood. It is a stochastic extension of the EM algorithm. 

MONOLIX, which implements SAEM also provide an estimation of the likelihood and of 

the Fisher information matrix without linearization of the model so that both LRT and 

Wald test are more reliable then with estimation methods based on approximation of 

the likelihood.  Similarly, the full posterior distribution of the random effects is computed 

and the EBE are defined as the mean of this distribution. MONOLIX also provides 

standard error on the EBE. Automatic and optimal choice of the parameters of the 

SAEM algorithm  (number of iterations, sequence γk, number of chains…) is a rather 

difficult problem. The default values proposed in MONOLIX 1.1 (L = 3, K = 300) were 

convenient for estimating roughly the parameters of the model but were not large 

enough to compute accurate estimations of the standard errors and of the likelihood of 

the model. It should be noted that this analysis presents a challenging problem in term 

of estimation, because the number of observations per individual (at most three) is 

smaller than the number of parameters in the PK model (four) and there is also a very 

large inter-patient variability. 
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Several extension of MONOLIX are under developments. First for models 

defined as ordinary differential equation we proposed to use a numerical procedure 

based on local linearization (25) to speed up the algorithm compared to standard 

Runge-Kutta numerical approximation methods (26). We are working on a version of 

MONOLIX that could handle left-censored data, as for instance concentration below 

the limit of quantification. Indeed these data can be considered as missing data and 

SAEM can be extended using the fact that they are additional missing data to the 

random effects. We are also working on the incorporation of a third level of variability to 

model for instance variability between occasions.  

We also proposed to use MONOLIX in population design evaluation, for 

estimation of the expected information matrix without linearization (27) as an extension 

of PFIM based on a first-order linearization (28). A very large data set under the 

proposed design is simulated and then fitted with SAEM. The estimated information 

matrix from that fit is close to the expected information matrix and can easily be scaled 

to the number of patients that was initially scheduled.  

In conclusion, as results of population PK/PD analyses are increasingly used for  

designing new trials, for instance trough clinical trial simulation, new methods without 

approximation of the likelihood that provides more reliable estimates and standard 

errors are needed. In the maximum likelihood framework extension to the EM 

algorithms have been proposed to that end (29). MONOLIX implements SAEM in 

Matlab and is a free software available at http://www.math.u-psud.fr/~lavielle. It is 

based on a thorough statistical theory (14, 15) and several statistical developments are 

ongoing. MONOLIX is a fast and efficient algorithm as illustrated in this real example 

with a sparse design and large inter-patient variability.   

 

 

H
A

L author m
anuscript    inserm

-00156907, version 1



 
 

 19

Acknowledgments 

We thank Dr H. Trout and Pr J.F. Bergmann, Lariboisière Hospital, Paris, for the 

access to the data of the PK trial on saquinavir. MONOLIX software is developed by 

Marc Lavielle based on joint theoretical and applied works with several members of the 

MONOLIX Group (www.math.u-psud.fr/~lavielle/monolix). MONOLIX group is animated 

by Marc Lavielle and France Mentré. MONOLIX software is free and is protected by the 

terms of the GNU General Public License. 

 

 

References   

(1) S. L. Beal, L. B. Sheiner. The NONMEM System. Amer Statist 1980; 34:118-119. 

(2) L. B. Sheiner, B. Rosenberg, V. V. Marathe. Estimation of population characteristics 

of pharmacokinetic parameters from routine clinical data. J Pharmacokinet 

Biopharm 1977; 5:445-479. 

(3) M. Davidian, D. M. Giltinan. Non linear models for repeated measurement data: an 

overview and update. J Agric Biol Environ Stat 2003; 8:387-419. 

(4) R. Q. Ramos, S. G. Pantula.  Estimation of nonlinear random coefficient models. 

Statist Probab Letter 1995; 24: 49-56.  

(5) E. F. Vonesh. A note on the use of Laplace's approximation for nonlinear mixed-

effects models Biometrika, 1996; 83:447-52. 

(6) H.  Ko, M. Davidian. Correcting for measurement error in individual-level covariates 

in nonlinear mixed effect models. Biometrics 2000; 56:368-75. 

(7) A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from incomplete data 

via the EM algorithm. J R Stat Soc Ser B Stat Methodol 1977; 1:1-38. 

H
A

L author m
anuscript    inserm

-00156907, version 1



 
 

 20

(8) M. J. Lindstrom, D. M. Bates. Newton-Raphson and EM algorithms for linear mixed-

effects models for repeated-measures data. J Am Stat Assoc 1988; 83:1014-

1022. 

(9) F. Mentré, R. Gomeni. A two-step algorithm for estimation on non-linear mixed-

effects with an evaluation in population pharmacokinetics. J Biopharm Stat 

1995; 5:141-158. 

 (10)  G. C. Wei, M. Z. Tanner MA. Applications of multiple imputation to the analysis of 

censored regression data. Biometrics 1991; 47:1297-1309.  

(11)  G. Walker. An EM algorithm for non-linear random effects models. Biometrics 

1996; 52:934-944.. 

(12) L. Wu. A joint model for nonlinear mixed-effects models with censoring and 

covariates measured with error, with application to AIDS studies. J Amer Statist 

Assoc 2002; 97: 955-964. 

(13) L. Wu. Exact and approximate inferences for nonlinear mixed-effects models with 

missing covariates. J Amer Statist Assoc 2004; 99: 700-709. 

(14) B. Delyon, M. Lavielle, E. Moulines. Convergence os a stochastic approximation 

version of the EM procedure. Ann Stat 1999; 27:94-128. 

(15)  E. Kuhn, M. Lavielle. Maximum likelihood estimation in nonlinear mixed effects 

models. Comput Statist Data Anal 2005; 49:1020-1038. 

(16) H. Trout, F. Mentré, X. Panhard, A. Kodjo, L. Escaut, P. Pernet, J.G. Gobert, D. 

Vittecoq, A.L. Knellwolf, C. Caulin and J.F. Bergmann. Enhanced saquinavir 

exposure in HIV1-infected patients with diarrhea and/or wasting syndrome. 

Antimicrob Agents Chemother 2004; 48: 538-545.  

(17) P. Girard, F. Mentré. A comparison of estimation methods in nonlinear mixed 

effects models using a blind analysis. PAGE 14 2005; Abstr 834 [www.page-

meeting.org/?abstract=834].

 

H
A

L author m
anuscript    inserm

-00156907, version 1



 
 

 21

(18) T. A. Louis. Finding the observed information matrix when using EM algorithm. J R 

Stat Soc B, 1982; 44:226-233.  

(19) K. G. Kowalski, M. M. Hutmacher. Efficient screening of covariates in population 

models using Wald's approximation to the likelihood ratio test. J Pharmacokinet 

Pharmacodyn 2001; 28:253-275.  

(20) D. O. Stram, J. W. Lee. Variance components testing in the longitudinal mixed 

effects model. Biometrics 1994 ; 50(4):1171-1177. Erratum in: Biometrics 1995; 

51(3):1196.  

(21) E. N. Jonsson, M. O. Karlsson. Automated covariate model building within 

NONMEM. Pharm Res 1998; 15:1463-1468.  

(22)  R.E. Kass, A.E. Raftery. Bayes factors. J Am Stat Assoc 1995; 90:773-795. 

(23) G. Verbeke, G. Molenberghs. Linear mixed effect models for longitudinal data. 

New York: Springer, 2004.  

(24)   K. P. Burnham, D. R. Anderson. Multimodel Inference: Understanding AIC and 

BIC in model selection. Sociological Methods & Research 2004; 33: 261-304. 

(25) J. I. Ramos. Linearized methods for ordinary differential equations. Appl Math 

Comput 1999; 104: 109-129. 

(26)  A. Samson, X. Panhard, M. Lavielle, F. Mentré. Generalisation of the SAEM 

algorithm to nonlinear mixed effects model defined by differential equations: 

application to HIV viral dynamic models. PAGE 14 2005; Abstr 716 [www.page 

meeting.org/?abstract=716] 

(27) S. Retout, E. Comets, A. Samson, F. Mentré. Designs in nonlinear mixed effects 

models: application to HIV viral load decrease with evaluation, optimization and 

determination of the power of the test of a treatment effect. PAGE 14 2005; 

Abstr 775 [www.page-meeting.org/?abstract=775] 

(28) S. Retout, F. Mentré. Optimization of individual and population designs using 

Splus. J Pharmacokinet Pharmacodyn 2003; 30:417-443.  

H
A

L author m
anuscript    inserm

-00156907, version 1



 
 

 22

(29) G. C. Pillai GC, F. Mentré F, J. L.Steimer. Non-linear mixed effects modeling - 

from methodology and software development to driving implementation in drug 

development science. J Pharmacokinet Pharmacodyn. 2005; 32:161-183. 

H
A

L author m
anuscript    inserm

-00156907, version 1



 
 

 23

 
Table I: For the basic model and several models with one, two or three covariates 

on log(CL/F): Log-likelihood (LL), BIC and estimated fixed effects (β) of the 

covariates with the corresponding p-value of the Wald test  

Model Cov 1 Cov 2 Cov 3 LL BIC β1 pval1 β2 pval2 β3 pval3

1    -1241.48 2482.96       

2 Sex   -1240.85 
       
2487.18 0.416 0.2651     

3 Age   -1240.82 
       
2487.12 -0.013 0.4475     

4* BMI   -1236.83 
       
2479.14 0.107 0.0024     

5 CLCR   -1239.61 
       
2484.70 0.013 0.0211     

6* Diarrhea   -1237.00 
       
2479.48 -0.982 0.0027     

7 CD4   -1238.40 
       
2482.28 0.002 0.0144     

8 Xylose   -1239.95 
       
2485.38 0.599 0.0367     

9 L/M   -1240.05 
       
2485.58 -4.677 0.0326     

10 St. weight   -1240.61 
       
2486.70 -0.001 0.2333     

11 APL   -1239.98 
       
2485.44 -0.001 0.1606     

12 Albumine   -1240.13 
       
2485.74 0.029 0.1590     

13 CLCR BMI  -1236.13 
       
2483.22 0.007 0.2124 0.093 0.0097   

14 Diarrhea BMI  -1235.14 
       
2481.24 -0.677 0.0590 0.078 0.0368   

15 CD4 BMI  -1236.28 
       
2483.52 0.001 0.0875 0.093 0.0090   

16 Xylose BMI  -1236.28 
       
2483.52 0.360 0.2178 0.095 0.0131   

17 L/M BMI  -1236.30 
       
2483.56 -2.263 0.2940 0.099 0.0076   

18 CLCR Diarrhea  -1235.39 
       
2481.74 0.010 0.0873 0.897 0.0076   

19 CD4 Diarrhea  -1235.53 
       
2482.02 0.001 0.0986 -0.820 0.0155   

20 Xylose Diarrhea  -1236.74 
       
2484.44 0.274 0.3482 -0.845 0.0180   

21 L/M Diarrhea  -1237.16 
       
2485.28 -2.524 0.2961 -0.830 0.0295   

22 CLCR BMI Diarrhea -1234.28 
       
2485.00 0.006 0.2692 0.062 0.1129 -0.625 0.0773 

23 CD4 BMI Diarrhea -1233.82 
       
2484.08 0.001 0.1694 0.069 0.0603 -0.537 0.1321 

24 CLCR CD4 Diarrhea -1234.80 
       
2486.04 0.009 0.1220 -0.001 0.1280 -0.716 0.0382 

25 CLCR BMI CD4 -1235.42 
       
2487.28 0.007 0.2440 0.077 0.0394 0.001 0.0845 
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* The two models with the smallest BICTable II: Estimated population 

pharmacokinetic parameters of saquinavir with the two final models 

 Model 4 Model 6 
 Estimate SE (CV %) Estimate SE (CV %) 

 exp(μCL/F) in L/h 1.26 0.19 (15%) 1.25 0.18 (15%) 

βBMI_CL/F* 0.11 0.04 (33%) 
(p-value = 0.0024) 

  

βDIARRHEA_CL/F*   -0.98 0.33 (33%) 
(p-value = 0.0027) 

exp(μV/F) in L 0.86 0.22  (26%) 0,96 0.24 (25%) 

exp(μka) in h-1 0.58 0.05 (9%) 0.61 0,05 (8%) 

exp(μTlag) in h 1.13 0.12 (11%) 1.12 0.12 (12%) 

ωCL/F
2 1.41 0.30 (22%) 1.38 0.29 (21%) 

ωV/F
2 2.43 0.65 (27%) 2.45 0.60 (24%) 

ωka
2 0.22 0.07 (29%) 0.17 0.05 (28%) 

ωTlag
2 0.51 0.13 (25%) 0.53 0.12 (23%) 

σ2   in (ng/ml)2 85.3 12.5 (15%) 85.7 12.8 (15%) 
 
*Effect on log(CL/F)
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Figure 1:  Observed individual concentrations (in ng/ml) of saquinavir  
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Figure 2: Distribution of BMI conditionally to diarrhea 
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Figure 3:  For model 1 fitted without any covariate, relationships between 

individual log(CL/F) and BMI (top left), individual random effects for log(CL/F) 

and BMI (top right), individual log(CL/F) and diarrhea (bottom left),  individual 

random effects for log(CL/F) and diarrhea (bottom right). 
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Figure 4:  For model 4 fitted with the covariate BMI on log(CL/F), relationships 

between individual log(CL/F) and BMI (top left), individual random effects for 

log(CL/F) and BMI (top right), individual log(CL/F) and diarrhea (bottom left),  

individual random effects for log(CL/F) and diarrhea (bottom right). 
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Figure 5:  For model 6 fitted with the covariate diarrhea on log(CL/F), 

relationships between individual log(CL/F) and BMI (top left), individual random 

effects for log(CL/F) and BMI (top right), individual log(CL/F) and diarrhea 

(bottom left),  individual random effects for log(CL/F) and diarrhea (bottom right). 
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Figure 6:  Goodness of fit plots for model 4 (BMI on CL/F). Top: observations 

versus predictions (in ng/ml), with on left population prediction and on right 

individual predictions; bottom: residuals versus time, with on left population 

residuals and on right individual residuals 
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Figure 7: Example of convergence of SAEM with model 4 from poor initial 
estimates 
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Figure 8:  Four different Information criteria for selecting between 0 and 6 

covariates: BIC using the total number of observations in the penalization term 

(BICN), BIC using the number of individuals in the penalization term (BICntot), AIC 

and corrected AIC (AICc).  
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