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Analyzing electrocardiographic signals (ECG) includes not only inspection of P, 

QRS and T waves, but also the causal relations they have and the temporal sequences they 
build within long observation periods. In fact, the spatio-temporal patterns must be described 
through shape features as well as complete time occurrence distributions in order to match the 
observed data with the underlying processes. It has been demonstrated recently that in depth 
knowledge can be qualitatively modeled by means of anatomofunctional decompositions [1] 
and can be used to simulate complex phenomena (i.e., reentry, block, etc.) and to provide a 
real understanding of their behavior at different abstraction levels. However, the on-line 
examination of ECG recordings can only be carried out if the relations between data events 
and the model are available. In other words, signal processing techniques must feed the model 
with accurately estimated features to discard the non relevant interpretations. This task is 
difficult to achieve because of the composite nature of the ECG (i.e., a combination of signal 
and noise) and its non stationary behavior. These characteristics motivated the approach we 
de-scribe, which makes use of wavelet transforms (WT) or time scale representations. These 
new tools have already been applied in ECG analysis for enhancing late potentials [2-3], 
reducing noise [4], and QRS detection [5]. In this article, we limit our study to recognizing 
normal and abnormal beats, and assume that a prior segmentation has been performed. It 
differs from previous work by addressing four main questions: 1) what is the most appropriate 
WT to use? 2) what are the most relevant features for efficient encoding of cardiac patterns? 3) 

what decomposition levels must be retained? 4) does WT improve the recognition process?  
The first issue is critical in all application areas. There is no theoretical answer at the 
moment, and the only technique at our disposal is to compare the results provided by several 
wavelet families. Questions 2 and 3 have been examined by considering two stages:  
(a) a characterization phase based on a principal component analysis (PCA) [6], which allows 
us to jointly represent and interpret the objects (i.e., the cardiac complexes) and the 
descriptive variables;  and (b) a discrimination step by means of a linear discriminant analysis 
(LDA) [7]. This last stage leads us to identify the variables capable of separating the patterns, 
the objective being to derive the most discriminant decomposition levels. A supervised 
procedure is first applied on a learning set. The resulting performance is further tested on an 
additional set of patterns. The fourth issue has been considered by comparing the best 
solution provided by the WT with classical signal descriptions.  
 

This article presents the wavelet transforms that we have used and some of their basic 
properties. The ECG beat recognition is also addressed. The analysis is carried out by 
combining several parameterizations (distributions of energy and extrema along the 
decomposition levels) according to the wavelets under study. This section includes three parts: 
(a) comparison among descriptors issued from orthonormal wavelets; (b) comparison with two 
other wavelet families and (3) comparison with classical parameter sets.  
 
Wavelet Transforms  
 

The wavelet transform of a signal, S(t), corresponds to its decomposition with respect to 
a family, F, of functions obtained by dilations (or contractions) and translations of an 
analyzing wavelet denoted Y [8]. The coefficients Da,b deduced from this decomposition are 
expressed by:  
 

( ) ( )
,

*

,a b a bD S t t dt
+∞

−∞
= Ψ∫  (1) 

 
where the superscript * denotes the complex conjugate. The set of Da,m with a non zero and b 
real, defines the continuous wavelet transform.  

H
A

L author m
anuscript    inserm

-00152896, version 1



 
There are several wavelet families, each corresponding to a different representation of 

the analyzed signal. 
The decomposition based on orthonormal wavelets leads to a non redundant 

description. With ( ) ( )1 * t
ta

aa

−
Ψ = Ψ ,  can be written: 

,a b
D ( ) ( )

,a b a
D S t b t dt

+∞

−∞
= Ψ −∫  (2) 

where S(t) is the input.  is thus the output, at time b, of the filter whose impulse response 

is , and where a allows sets the bandwidth. This transformation acts on the signal as a 

filter bank whose frequency characteristics are linked to Ψ(t) and to the parameter a. In other 
words, using a prior knowledge of the signal under study, we can focus on a subset of scale 
parameters in the analysis. This interpretation becomes obvious when the WT is associated to 
a multiresolution analysis, where the decomposition, with respect to an orthonormal base of 
L2(R), is replaced by an iterative scheme based on high pass and low pass filtering followed by a 

downsampling [9]. S(t) is then decomposed into a discrete set of orthogonal details (the outputs 
of the high pass filters) from which the exact reconstruction of the signal can be carried out. 
Nevertheless, up to now, neither knowledge of the processes generating the signals nor the 
specification of objectives at hand allow to us to a priori assess the best wavelet to be used. 
Experiments must be conducted on simulated or real data and compared by means of objective 
criteria. Three comparative studies have been carried out to gain more insight into this 
problem. They use:  

,a b
D

( )
a
tΨ

(1) the compactly supported wavelet bases of L2(R) introduced by Daubechies [l0] and 

associated with minimal phase filters  
(2) a non orthogonal base of L2(R) derived from a cubic spline wavelet [11] with exponential 

decay; the corresponding low pass filter is symmetric and the high pass filter is antisymmetric  
(3) a “Morlet type” wavelet Ψ(t), a complex valued function expressed by:  
 

( ) ( )( ) ( )
0 0

1 cos 2 exp 2t C f t ik f tπ πΨ = +  
 

where, 01 2t ≤ f , k is an integer different from -1, 0, 1; 0f  is the normalized frequency, and C is 

the positive constant such that the energy of Ψ is equal to 1.  

 
The two first wavelets make use of the dyadic sequence (2-j’, j > 0) as scale parameters, and 
the equivalent filter bank is then completely determined. For the third wavelet, the scales 
have been chosen heuristically to fully describe the relevant signal components: k = 2, 0f  = 

0.01, and
1

, 0 50, 0.002
1 0

a ii
i f

= ≤ ≤ Δ =
+ Δ

.  

 
The basic properties of the wavelets applied here have been explored in [12], with 

emphasis on the local regularities of the analyzed signals. It has been shown, for the spline 
wavelet (2), that the decomposition maxima encapsulate the most important part of the signal 
information. The properties of the complex wavelet (Eq. 3) have been studied in [13]. It has 
been demonstrated that the inflexion points and the maxima of S(t) are, respectively, the 
maxima and minima (with respect of the time localization variable b) of the modulus square of 
its decomposition. In addition, a local extremum of S(t) corresponds, in the transformed 
domain, to a zero crossing (with modulo π) of the phase.  
 
Recognizing Isolated Beats  
 

Our study was conducted on a set of 53 patterns sampled at 300Hz and previously 
segmented by temporal windowing (these signals are part of the European ECG data base and 
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were provided by the Istituto di Fisiologia Clinica, Pisa). The signals were normalized in 
energy to take into account the disparity in magnitude due to the different amplifications used 
during acquisition as well as the variations induced by the lead sites (the signals come mainly 
from DI and V6 leads). The isolated signals include 20 normal beats, 13 premature ventricular 
contractions (PVC) and 20 patterns with an S-T segment deviation (these last ones were 
labeled as ischemic). Each beat is described by about 300 samples.  
 

The ECG decomposition depicts different energy partitions for resolution levels of the 
beats under study. The abnormal waveforms (PVC and ischemic beats) are localized on the 
coarser levels when the normal patterns appear on the finest scales [13]. This result is 
illustrated in Fig. 1, where the orthonormal wavelet has been applied to a sequence of normal 
cardiac cycles containing one premature ventricular contraction. Figure 2 provides a more 
detailed view of the decomposition for an isolated normal beat. Figure 3 shows an- other 
common representation in time scale (for simplicity, the index i is used instead of ai). The 
major constituents, e.g., QRS waves, are enhanced due to their fast transitions when the other 
components are less visible These examples point out that, from decomposition at another 
level, no additional information is obtained. Consequently, based on our experience, the 
number of decomposition levels was set at 9, 6, and 10 for the wavelets (1), (2), and (3), 
respectively.  
 
Comparing parameters derived from orthogonal wavelets 

 
The feature sets include the energies estimated at each resolution level and the local 

extrema (value and location) of the decomposition.  
 
Description by energy  
 

With reference to [10], the wavelet corresponds to N = 6 (which means that the length 
of the filter is 2N = 12).The feature vector components are the energy of each detail level 
(denoted ENi). The PCA applied to the full set of signals suggests retaining the two first 
principal axes (a significant jump is observed between the second and the third eigenvalues). 
The inertia extracted by these two factors is approximately 68 percent, and the quality of the 
representation of the objects (i.e., the beats) and the variables ENi is 0.94, and 0.7, 
respectively. However, discriminant analysis shows that at least 3 variables are required to 
obtain a good separation (96 percent) among the 3 groups (one false classified pattern exhibits 
a low elevation of the S-T segment Table I). The most discriminant variables are the energies 
related to levels 8, 7, and 3. This analysis confirms the visual inspection of the decomposition 
previously mentioned. The abnormal patterns have their main projections on levels 7 and 8; 
the most important contributions appear on level 3 for the normal beats.  
 
Description by extrema  
 

The following operations were performed: (a) signal decomposition on 9 levels; (b) 
selection of the global extremum at each level ; and (c) signal reconstruction from the extrema. 
Figure 4 illustrates these operations on 3 patterns (representing each group) for 3 functions Ψ 
corresponding to N = 3, 6 and 10. The reconstruction based on the extrema (i.e., only one point 
within each decomposition level is kept) accentuates the peaks for N =3 and depicts an 
oscillating behavior for N = 6 and 10. These phenomena, unrelated to the ob- served signals, 
are only due to the wavelet regularity characteristics. To show this dependence more clearly, 
the similarity between the original and reconstructed patterns was examined. Table II points 
out that their correlation coefficient ranges from 0.74 to 0.96, the best results obtained with N 
= 3 and N = 6. Correlations between the three reference waveforms and all the reconstructed 
ones has also been calculated (the maximal values are re- ported in Table III). For the pairs 
(normal, PVC) and (normal, ischemic), the lowest correlation coefficients are provided by N = 
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10 and N = 6. Conversely, for the pair (PVC, ischemic), N = 3 gives the lowest correlation 
coefficient. However, these results emphasize that pattern recognition can be achieved from 
the extrema representation. The wavelet corresponding to N = 6 has been retained based on 
computation time considerations. Only the global extremum of each detail level is necessary, 
because the relative time locations of the wave components do not bring additional 
discrimination insights for the data set under consideration. This global absolute value 
represents in some way the correlation between the raw signals (original beats) and the base 
vectors of the detail subspaces and provides more information than its position.  
 

The same statistical analysis has been carried out on the whole set of beats. The PCA 
leads to results equivalent to those reported above with a factorial space of dimension 3. The 
LDA provides a discrimination rate of 98 percent when in- cluding the maximum values of 
levels 8, 3, and 7, but the three groups of patterns are completely separated when information 
of level 2 is added.  
 
Discussion 
 

These results show that high performance is obtained by the two descriptions using a 
very reduced number of features. These descriptors are coherent in terms of resolution levels 
used to better discriminate the three groups of waveforms. The description by the maximum 
absolute value at each level performs slightly better than the energy descriptors. The latter 
take into account only the power distribution of the analyzed frequency bands, and not the 
shapes of the patterns. Two signals with the same energy distributions in the spectral bands 
resulting from the decomposition will be represented by the same feature vector. The 
maximum value description provides more insight into the shapes. The deviations from 
normal beats are here characterized by an energy localized in low frequency, but the pattern 
morphologies are also different. However, the maximal absolute values are insensitive to 
phase changes and remain a rough description of the signal.  
Two additional LDA have been con- ducted to see if other improvements can be obtained. The 
first was applied by considering the sign of the global extremum value at each detail level. 
This analysis showed that strong variations are introduced within each group of patterns,  
and the corresponding clusters were no more coherent when represented in the factorial 
space. The sign acts as a perturbation on the whole set of objects. The second analysis was 
based on introduction of the three most important local extrema values (unsigned) at each 
level. The discrimination performance decreased whatever the levels taken into account. 
However, this performance decrement does not mean that this information (as well as the 
time locations) cannot play a role in other applications (or in other diseases), but that only 
here the maximal absolute values (computed at levels 3 to 8 according to the results) are 
sufficient for discrimination purposes.  

 
Comparing with other wavelet families  

 
The same approach (i.e., representation by a global maximum) has been applied to the 

decompositions provided by the spline wavelet (6levels) and the complex wavelet (10 levels). 
In both cases, the frequency band of the signal was pre- served. The classification rate is 
better for the first, a result expected because the complex wavelet leads to highly correlated 
(or redundant) maxima representation. When compared to the previous orthonormal base, the 
discrimination performance remains very poor. As mentioned above, these wavelets give 
additional cues as to the time localization of the largest slopes in the signals. This information 
was integrated into the feature set, with the time reference being the position of the 
maximum on the first level. The relative time position of the maximum (the difference 
between the maximum position and the time reference) at each level was then computed. 
Every pattern was described by an 11-dimensional vector for the spline wavelet (6 maxima 
and 5 relative time positions) and a 19-dimensional feature set for the complex wavelet (10 
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maxima and 9 relative time positions). On this basis, the spline wavelet leads to results 
equivalent to the Daubechies, while the performance of the complex wavelet still remains 
lower. 
Comparing with classical descriptors  

 
This comparison was made by allocation of complementary patterns into the discriminant 
subspace resulting from a learning phase using the same data set. The time scale descriptions 
were based on the following features: 9 maxima (issued from the compactly supported 
wavelet); 6 maxima and 5 relative time positions (spline wavelet); 10 maxima and 9 relative 
time positions (complex wavelet).  

The variables extracted from the temporal analysis of the patterns were: the maximum 
magnitude of the P, QRS and T waves, and the PQ and ST interval durations. The 
representation, based on the power spectral density, was obtained from: (1) the percentage of 
energy present in the theoretical P, QRS, and T frequency bands [141 with respect to the total 
pattern energy, and (2) the mean and median frequencies. The quality of the discrimination 
provided by different feature sets was evaluated by constituting two sets: the training data 
(2.5 beats) and the test set (28 cardiac complexes). The only requirement for the definition of 
the first set was the quasi uniform representation of each group (normal, PVC, ischemic 
patterns). The random trials were repeated 20 times and the mean rate of well-classified pat- 
terns computed. This procedure was necessary because of the reduced size of the population 
under study, which excluded any estimation of the classification error. The rate of mean, 
maximum, and minimum correct classification resulting from these trials are reported Table 
IV. These results emphasize that the best performances are achieved when using the two first 
wavelets (i.e., (1) and (2)) and that the temporal and spectral descriptions lead to results quite 
similar to those obtained by means of the complex wavelet.  

 
Conclusions 

 
Our study made use of wavelet trans- forms to describe and recognize isolated cardiac 

beats. The choice of the wavelet family as well as the selection of the analyzing function into 
these families have been discussed. The criterion used in the first case was the correct 
classification rate, and in the second case, the correlation coefficient between the original 
pattern and the reconstructed one. Two types of description have been considered -the energy-
based representation and the extrema distribution estimated at each de- composition level- 
and their quality has been assessed by using principal component analysis. Their capability of 
discrimination between normal, PVC, and ischemic beats has been studied by means of linear 
discriminant analysis. This work leads also, for the problem at hand, to the identification of 
the most relevant resolution levels. The results (to be confirmed on larger data sets) can be 
summarized as follows:  

(1) the detail levels that contribute to the quality of representation (PCA) and 
discrimination (LDA) are the same.  

(2) the compact support wavelet and the spline wavelet lead to efficient recognition 
rules based on the extrema detected at each decomposition level. They show a better behavior 
than classical features computed in the temporal or spectral do- mains.  

(3) the complex wavelet has a lower performance. However, it does not introduce the 
dyadic constraint and, as such, can be more relevant in other situations such as the detection 
of epileptic transients [15].  
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1. Orthonormal decomposition of an ECG segment composed of normal beats and a PVC. Top (the raw signal). The 
detail levels are depicted below (from D-1 to D-9, where D-j is the detail at the resolution 2j). It can be seen that the 
PVC appears clearly on D-6 and D-7.  
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2. Orthonormal decomposition of an isolated beat. From the top (the original signal) to bottom (the details D-1 to D-
9). The two first levels contain the high frequency in- formation. The levels 3 and 4 hold the information related to 
the P and QRS waves. The T waves appear only on the lowest levels. 
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3. Time scale representation of cardiac beats by means of the complex wavelet (square modulus as a function of 
time and scale ; the original signal is on the time axis). (a) premature ventricular contraction; (b) two ischemic 
patterns depicting an elevation of the ST segment. 
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4. Reconstruction waveforms from the extrema (value and time occurrence) of the decomposition. The first column 
shows the three patterns (from top to bottom: normal, PVC, and ischemic beats).The remaining columns (left to 
right) define the reconstructed signals using different filter length (N = 3, 6, and 10, respectively (see text)). 
 

H
A

L author m
anuscript    inserm

-00152896, version 1



 
 Resulting Allocation 

Initial Group  Normal (Nor)  Premature ventricular 
contraction (Pvc) 

Ischemic 
beats (Isc) 

Normal  20  0  0  
Premature ventricular 

contraction 1  12  0  

Ischemic beats  1  1  19  
Table 1: Classifying Waveforms (columns) with Respect to Original Groups (rows).  
 
 
 

 N = 3  N = 6 N = 10 
Nor  0.860  0.871 0.750  
Pvc 0.937  0.778  0.746 
Isc 0.952  0.958 0.916 

Table 2: Normalized Correlation Index between Original and Reconstructed Waveforms.  
 
 
 

 Raw Signal  Reconst. N = 3 Reconst. N = 6 Reconst. N = 10 
Nor - Pvc  0.608  0.685 0.328 0.289  
Nor - Isc 0.250  0.303  0.197 0.185 
Pvc - Isc 0.994  0.622 0.681 0.671 

Table 3: Maximal Correlation Index between Normal and Abnormal 1 Waveforms in Figure 4.  
 
 
 
 Maximum Mean Minimum Max - Min 
Wavelet (1) ; N = 6 ~ 100 95 89 11 

Spline Wavelet  100 96 90 10 

Morlet Type Wavelet  93 82 68 25 

Temporal Features  96 83 64 32 

Spectral Parameters  92 85 60 32 

Table 4: Maximal Mean and Minimal Allocation Rates (Percent) from Various Wavelets and Descriptions.  
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