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Abstract [150 words] 

Synesthesia is an experience in which stimulation in one sensory or cognitive stream leads to 

associated experiences in a second, unstimulated stream.  Although synesthesia is often 

referred to as a "neurological condition", is not listed in the DSM-IV or the ICD 

classifications, since it generally does not interfere with normal daily functioning.  However, 

its high prevelance rate (1 in 23) means that synesthesia may be reported by patients who 

present with other psychiatric symptoms.  In this review, I focus on recent research examining 

the neural basis of  the two most intensively studied forms of synesthesia, grapheme → color 

synesthesia and tone → color synesthesia. These data suggest that these forms of synesthesia 

are elicited through anomalous activation of color selective areas, perhaps in concert with 

hyper-binding mediated by the parietal cortex.  I then turn to questions for future research, 

and the implications of these models for other forms of synesthesia.          



Introduction 

 Synesthesia is an experience in which stimulation in one sensory or cognitive stream 

leads to associated experiences in a second, unstimulated stream.  The stimulus which elicits a 

synesthetic experience is called the inducer, the additional sensations are called concurrents, 

and various forms of synesthesia are identified in the form of X → Y, where X is the inducer 

and Y is the concurrent.   For example, in one common form of synesthesia, known as 

grapheme → color synesthesia, letters or numbers are perceived as if viewed through a 

colored overlay [1, 2], while in ordinal linguistic personification, numbers, days of the week 

and months of the year evoke personalities [3, 4]. In spatial-sequence, or number → space 

synesthesia, numbers, months of the year, and/or days of the week elicit precise locations in 

space such as a three-dimensional view of a year as a map [5-7]. “Colored hearing” which 

includes auditory word → color and music → color synesthesia [8-10] involve linkages that 

are truly cross-modal, and are often considered the paradigmatic examples of synesthesia, 

despite being less common than the above mentioned forms.   

 One problem which, until recently, has hindered synesthesia research is a lack of 

clarity in the use of the term.  For example, cross-sensory metaphors are sometimes described 

as "synesthetic", as are additional sensory experiences brought on under the influence of 

psychedelic drugs, after a stroke, or as a consequence of blindness or deafness. Synesthesia 

that arises from such non-genetic events is referred to as adventitious synesthesia to 

distinguish it from the more common congenital forms of synesthesia.  In this review, I will 

focus on congenital synesthesia, which occurs in slightly more than four percent of the 

population (1 in 23 persons) across all of its various forms [11]. Congenital synesthesia 

runs strongly in families [5, 11, 12], possibly inherited as an X-linked dominant trait [13, 14].  

 Although often referred to as a "neurological condition", synesthesia is not listed in 

either the DSM-IV or the ICD classifications, since it does not, in general, interfere with 



normal daily functioning. Indeed most synesthetes report that their experiences are neutral, or 

even pleasant [15]. Rather, like color blindness or perfect pitch, synesthesia is a difference in 

perceptual experience and is referred to as a neurological condition to reflect the brain basis of 

this perceptual difference. 

 The unusual reports of synesthetes may lead clincians to think of synesthesia as a 

symptom of a psychiatric disorder.  Although its high prevelance rate means that congenital 

synesthesia may sometimes be found in patients who present with psychiatric conditions, to 

date, no research has demonstrated a consistent association between congenital synesthetic 

experience and other neurological or psychiatric conditions [16] depsite case reports of 

impairments in spatial and numerical cognition [17] and improved memory [18, 19].  On  the 

other hand, adventitious synesthesia may occasionally appear as a symptom of epilepsy [20] 

or other neurological syndromes.  In order to help clinicians to distinguish between congenital 

synesthesia and other potential psychiatric complaints, synesthesia researcher Chris Lovelace 

has developed a flowchat suggesting the appropriate questions and branchpoints to determine 

whether such reports constitute symptoms of some other psychiatric complaint, or are just 

indicative of congential synesthesia (http://cas.umkc.edu/psyc/research/scnl/syn-

clinician.html).   

 Broadly speaking, the experiences of synesthetes are consistent across the lifespan but 

idiosyncratic, automatic and involuntary, and occur without any conscious effort on the part 

of the synesthete [17].  Indeed, many synesthetes report that they assumed that everyone 

experienced the world the same way they do, and are shocked to find that others do not share 

these experiences.  Conversely, some synesthetes report negative reactions from others upon 

reporting their experiences, leading them to harbor a secret fear that they were “crazy”.  Given 

the lack of information, both for individuals with synesthesia, and for clinicians who might 

http://cas.umkc.edu/psyc/research/scnl/syn-clinician.html
http://cas.umkc.edu/psyc/research/scnl/syn-clinician.html


encounter them, a broader understanding of the existence, and neural mechanisms of this 

unusual phenomenon is clearly desirable.       

 

Neural Models of Synesthesia 

 In the past five years a number of behavioral and functional magnetic resonance 

imaging (fMRI) results have demonstrated the reality of synesthesia (for reviews, see [1, 2]).  

In this review, I would like to focus on various models of synesthetic experiences, and 

neuroimaging studies which have been conducted to examine these proposals.  To date, all 

neuroimaging research into the neural basis of synesthesia has been conducted on word → 

color and grapheme → color synesthesia, in which auditory or visual presentation of words 

and letters elicit the experience of colors.  However, most synesthesia researchers expect that 

neural models derived from these test cases may generalize to other forms of synesthesia, and 

may thereby provide valuable insights into this fascinating phenomenon.  

 Neural models of synesthesia can be described either at a neurophysiological level or 

at an architectural level [1].  At the neurophysiological level, models of synesthesia differ 

depending on whether they suggest that synesthetic experience arises from incomplete neural 

pruning [21, 22] or are due to a failure to inhibit feedback in the visual system [23].  In 

short, the distinction might be framed as one of connections versus communication.  In the 

pruning model, there is thought to be increased connectivity between brain regions leading to 

stronger inputs in synesthetes compared with non-synesthetes, while in the disinhibited 

feedback models, the degree of connectivity is assumed to be identical in synesthetes and non-

synesthetes, but neural communication is thought to be increased between brain regions due 

to a lack of inhibitory processes.  Although this is an interesting debate in its own right, 

current fMRI methods do not allow us to explore these low-level neurophysiological 

questions.  After reviewing current neuroimaging data, I will return to ways in which future 



research, using both anatomical techniques such as diffusion tensor imaging (DTI) and voxel 

based morphometry (VBM) and functional techniques such as event related potentials (ERPs) 

or magnetoencephalography (MEG) might help to distinguish between these accounts.   

 Theories at the architectural level have concerned themselves with the possible neural 

architectures that might lead to synesthesia.  There are currently four architectural models, 

which are referred to as “cross-activation”, “long range feedback”, “reentrant processing” and 

“hyper-binding.”  I will briefly discuss each of these models in turn below (for more details, 

see [1]). 

 

Cross-Activation 

 When we began our work on synesthesia, we were struck by the fact the visual word 

form area (VWFA; for a review, see [24]) lies adjacent to color processing region hV4 [25].  

Based on this observation, we proposed that grapheme → color synesthesia may arise from 

cross-activation between these adjacent brain regions [21, 22, 26] and suggested that one 

potential mechanism for this would be the observed prenatal connections between inferior 

temporal regions and area V4 [27]. In the fetal macaque approximately 70 - 90% of the 

connections are from higher areas (especially TEO, the macaque homologue of human 

inferior temporal cortex), while in the adult approximately 20 - 30% of retrograde labeled 

connections to V4 come from higher areas [27]. Given the presence of a genetic factor in 

synesthesia, we suggested that this gene may lead to decreased pruning of these prenatal 

pathways so that connections between the number grapheme area and V4 would persist into 

adulthood, leading to the experience of color when viewing numbers or letters. It is important 

to note that, while being adjacent to each other increases the likelihood of brain regions being 

connected to each other, our model suggests that it is the presence or absence of such early 

connections which is important, not the fact that brain regions are adjacent per se.  



Long-Range Disinhibited Feedback  

Other researchers have suggested that grapheme → color may be due to disinhibited 

feedback from a “multisensory nexus” such as the temporo-parietal-occipital junction [23, 28, 

29]. One piece of data usually taken as support for the disinhibited feedback theory is that at 

least some people report synesthetic experiences while under the influence of psychedelics 

(see e.g., [30]). However, it is unclear whether the experiences of drug-induced synesthesia, 

despite some superficial similarities with the experiences of congenital synesthetes, arise from 

different mechanisms. In particular, the experiences of congenital synesthetes are typically 

generic, including color and movement, but not complex scenes or visualizations [17]. Unlike 

these synesthetic experiences, the experiences generated by psychadelics are often complex, 

including visualizations of animals and complex scenes [30].  Of course, if synesthesia is 

mediated by differences in neurotransmission, it may lead to unusual medication effects, 

which clinicians should be aware of.   

 

Re-Entrant Processing 

 A third model is something of a hybrid, in which grapheme → color synesthesia has 

been suggested to be due to aberrant re-entrant processing (perhaps consistent with models of 

disinhibited feedback) [31, 32]. Smilek et al. [31] propose that, in addition to the forward 

sweep of activity from V1 to V4, to posterior and then anterior inferior temporal regions (PIT 

and AIT, respectively), aberrant neural activity from AIT feeds back to representations in PIT 

and V4, leading to the experience of synesthetic colors.  The main evidence used to argue in 

favor of the reentrant theory over the cross-activation theory is the fact that visual context and 

meaning influence the experienced colors in synesthesia [32, 33] see also [21, 34]. However, 

top-down influences can be accounted for by appropriately specified versions of either the 

cross-activation or re-entrant model [1].  Current neuroimaging data are too coarse to 



distinguish with certainty between these models.  One source of potentially useful evidence 

could come from EEG or MEG studies which examine the timecourse of activations in 

grapheme → color synesthesia.  By temporally decomposing the stages of processing 

involved in the generation of synesthetic experiences, it may be possible to disentangle these 

two models.  Given the relatively small distances between these brain regions, MEG might be 

an ideal technique for such studies. 

 

Hyper-Binding 

Recently, a fourth model of synesthesia has been proposed, the “hyper-binding” model 

[35, 36].  Under normal circumstances, the brain must bind together information from 

color, form, motion and so on into a coherent representation of the world [37] and this binding 

process depends on parietal mechanisms [35].  The hyper-binding model suggests that 

synesthesia arises through an over-activation of these same parietal binding mechanisms.  

While anomalous binding may play an important role in the full explanation of the synesthetic 

experiences, it is not sufficient to say that synesthesia is a result of anomalous binding, since 

binding must have features upon which to act.  Thus, one of the above mechanisms for 

generating additional synesthetic experiences may act in concert with over-active binding 

mechanisms.        

   

Multiple Neural Mechanisms  

It should also be borne in mind that a single model may fail to capture the variability 

in synesthetic experiences. The neural mechanisms may have both a common factor, which is 

present in all synesthetes, and other variable factors, which influence the strength of the 

synesthetic experiences, leading to individual differences in their experiences  [22, 38].  In 

addition, the different models are not necessarily mutually exclusive.  Indeed, as mentioned 



above, the hyper-binding account must work in concert with one of the other models to 

explain the genesis of the features that are bound if we are to explain synesthetic experiences.  

 Another possibility is that different neural theories will account for different types of 

synesthesia, as the local cross-activation, re-entrant feedback and hyper-binding theories have 

focused primarily on grapheme → color synesthesia, while feedback models have focused on 

word → color and tone → color synesthesia. While it is probable that at the architectural 

level, different forms of synesthesia will have different neural substrates, the fact that 

synesthetes within the same family may inherit different forms of synesthesia [14] suggests 

that the neurophysiological mechanisms may be shared across different forms of synesthesia.  

 

Neuroimaging Studies 

 While there have been numerous neuroimaging studies of synesthesia, they have 

tended to yield somewhat inconsistent results.  One thing to bear in mind when evaluating 

these discrepant results is that all current studies have been statistically underpowered.  

Standard whole brain fMRI analyses using SPM and random effects analyses require a 

minimum of 20 subjects in order to allow inferences about both positive and negative findings 

[39].  Analyses using restricted regions of interest (ROIs) are less likely to be as severely 

underpowered, because the restricted number of voxels tested reduces the adverse statistical 

impact of the multiple comparisons problem.  Techniques such as retinotopy which permit 

delineation of individual subject areas may similarly be less adversely affected because 

differences in brain anatomy are taken into consideration when examining patterns of 

activation.  Given these considerations, positive findings should be given substantially more 

weight than negative ones when attempting to develop models of grapheme → color 

synesthesia.   

 



Word → color synesthesia  

 In the first study of synesthesia, Paulesu et al. [9] used positron emission tomography 

(PET) to determine whether color selective areas of the cortex were active when auditory 

word → color synesthetes reported seeing colors.  Subjects were presented with blocks of 

either pure tones or single words. Paulesu et al. found that areas of the posterior inferior 

temporal cortex and parieto-occipital junction – but not early visual areas V1, V2, or V4 – 

were activated during word listening more than during tone listening in synesthetic subjects, 

but not in controls.  In a follow-up Nunn et al. [10] tested six female, right handed auditory 

word → color synesthetes and six matched non-synesthetes, using fMRI, which has better 

spatial resolution and sensitivity than PET. Nunn et al. report that regions of the brain 

involved in the processing of colors (V4/V8) are more active when word → color synesthetes 

hear spoken words than when they listen to tones, but not in earlier visual areas such as V1 or 

V2. No such difference was observed in control subjects, even when they were extensively 

trained to imagine specific colors for specific words.  Similarly, in a case study of a 

synesthete who experiences colors for people’s names, Weiss et al. [40] report that hearing 

names that elicited synesthetic colors led to activity in left extra-striate cortex (near to V4), 

but not V1. However, in another case study of an auditory word → color synesthete, Aleman 

et al. [41] report activation of (anatomically defined) primary visual cortex but were unable to 

determine if area V4 was active in this single subject.  I return to potential statistical and 

methodological reasons for some of these differences below.      

 

Grapheme → color synesthesia  

 Hubbard et al. [22] obtained both behavioral performance and fMRI measurements 

in six grapheme → color synesthetes and six non-synesthetic controls to determine whether 

grapheme → color synesthesia arises as a result of activation of color selective region hV4 in 



the fusiform gyrus.  We used standard retinotopy techniques to identify individual visual 

areas, and then presented with black and white letters and numbers, compared against non-

linguistic symbols which did not elicit colors. We observed larger fMRI responses in color 

selective area human V4 in synesthetes compared with control subjects. Importantly, we also 

found a correlation within subjects between our behavioral and fMRI results; subjects with 

better performance on our behavioral experiments showed larger fMRI responses in early 

retinotopic visual areas (V1, V2, V3 and hV4), consistent with claims of important individual 

differences among synesthetes [22, 38, 42].  

 Another recent study, using similar methods found broadly similar results [43]. 

Sperling et al. measured fMRI BOLD response in four synesthetes in retinotopically defined 

V1-V4 to graphemes that elicited synesthetic colors versus those that did not. Overall, they 

found greater activation in V4 when synesthetes were presented with graphemes that caused 

them to report seeing colors than when presented with graphemes that did not.  

 Two other recent neuroimaging studies have used whole-brain fMRI and SPM 

analyses to explore the neural bases of grapheme → color synesthesia [44, 45].  Rich and 

colleagues [44] measured fMRI responses in a group of seven synesthetes and seven controls 

in three imaging paradigms. They first localized regions of interest (ROIs) using colored 

Mondrians versus grayscale images, which should selectively activate V4.  They then 

measured fMRI responses within these ROIs in synesthetes and controls while they viewed 

either colored letters (which also induced synesthesia in the synesthetes) or grayscale letters, 

while monitoring for a brief disappearance of one of the letters.  Unlike the two studies 

mentioned above, Rich et al. did not find greater activation of the V4 complex in synesthetes, 

but instead found activation of more anterior color areas, related to color naming and 

categorization.  In addition, unlike in the previous Nunn et al. [10] study, they found color 



imagery was capable of eliciting activation in the V4 complex in both synesthetes and non-

synesthetes.   

 Similarly, Weiss et al. [45] examined fMRI signals in nine grapheme → color 

synesthetes, using a 2 x 2 factorial design.  Subjects were presented with letters that did or did 

not induce colors (many synesthetes report not having colors for all stimuli), with either 

colored or grayscale letters.  Weiss et al. did not observe any significant activation in visual 

areas, but did observe a significant activation in the left intraparietal sulcus, consistent with 

the hyper-binding account of synesthesia.  In addition, two recent transcranial magnetic 

stimulation (TMS) studies have shown that stimulation at parietal sites previously implicated 

in binding color and form disrupts the synesthetic Stroop effect [36, 46].  Interestingly, both 

TMS studies found a consistent effect only in the right hemisphere, while the fMRI study by 

Weiss et al. found differences only in the left hemisphere.   

 

Summary and Implications  

Taken together, these results suggest that a network of brain areas is involved in the 

generation of synesthetic experience.  Although not all studies find activation of V4, it should 

be noted once again that statistical power in all of the studies conducted to date was low.  

Because word processing involves ventral visual areas adjacent to the V4 complex [24], 

ventral visual areas would be constantly activated in studies of grapheme → color 

synesthesia, leading to a constant factor being removed from the fMRI signals when visual 

input was used, but not when auditory input was used. This suggests that V4 activation might 

be more robust than would appear on a cursory examination of the published papers to date.   

  In addition to activation of V4, numerous studies have found activations in other 

regions that are specific to synesthesia.  The most important of these are anterior lingual gyrus 

regions [9, 44] involved in color naming and categorization, and intraparietal sulcus regions 



[9, 10, 45] involved in attention, binding and multisensory processes.  Especially given the 

converging evidence from TMS studies [36, 46] the role of parietal cortex in the genesis of 

synesthesia needs to be taken quite seriously.   

 Taken together, these results suggest that activation of color specific visual areas (both 

V4 and more anterior regions) may be the origin of synesthetic experiences, which are then 

bound by (possibly overactive) parietal mechanisms.  Alternatively, the parietal activations 

might reflect involvement of a “multisensory nexus” [23] which, via disinhibition leads to 

synesthetic experiences.  Identifying the order in which these activations are elicited is critical 

to adjudicate between these theoretical models.  However the relative order of these processes 

cannot be determined with fMRI, so future studies using EEG and MEG will be crucial to 

disentangling these hypotheses.  In addition, future EEG and MEG studies examining the time 

course of synesthetic experiences may help to distinguish between cross-activation, 

disinhibited feedback and re-entrant models of synesthesia.  DTI and VBM methods will also 

be useful in identifying potential anatomical differences between synesthetes and non-

synesthetes.  The presence of anatomical differences would be consistent with the cross-

activation theory, but would not necessarily rule out the involvement of other processes such 

as disinhibition or hyper-binding.  Clearly these are exciting days for synesthesia researchers, 

as there are many unanswered questions still to be explored.            

   

Other Forms of Synesthesia 

 As mentioned at the outset, much of the current research has focused on grapheme → 

color and tone → color synesthesia.  However, it should be stressed that there are quite a 

number of other forms of synesthesia, and it is hoped that the lessons learned from detailed 

investigations of grapheme → color and tone → color synesthesia will generalize to other 

forms. Recently, we have revised and expanded our previous hypotheses concerning the 



neural basis of synesthetic number forms [21, 47]. We suggest that cross-activation in the 

parietal cortex, particularly in the region of the angular gyrus, the ventral intraparietal area 

and the lateral intraparietal area, may explain synesthetic number-forms, in which numerical 

(and other ordinal sequences) are experienced as having specific locations in space. 

 Similarly, auditory word to taste synesthesia may depend on cross-activation between 

insular regions involved in taste processing, and superior temporal and/or frontal regions 

involved in auditory word comprehension and production [48], while lexical → gustatory 

synesthesia may arise from cross-activation between these same insular regions and 

somatosensory cortex in the parietal lobe.  We have also suggested that ordinal linguistic 

personification might arise from cross-activation between regions of the left parietal cortex, 

including the angular and supramarginal gyri that are involved in sequence representations 

and adjacent regions involved in personality perception [4].  These extensions to other forms 

of synesthesia have led us to suggest that anatomically constrained cross-activation may 

constitute a “Grand Unified Theory” of synesthesia [49].  Many future investigations will be 

needed to test these hypotheses, but it is clear that synesthesia should no longer be thought of 

as an anomaly, or a symptom of psychiatric disease.  Rather, it is an unusual experience which 

may even shed light on a variety of perceptual and cognitive processes.    

 

Conclusions 

Although synesthesia has been known about for over 100 years, it has only recently become 

the topic of renewed investigations.  Although it is not a clinical disorder, it is important that 

clinicians be aware of synesthesia, since its high prevalence means that many individuals who 

come to mental health practitioners may also report synesthetic experiences.  Recent research 

has only begun to explore the neural mechanisms that are involved in synesthesia, but it 

seems clear that synesthesia arises through anomalous activation of brain regions involved in 



certain perceptual and conceptual representations, although the exact manner by which this 

anomalous activation remains an open question for future research.  Future studies, using 

other anatomical neuroimaging methods, and evoked electrical activity will be essential to 

further exploring these questions.  Examining other forms of synesthesia will begin to allow 

us to see how general the conclusions arrived at from the study of word → color and 

grapheme → color synesthesia are.  In the future, understanding the mechanisms whereby 

anomalous synesthetic experiences arise may be a useful tool to understand the neural 

mechanisms of other unusual sensory experiences, including such phenomena as Charles’ 

Bonnett Syndrome and even various forms of hallucinations.    
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