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Abstract 
Brain histaminergic neurons play a prominent role in arousal and maintenance of wakefulness (W). H3-

receptors control the activity of histaminergic neurons through presynaptic autoinhibition. The role of H3-

receptor antagonists/inverse agonists (H3R-antagonists) in the potential therapy of vigilance deficiency and 

sleep-wake disorders were studied by assessing their effects on the mouse cortical-EEG and sleep-wake 

cycle in comparison to modafinil and classical psychostimulants. The H3R-antagonists, thioperamide and 

ciproxifan increased W and cortical-EEG fast rhythms and, like modafinil, but unlike amphetamine and 

caffeine, their waking effects were not accompanied by sleep rebound. Conversely, imetit (H3R-agonist) 

enhanced slow wave sleep and dose-dependently attenuated ciproxifan-induced W, indicating that the effects 

of both ligands involve H3-receptor mechanisms. Additional studies using knockout (KO)-mice confirmed the 

essential role of H3-receptors and histamine-mediated transmission in the wake properties of H3R-

antagonists. Thus ciproxifan produced no increase in W in either histidine-decarboxylase (HDC, histamine-

synthesizing enzyme) or H1- or H3-receptor KO-mice whereas its waking effects persisted in H2-receptor KO-

mice. These data validate the hypothesis that H3R-antagonists, through disinhibition of H3-autoreceptors, 

enhancing synaptic histamine that in turn activates postsynaptic H1-receptors promoting W. Interestingly 

amphetamine and modafinil, despite their potent arousal effects, appear unlikely to depend on histaminergic 

mechanism as their effects still occurred in HDC KO-mice. The present study thus distinguishes two classes 

of wake-improving agents: the first acting through non-histaminergic mechanisms and the second acting via 

histamine and supports brain H3-receptors as potentially novel therapeutic targets for vigilance and sleep-

wake disorders. 
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1. Introduction 
The functional importance of histamine (HA) in sleep-wake regulation dates back to the 1930s when 

the prototypical anti-histamine drugs were discovered. Now identified as H1-receptor antagonists, the use of 

this class of drugs in the treatment of allergic diseases is frequently associated with sedation, drowsiness and 

slowed reaction time in humans. With the discovery, in the early 1980s, that histamine is a central 

neurotransmitter [1-3], it was hypothesized that blockade of histamine-mediated transmission could be 

responsible for these side-effects. Recent experimental data support the hypothesis that histaminergic 

neurons constitute a major wake-promoting system [4] within the brain arousal networks [5-9]. 

Histaminergic perikarya occur exclusively in the tuberomammillary nucleus (TMn) and adjacent areas 

of the posterior hypothalamus [10-13], a heterogeneous area crucial for waking as its destruction or 

inactivation induces hypersomnia [4-6]. TM neurons send inputs to various brain regions, notably those that 

control the sleep–wake cycle, such as the cortex, thalamus, preoptic and anterior hypothalamus, brainstem 

and forebrain cholinergic and monoaminergic structures [2-4; 10-13]. Identified histaminergic neurons in the 

mouse [14] as well as presumed histaminergic cells in the cat [6; 15], discharge tonically and specifically 

during wakefulness; this pattern of activity being the most wake-selective pattern identified in the brain to 

date. Histaminergic neurons stimulate or facilitate large brain areas through postsynaptic H1 and H2 receptors 

[2;3], thus contributing to cortical activation [4]. Indeed, treatments that impair HA-mediated 

neurotransmission, e.g., blockade of HA synthesis or postsynaptic H1 receptors, increase cortical slow waves 

and enhance sleep. In contrast, enhancement of histaminergic neurotransmission promotes waking [4; 13; 

16; 17]. Finally, Long-term abolition of HA synthesis in knockout (KO) mice impairs the cortical 

electroencephalogram (EEG) and has deleterious effect on both sleep and wake quality, thus causing 

permanent somnolence and behavioral deficits. Consequently, mice that lack brain HA are unable to remain 

awake when high vigilance is required, e.g. at lights off or placed in a new environment [16]. Together, these 

results indicate that HA-containing neurons have a key role in maintaining the brain awake under normal 

conditions and in the presence of behavioral challenges. 

Since H3-receptors control the release, synthesis and turnover of HA and the neuronal activity of 

histaminergic cells [15; 18; 19], it was hypothesized that the cortical activity and sleep–wake cycle could be 

modulated through H3-receptor and consequently their ligands [20]. Consistent with this assumption, early 

studies in cats showed that sleep increased or decreased following, respectively, administration of H3-

receptor agonists or antagonist/inverse agonists. Thioperamide, an imidazole H3R-antagonist, promoted 

cortical activation and waking while α-methylhistamine, a chiral H3R-agonist and BP2-94, another H3-receptor 

agonist, enhanced cortical slow activity and increased slow wave sleep [4; 20]. Similar results were obtained 

using H3R-agonists or antagonists in mice, rats and guinea pigs [16; 21; 22], although the effect of H3R-

agonists appeared to be compound- and species- dependent [23; 24].  
The robust effects of H3-receptor ligands in sleep-wake control in animals supports a potential role in 

treating human sleep-wake disorders, notably the use of H3R-antagonists to improve somnolence and 

vigilance deficiency of diverse pathophysiological origin. However, several important fundamental questions 

arise as regards to the characterization of their effects. For example, what are their effects on sleep-wake 
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parameters as compared to those induced by the current wake-promoting compound modafinil [25-28] or 

classical psychostimulants? Is their waking effect mediated specifically by H3-receptors and through HA-

mediated neurotransmission? The latter question is particularly important as H3-receptors also function as 

heteroreceptors that control the release and synthesis of other neurotransmitters in addition to HA including 

acetylcholine, dopamine, norepinephrine, serotonin and galanin [3; 29], also involved in sleep-wake control 

[7-9]. 

In the present study, therefore, the effects of the H3R-antagonists, thioperamide and ciproxifan, were 

studied on the cortical EEG and sleep-wake cycle in mouse, a species in which the effects of H3R-ligands are 

less well documented, but of great interest in basic and preclinical investigations particularly because of 

increasing use of knockout (KO) models. The waking effects of H3R-antagonists were compared with those 

induced by the atypical stimulant, modafinil and the classical psychostimulants, amphetamine and caffeine. 

Additionally, the pharmacological profile of ciproxifan was evaluated using pharmacological antagonism with 

the H3R-agonist, imetit and in several KO mouse models in which HA-mediated neurotransmission was 

altered either in terms of synthesis or receptors. 

2. Effects of modafinil, psychostimulants and H3-receptor antagonists on the mouse cortical EEG and 
sleep-wake cycle. 

To compare the wake promoting effects of H3R-antagonists in comparison to modafinil and classical 

psychostimulants, C57/Black6/J genetic background mice (n = 22, Charles River, France) were implanted 

with electrodes to monitor the cortical EEG and sleep-wake cycle according to previously described methods 

[16]. Briefly, All mouse strains used in this study were housed individually in transparent barrels (φ 20 cm, 

height 30 cm) in an insulated sound-proofed recording room maintained at an ambient temperature of 22 ± 

1°C and on a 12h light/dark cycle (lights-on at 7h00), food and water being available ad libitum. Polygraphic 

recordings were performed after administration of placebo or the drugs and scored as described [16] by 30s 

epochs for wakefulness (W), slow wave sleep and paradoxical (PS or REM) sleep. Cortical EEG power 

spectra were analyzed for consecutive 30-sec epochs within the frequency range of 0.4-60 Hz using a fast 

Fourier transformation routine by the CED-spike 2 analysis system. Statistical evaluation was performed 

using ANOVA followed by Dunnett’s t test. Each animal served as its own control. 

D-amphetamine (1, 4 and 8 mg/kg, Sigma, St. Louis, MO USA), caffeine (10, 30 and 100 mg/kg, 

Sigma), modafinil (10, 30 and 100 mg/kg, Cephalon, France), thioperamide (10, 30 and 100 mg/kg, Sigma) 

and ciproxifan (1, 3 and 10 mg/kg, Sigma) were administered i.p. at the light phase (11h30) when the animals 

slept most of the time at baseline (defined as sleeping period). As shown in Table 1 and Figures 1 and 2, all 

compounds at the doses used increased the time spent awake. The wake effect, occurring as early as the 

first hour after dosing, was accompanied by delayed sleep latencies (Table 1; Figures 1 and 2), the duration 

of the effect on waking being dose-dependant. The increase in wakefulness was at the expense of both slow 

wave sleep (SWS) and paradoxical sleep (PS). Compared with modafinil and psychostimulants, the effects of 

the two H3R-antagonists had several characteristics: 
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2.1 Prompt awakening effect 

The waking effect of H3R-antagonists occurred quickly in the mouse and was promptly terminated, 

similar to that seen in the cat [4; 20; 30]. At a dose 10-fold higher than the minimally effective one, the waking 

effect was prolonged to two more hours whereas at an 8-10 fold higher dose, the waking effect of modafinil, 

amphetamine and caffeine produced additional periods of 3, 4 and more than 7h respectively (Figure 2). In 

addition to the bioavailability of H3R-antagonists, their short-lasting effect probably reflects the fact that the 

HA released by H3R-antagonists is rapidly eliminated and that there are no known transporter mechanisms 

involved in HA catabolism that could be affected by H3R-antagonists. Indeed, released HA is instantly 

inactivated by the enzyme, histamine-N-methyltransferase. HA is also known to have a faster turnover rate 

than other neurotransmitters with the exception of acetylcholine [1;29]. H3R-antagonists (e.g. ciproxifan) also 

have no interactions with monoamine transporters [data not shown]. In contrast, the psychostimulant effects 

of amphetamine depend on an inhibition of the dopamine transporter (DAT) in addition to an enhancement of 

monoamine release and blockade of monoamine oxidase activity. Modafinil binds with moderate affinity to 

DAT (~ 4-7 µM) [31-33]. However, the dopaminergic mechanisms involved in the waking effect of modafinil 

may be relatively pronounced in the mouse [32] compared with other experimental species. The relative short 

lasting effect of H3R-antagonists demonstrated here, if extrapolatable to humans, may be an advantage for 

their potential therapeutic use, i.e. maintaining daytime wakefulness, followed by normal nocturnal sleep.  

2.2 Quiet and alert waking 

In mice as in other species, psychostimulants such as amphetamine and caffeine markedly increased 

behavioral activity and locomotion in addition to EEG arousal, whereas no overt behavioral excitation occurs 

during wakefulness following modafinil, thioperamide and ciproxifan. Animals were quiescent for the majority 

of time presenting a level of activity similar to waking seen during baseline recording. The most notable 

difference seen in this study between H3R-antagonists and other wake-promoting agents involved the 

qualitative aspect of waking, i.e., cortical EEG. Whereas all the compounds used caused a clear suppression 

of cortical slow waves (δ and slow θ bands, mainly 0.8-5 Hz), H3R-antagonists like ciproxifan were distinct 

from other compounds due to their effect on cortical fast rhythms (β and γ bands, 20-60 Hz). Thus, 

amphetamine and modafinil enhanced waking behavior without increasing cortical fast activity. Conversely, 

the “quiet” waking induced by ciproxifan was accompanied by a marked enhancement in cortical fast rhythms 

(Figure 1). Thus, the mean total power of cortical fast rhythms (20-60 Hz) during waking after ciproxifan 

dosing is increased by 9±2% (p < 0.05, ANOVA) compared with that seen after placebo in the same mice 

(n=7, data obtained from 120 consecutive samples of 30s wake episodes after placebo or ciproxifan dosing in 

each mouse). Similar results have been obtained in the cat [4; 30 and data not shown].  

The marked wake-improving effect of ciproxifan demonstrated in several species is consistent with 

the concept of a predominant role of histaminergic neurons in cortical activation during waking. Because the 

occurrence of cortical fast rhythms is closely associated with the so-called higher mental activities, e.g., 

attention, alertness, and leaning, these results thus indicate that waking elicited by H3R-antagonists is of a 

high level of vigilance and that the histaminergic system plays a role not only in waking, the basis for all other 

high brain functions, but also in some cognitive processes. These data also suggest that clinically suitable 
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H3R-antagonists might be designated as a therapeutic approach for vigilance disorders associated with 

cognitive deficiency [4;20;30,34]. Finally, ciproxifan, through activation of histamine neurons as demonstrated 

by their dense c-fos expression after dosing, restored a sustained cortical activation in comatose or 

hypersomniac cats after acute or chronic brainstem transection, respectively [4]. This clear arousing effect 

suggests that drug-like H3R-antagonists may have the ability to restore cortical activation in comatose or 

brain-traumatized patients.  

2.3 Absence of sleep rebound 

The long lasting waking elicited by amphetamine and caffeine, but not that induced by modafinil, was 

followed by a significant sleep rebound, mainly consisting of slow wave sleep (Tables 2 and 3) and by an 

increase in power spectral density of cortical slow activity (data not shown). These data are in agreement with 

those previously obtained in the cat [35; 36] and rat [37; 38]. Like modafinil, but unlike amphetamine or 

caffeine, the waking effects of thioperamide and ciproxifan were followed by a sleep-wake cycle with an 

amount of both slow wave sleep and paradoxical sleep similar to that seen during baseline recording, 

indicating no significant sleep rebound. The significance of the different effects of the studied agents on 

subsequent sleep remains unclear as the mechanisms and functions of sleep rebound are far from well 

understood. It has previously speculated that an overuse or exhaustion of catecholamines, such as the 

enhanced prolonged release associated with the use of amphetamine (but presumably not with that of 

modafinil), may be one cause of sleep rebound following the amphetamine-induced arousal and behavioral 

excitation [36]. One function of sleep rebound would, therefore, be to restore the physiological and functional 

levels of catecholaminergic neurons after over activity and also to allow the brain to recover from the 

deleterious effects of catecholamine systems during sustained waking. In support of this assumption, one of 

the few genes in the rat brain which is significantly induced and proportionally expressed after sleep 

deprivation is that of arylsulfotransferase, a final enzyme responsible for the catabolism of catecholamines in 

rodents [39; 40]. Thus the absence of sleep rebound associated with modafinil could also be interpreted as 

absence of catecholamine exhaustion as the waking effect of modafinil does not seem to depend on 

endogenous catecholamines [35]. Moreover, no signs of direct neuronal depolarization/excitation on target 

cells have been reported for modafinil, even though diffuse expression of immediate early gene c-fos [41], or 

enhanced histamine release [42] occurred with high doses of modafinil. These effects can be attributed to a 

direct consequence of the sustained waking induced by modafinil rather than a direct pharmacological 

targeted action per se. Indeed, c-fos expression is a state-dependent phenomenon, occurring most densely 

in large brain areas after spontaneous or induced wakefulness [43-45]. Alternatively, one of the major effects 

of modafinil is the induction of a marked decrease in GABA outflow in the critical brain regions involved in 

sleep-wake control including the posterior hypothalamus and preoptic area [46, 47]. Wakefulness seen with 

modafinil could then result from a disinhibition of brain arousal systems, e.g., the HA and orexin containing 

cells in the posterior hypothalamus known for their crucial role in the maintenance of waking [4-6; 9]. A quiet 

waking state resulting from this disinhibitory mechanism would therefore have a different effect on the 

subsequent sleep rebound to that seen with amphetamine. 
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The reasons why H3R-antagonist-induced waking is not associated with a sleep rebound remain to be 

determined. In any proposed hypothesis, the above-mentioned associated characteristics, including quiet 

waking, prompt and short-lasting effect, rapid HA turnover, the lack of an overuse of catecholamines and the 

lack of potent interactions with monoamine transporters may be contributory. Whatever these underlying 

mechanisms might be, the absence of sleep rebound observed with modafinil and H3R-antagonists, is critical 

in the clinical setting in terms of quality of life outcomes. 

3. Effects of the H3-receptor agonist, imetit on the mouse cortical EEG and sleep-wake cycle and 
ciproxifan-induced waking 
From this and other studies, it is clearly established that H3R-antagonists promote waking and improve 

vigilance. An important corollary question is whether H3R-agonists induce or facilitate sleep. It was also 

important to verify if the waking effect of H3R-antagonists could be reversed by H3R-agonists. To this aim, the 

effects of imetit (a potent and selective H3R-agonist) were examined in the same mouse model (n=8) during 

lights-off phase, when the animals spent most of the time awake at baseline (defined as the waking period). 

When administered alone before lights-off, imetit (1, 3 or 10 mg/kg i.p.) decreased cortical fast 

rhythms and markedly increased the power spectral density of the neocortical slow activity (δ + θ ranges, 

mainly 0.8-5 Hz, Figure 3) and spindles (8-15 Hz, not shown), resulting in a state of high voltage electrical 

activity (Figure 3). The effects on the cortical EEG were manifested on a 4h polygraphic recording as an 

increase in slow wave sleep and decrease in wake duration. Paradoxical sleep decreased slightly at all doses 

without reaching statistical significance (Figures 3, 5). Such effects were detectable at a dose of 1 mg/kg 

(although insignificant over the 4h analyzed period) and increased at 3 and 10 mg/kg (Figures 3, 5). The data 

are consistent with those obtained in the cat using α-methylhistamine, a chiral H3R-agonist [20]. These 

effects of imetit in the mouse were similar to those seen with BP2-94, another H3-receptor agonist that in the 

cat induced a dramatic increase in the power spectral density of cortical slow activity, associated with a 

significant increase in slow wave sleep [4], a phenomenon similar to that seen during the recovery phase 

from sleep deprivation. H3-receptor agonists might therefore have beneficial effects, helping the brain to 

recover from fatigue, mental exhaustion or sleep deprivation due to diverse causes. They might also be 

potentially superior to the classical antihistamines, the H1-receptor antagonists and other classes of hypnotics 

that induce slow wave sleep associated with prominent paradoxical sleep reduction, incompatible with 

physiological sleep, as their effect on paradoxical sleep might not occur or could be less prominent. Clinically 

suitable H3R-agonists might thus be expected to improve qualitative and quantitative aspects of sleep in 

some types of insomnia, e.g., those resulting from anxiety, stress or neuropathology. 

The arousal effects of ciproxifan (3 mg/kg, i.p.) observed during the sleep period were dose-

dependently antagonized by the H3-receptor agonist, imetit (1, 3 and 10 mg/kg, i.p. n =8; Figures 4, 5) with a 

significant reduction of induced-waking occurring after 3 mg/kg imetit with wake and slow wave sleep duration 

returning to near control at 10 mg/kg dosing. Paradoxical sleep however, remained decreased after imetit 

treatment (Figure 4). The delayed latency to slow wave sleep due to ciproxifan was reversed at 10 mg/kg 

whereas latency to paradoxical sleep was unchanged after all imetit doses (Figure 4). These data are 

consistent with those from cats showing an antagonism of the waking effect of thioperamide by α-
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methylhistamine [20] supporting the concept of an H3 receptor-dependent mechanism for their effects on EEG 

and sleep-wake parameters. However, it remains to be understood why imetit and other H3R-agonists do not 

increase paradoxical sleep, as they do slow wave sleep, since a possible paradoxical sleep-permissive role 

of histamine neurons has been hypothesized in the mouse. This is based on a paradoxical sleep-off 

discharge pattern of HA-containing cells [14], on the one hand; and on the other hand, an increase in 

paradoxical sleep seen with acute or chronic suppression of histidine decarboxylase (HDC) using either the 

HDC inhibitor, α-fluoromethylhistidine or HDC KO mice [16]. In addition, both imetit and ciproxifan caused a 

slight decrease in paradoxical sleep (Figure 5), making it possible that targets other than H3-receptors or HA 

transmission may be involved or reflecting the inverse agonist profiles of these two compounds. Additional 

experiments are therefore necessary. 

4. Characterization of the wake-promoting agents with reference to histamine-mediated transmission 
using knockout mouse models 

As HA neurons are thought to play a crucial role in maintaining cortical activation and waking, one 

may ask whether modafinil induces sustained wakefulness via activation of histaminergic neurons. The same 

question may be addressed regarding psychostimulants even though a predominant dopaminergic 

mechanism exists. The question has become more intriguing since reports in the rat of a c-fos expression in 

histaminergic tuberomammillary nucleus [41] and an increase in hypothalamic HA outflow [42], both seen 

with large doses of modafinil. In regard to H3R-antagonists, one may also question the importance of 

histamine transmission in their arousal effects and if there is an involvement of other neurotransmitters also 

involved in waking [8; 9] and controlled by H3-receptors. To test the histaminergic hypothesis regarding the 

mechanisms of action of amphetamine, modafinil and ciproxifan in waking, their effects in KO mouse models 

in which histamine-mediated transmission is altered, e.g., HDC and H1-, H2- and H3- receptor KO mice was 

studied. As previously reported, these KO mice are able to maintain, under the basal non-challenged 

conditions and despite qualitative change, a daily amount of waking near to that of wild type (WT) mice [16; 

48-50], probably due to the compensatory mechanisms elaborated by brain plasticity.  

A group (n=9) of 129Sv genetic-background inbred WT and HDC KO mice were recorded simultaneously, as 

previously described, to compare the sleep-wake effects of the W-promoting agents given i.p. during the light 

phase [16]. These mice were generated according to procedures previously described [51] and their 

genotypes confirmed using PCR. The doses used for amphetamine, modafinil and ciproxifan were 1, 32 and 

1 mg/kg respectively as these approximated equal potency in terms of wake induction. As presented above, 

all agents at the indicated doses caused, in all WT models (129Sv as well as C57/Black6/J genetic 

background), increased waking at the expense of slow wave sleep and paradoxical sleep as compared with 

placebo (Figures 6, 7; Table 3).  

In the HDC-KO mice, the same amphetamine and modafinil doses increased waking and decreased 

slow wave sleep and paradoxical sleep during the sleeping phase, the effect being identical or slightly 

superior to that seen in WT animals. In contrast, the same ciproxifan dosing (or higher doses up to 10 mg/kg, 

data not shown) had no effect on either the cortical EEG or the sleep-wake states (Figures 6, 7; Table 3). 
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HDC-KO mice lack endogenous HA synthesis and HA-containing neurons in the brain [16; 51]. The 

present data thus indicate that the sleep-wake effects of ciproxifan, but not those of amphetamine or 

modafinil, depend on histamine-mediated transmission. However, these data do not appear to support a 

direct excitation of histamine neurons in the mechanism of action of modafinil or amphetamine-like 

psychostimulants. C-fos expression in the histaminergic tuberomammillary nucleus and diffuse brain areas 

[41] or the HA release [42] seen in the rat after large doses of modafinil is thus likely to be the consequence 

of sustained waking rather than a modafinil-mediated excitation, as both c-fos expression and histamine 

release are positively correlated to waking [43-45;52]. Using c-fos as a marker in the cat supports this 

hypothesis. Indeed, examination of c-fos labeling after modafinil dosing but before an established long 

duration wake state revealed sparse c-fos expression in the histaminergic tuberomammillary nucleus and 

other brain regions [53]. Additionally in either normal [15] or brainstem-transectioned [4] cats, expression of c-

fos in histamine neurons has only been seen with ciproxifan and not with other waking substances including 

modafinil, as already mentioned, and psychostimulants like amphetamine and methylphenidate [53], 

indicating that only stimuli specific to the histaminergic system may induce c-fos expression within 

histaminergic cell bodies. However, it cannot be excluded that histaminergic neurons may be indirectly 

involved in modafinil-induced waking, as a significant decrease in GABA outflow in the posterior 

hypothalamus is seen in vivo after modafinil dosing [46; 47] and so HA or orexin neurons located in this 

region could be disinhibited and so enhance waking. 

Since only ciproxifan-mediated arousal depends on HA, this compound was further characterized 

using C57/Black6/J background KO mice devoid of H1- (n = 8), or H2- (n = 8) or H3- (n = 12) receptors. These 

mouse genotypes were generated respectively according to the previously described procedures and both 

WT and KO littermates were identified using PCR [54-56].  

Ciproxifan (1 mg/kg, i.p.) increased waking (+50-86% over a 4h recording) and cortical fast rhythms 

in all WT mouse groups during the sleeping period, whereas it had no effect in either H1- or H3-receptor KO 

littermates. Interestingly, the effects of ciproxifan on the cortical EEG and waking were intact in H2-receptor 

KO-mice, the increase in waking being similar in KO (+ 93% over 4h) than WT littermates (+85%) (Table 3). 

These data confirm the pharmacological selectivity of ciproxifan for H3 -receptors already demonstrated with 

imetit and the essential role of the H3-receptor in its arousal effect. Although recent studies indicate that both 

ciproxifan and imetit may process weak activity at H4-receptors [34;57;58] and although H3-receptors also 

regulate the availability of neurotransmitters other than HA, e.g., norepinephrine, acetylcholine and 5HT, that 

are also involved in sleep-wake control, the results generated from KO mice indicated that the effect of 

ciproxifan on EEG and sleep-wake parameters selectively depend on H3-receptor and histamine-mediated 

transmission. The fact that the waking effect of ciproxifan was observed in the H2-receptor KO mouse but 

absent in the H1-receptor KO genotype [48] confirms the dominant, if not exclusive, importance of H1-

receptors in the postsynaptic mechanisms of histaminergic arousal. Together, these data validate the earlier 

hypothesis [4; 20] that H3R-antagonists, via dis-autoinhibition of presynaptic H3-receptors, enhance the 

turnover and activity of histaminergic neurons, increasing synaptic HA that in turn activates postsynaptic H1-

receptors, promoting wakefulness and improving vigilance.   
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5. Conclusions 
Sleep-wake disorders constitute a major challenge of public health due to their high prevalence (19-

37%) in the general population. Somnolence is associated with various pathological conditions including 

sleep apnea, excessive daytime sleepiness due to nocturnal insomnia, Parkinson’s disease and narcolepsy 

or circumstances related to lifestyle, including daytime sleepiness due to voluntary sleep restriction or sleep 

deprivation resulting from night shift work, overwork or jet-lag. Novel, safe, efficacious and more specific 

therapeutic approaches are, therefore, in great demand in sleep medicine.  

The present study has distinguished two classes of wake-promoting agents: those involving 

histamine and those that appear histamine-independent and supports the role of the brain H3-receptors as 

potentially novel therapeutic targets for vigilance and sleep-wake disorders. Compared to current wake-

promoting medications, H3R-antagonists appear to possess several advantageous characteristics that might 

favor their development as novel therapeutics for the treatment of sleep-wake disorders especially 

somnolence: 

5.1. A well-defined mechanism of action, that is based on a clearly defined molecular target and the well-

established role of HA neurons and the role of H3-receptors in sleep wake mechanisms. 

5.2. A more specified treatment.  HA plays a key role in somnolence. Thus mice that lack HA are permanently 

somnolent [16] and narcoleptic dogs are HA deficient [59]. Moreover, narcoleptic patients have decreased HA 

levels in the CSF [60].  

5.3. Simultaneous cognitive improvement.   H3R-antagonists may improve cognition either via promoting EEG 

activation and vigilance or by improvement of specific cognitive processes (e.g., learning and memory) via 

cholinergic or noradrenergic systems that are also regulated by H3-receptors [30; 61-63]. 

5.4. A unique approach against narcolepsy. Finally, H3R-antagonists may represent a unique 

pharmacotherapy for the treatment of narcolepsy. In addition to their specific effects on the excessive 

somnolence, they may be also anticipated to inhibit or suppress narcoleptic attacks (direct onset of 

paradoxical sleep from waking or sleep onset REM periods called by some authors), an effect related to the 

permissive role exerted by histaminergic and other monoaminergic cells on paradoxical sleep. Indeed, HA 

cells in mice [14] and cats [6; 15] exhibit paradoxical sleep-off activity and acute or chronic abolition of HA 

synthesis results in an increase in paradoxical sleep [16]. Thus, enhancement of histaminergic neuronal 

activity by H3R-antagonists is anticipated to prevent the occurrence of paradoxical sleep and accordingly 

narcoleptic attacks in patients. Additionally, H3R-antagonists are effective in treating cataplexy in a dog 

narcoleptic model [64]. The development of novel and selective H3R-antagonists may thus lead to new 

therapies to treat the complex phenomenon of narcolepsy and other human sleep-wake disorders.  
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Table 1.  Effect of wake–promoting compounds as indicated, on cumulated wake (CW) amount during 4h 

and on latencies to slow wave sleep (SWS) and paradoxical sleep (PS). Compounds were administered in 

methylcellulose 0.25% i.p. at 11.30 (light phase). The results are expressed both as the mean time (min ± 

SEM) spent in waking (W) or to sleep onset, and as a percentage (in parentheses) obtained from the ratio of 

mean experimental values (compound treatment) over the mean control values (saline injection of the same 

animals). In the latter case, 100 % indicates the control level or no change. Note that all compounds induce a 

dose-dependent increase in waking and concomitant delayed sleep latency (*, ** p < 0.05, 0.01; Dunnett’s t 

test as compared with placebo; n = 8).  

 

Compound  (mg/kg) CW (0-4h)  latency to SWS  latency to PS 

1  111 (163) ± 7   55 (248) ± 8**  146 (213) ± 27**

4 197 (290) ± 7*   179 (805) ± 8**  250 (365) ± 20**Amphetamine 

8 240 (354) ± 1**  262 (1182) ± 9**  360 (526) ± 13**

10  116 (159) ± 13**  68 (278) ± 15  113 (116) ± 23 

30  187 (258) ± 22**  140 (575) ± 33*  193 (197) ± 38 Caffeine   

100  240 (331) ± 1**   424 (1737) ± 80**  754 (772) ± 87**

10  68 (104) ± 11   35 (172) ± 9  58 (108) ± 9 

30  93 (143) ± 18   56 (272) ± 19  108 (201) ± 18 Modafinil  

100  205 (314) ± 20**  200 (978) ± 31**  255 (475) ± 39**

10  110 (134) ± 2   26 (261) ± 9  82 (123) ± 8 

30  120 (146) ± 7*   41 (402) ± 12  86 (130) ± 7 Thioperamide 

100  164 (200) ± 22**  72 (710) ± 23**  259 (389) ± 55* 

1  102 (127) ± 12   53 (174) ± 13  91 (112) ± 6 

3  126 (156) ± 14**  63 (208) ± 11  144 (177) ± 39 Ciproxifan 

10  167 (208) ± 20**  96 (317) ± 30**  172 (210) ± 52**
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Table 2. Slow wave sleep (SWS) amount (min ± SEM) during periods of significant arousal, immediate 
recovery and different recovery periods following wake-promoting compounds given i.p. at 11h30 (light 
phase), as indicated. The duration of each period is compound- and dose-dependent and was determined 
individually. The last post-injection period between 17-19h corresponds to a spontaneous awakening period 
seen with C57/Black6 strain just before lights-on at baseline recordings. In parentheses are percentages of 
SWS duration compared with those obtained with placebo in the same animals. 100 % signifies the control 
level or no change. Note 1) a dose-dependant SWS-suppressing effect of all compounds; 2) the presence of 
sleep rebound during different recovery periods after amphetamine or caffeine 3) the absence of sleep 
rebound during any recovery period after modafinil, thioperamide or ciproxifan dosing (*, ** p < 0.05, 0.01; 
Dunnett’s t test as compared with placebo; n = 8) 

Compound & 
dose (mg/kg) 

Periods post-injection 

 
Significant 

arousal   

Immediate 
recovery  

Recovery before 
12h  12-24h recovery   

Spontaneous arousal 
before lights-on (17-19h) 

Amphetamine 0-2h    2-5h   5-12h       

1  37 (51) ± 3**  128 (101) ± 2  198 (100) ± 7  376 (99) ± 8  73 (99) ± 7 

0-3h    3-6h   6-12h      
4 

4 (3) ± 4**   123 (104) ± 3  189 (121) ± 6*  399 (105) ± 10*   86 (115) ± 6 

0-4h    4-7h   7-12h      
8  

0 (0) ± 1**   119 (102) ± 4  161 (135) ± 5**  440 (117) ± 6**   108 (149) ± 4** 

Caffeine  0-3h  3-6h 6-12h    

10  68 (59) ± 9**   122 (101) ± 8  186 (107) ± 17  377 (99) ± 22   73 (101) ± 11 

0-4h    4-7h   7-12h      30 
 49 (30) ± 14**   110 (96) ± 4  159 (120) ± 9*  409 (104) ± 17   91 (128) ± 10* 

0-12h                    
100  

83 (19) ± 31**   †  †  391 (108) ± 23   71 (97) ± 8 

Modafinil  0-1h  1-4h 4-12h    

10  20 (51) ± 5   138 (106) ± 4  255 (97) ± 9  372 (96) ± 7   71 (106) ± 8 

0-2h    2-5h   5-12h      
30  

46 (60) ± 10*   130 (94) ± 4  227 (102) ± 6  371 (103) ± 17   67 (102) ± 10 

0-5h    5-8h   8-12h      
100  

67 (33) ± 14**   114 (109) ± 3  129 (111) ± 5  401 (96) ± 17   79 (107) ± 9 

Thioperamide  0-1h  1-4h 4-12h    

10 10 (42) ± 4   115 (95) ± 5  248 (101) ± 7  336 (97) ± 19   61 (96) ± 6 

0-3h    3-6h   6-12h      
30 

71 (66) ± 4**   107 (89) ± 4  165 (97) ± 5  365 (104) ± 16   73 (108) ± 7 

0-4h    4-7h   7-12h      
100  

74 (50) ± 15**   109 (97) ± 8  168 (117) ± 10  355 (103) ± 12   73 (106) ± 6 

Ciproxifan  0-1h  1-4h 4-12h     

1 8 (41) ± 5   118 (94) ± 5  225 (87) ± 14  363 (102) ± 26   67 (98) ± 10 

0-2h    2-5h   5-12h       
3  

30 (45) ± 5**   118 (95) ± 4  212 (98) ± 8  362 (93) ± 16   70 (101) ± 6 

0-4h    4-7h   7-12h      
10 

67 (46) ± 14**   111 (95) ± 4  154 (110) ± 9  395 (102) ± 9   78 (107) ± 6 
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Table 3.  Effects of amphetamine, modafinil and ciproxifan on wake amount in wild type and knockout mouse 

models.  The results are expressed either as the mean time (min ± SEM) spent awake, or as a percentage (in 

parentheses) obtained from the ratio of mean experimental values (compound treatment, i.p.) over the mean 

control values (saline injection) in the same animals. 100 % indicates control level or no change. Three 

analyzed periods of 4h are shown. Note that 1) amphetamine and modafinil increase waking in both HDC-/- 

and HDC +/+ mice; 2) ciproxifan elicits significant waking effect in all wild type models and H2-/- mice but not in 

HDC-/- or H1 -/- mice; 3) a significant sleep rebound was seen only with amphetamine, and not with other 

compounds, in both HDC-/- and H1-/- mice (° p>0.05; **, *** p < 0.01, 0.001; Student’s t test as compared with 

placebo (individual animal served as its own control) or between knock-out and wild type mice).  

 
  Time post-injection 

0-4h  4-8h  8-12h  Genotype 

HDC +/+  135 (150) ± 7***  68 (91) ± 7  141 (79) ± 9* Amphetamine 

(1 mg/kg) HDC -/-  
n = 9 

127 (139) ± 7***  70 (94) ± 5  138 (77) ± 10*

HDC +/+  159 (185) ± 9**  77 (104) ± 6  162 (93) ± 9 Modafinil 

(32 mg/kg) HDC -/-  
n = 7 

166 (200) ± 11***  70 (92) ± 3  178 (107) ± 8 

HDC +/+  107 (178) ± 7***  70 (94) ± 5  145 (102) ± 7 

HDC -/-  
n = 9 

68 (107) ± 6°  75 (96) ± 4  125 (102) ± 9 

H1 +/+  113 (186) ± 6***  78 (102) ± 8  179 (101) ± 8 

H1 -/-  
n = 8 

70 (103) ± 8°  74 (105) ± 5  161 (99) ± 8 

H2 +/+  116 (185) ± 11***  65 (94) ± 8  171 (110) ± 12 

H2 -/-  
n = 8 

105 (193) ± 9***  69 (104) ± 5  168 (102) ± 10 

H3 +/+  111 (150) ± 7**  67 (91) ± 4  156 (107) ± 6 

Ciproxifan 

(1mg/kg) 

H3 -/- 

n = 

12 72 (98) ± 4°  76 (97) ± 2  149 (105) ± 6 

°

°

***

***

°

**
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Legends to figures 

Figure 1.  Effects of wake promoting compounds on cortical EEG and sleep–wake states in mice. Typical 

examples of polygraphic recordings, cortical EEG power density (µV2) in δ band (0.8-5 Hz) and cortical fast 

rhythms (β+γ, 30-60 Hz), illustrating the waking state induced by intraperitoneal injection of amphetamine, 

modafinil and ciproxifan at doses indicated. Note that all compounds induce a suppression of cortical slow 

activity (0.5–8 Hz) accompanied with a continuous cortical fast rhythms (30-60 Hz), whereas only ciproxifan 

causes a marked enhancement of the fast rhythm amplitude. EEG, electroencephalogram; EMG, 

electromyogram; PS, paradoxical sleep; SWS, slow wave sleep; W, wake. 

Figure 2. Hourly wake amount during 9h following intraperitoneal injection (11:30 a.m. light phase) of 

increasing doses of wake promoting agents in C57/Black6/J mice. Note that the duration of waking effect 

induced by all compounds is dose-related (*, ** p < 0.05, 0.01; Student’s t test as compared with placebo 

(methylcellulose 0.25%); n = 8). 

Figure 3. Typical examples of polygraphic recordings, cortical EEG power spectral density (µV2) in different 

frequency bands and corresponding hypnograms illustrating the effects of intraperitoneal injection of imetit (at 

18h, indicated by the arrow) on the EEG and sleep-wake cycle in a mouse. Note that compared with the use 

of placebo, the compound enhances markedly cortical slow activity (0.8-5 Hz, δ and slow Ө) and decreases 

fast rhythms (β+γ, 30-60 Hz), accompanied with an increase in slow wave sleep (SWS) (EEG, 

electroencephalogram; EMG, electromyogram; PS, paradoxical sleep; W, wake).  

Figure 4.  Effects of co-administration of ciproxifan with imetit on the sleep-wake cycle and latencies to slow 

wave sleep (SWS) and paradoxical sleep (PS) in the mouse. Representative 6h hypnograms and histograms 

showing that 1) the waking effect of ciproxifan injection (i.p. at 11h30 indicated by the first arrow) is reversed 

by increasing doses of imetit (i.p. at 12h, indicated by the second arrow); 2) the prolonged latency to SWS 

caused by ciproxifan is reversed by imetit at large doses while that to PS remained unchanged. Ordinates: 

sleep-wake stages. (*p < 0.05; Dunnett's t test after significant ANOVA, n = 8). 

Figure 5. Quantitative variations of the sleep–wake cycle following administration of imetit alone or coupled 

with ciproxifan (i.p. dosing at 12h, light phase). Histograms showing mean time (min) spent in each sleep–

wake stage during 4h after compound administration. Note 1) in top panel, that imetit dosing (i.p., at 18h  just 

before the lights-off phase or waking period) caused a dose-related decrease in waking (W) and an increase 

in slow wave sleep (SWS) without reducing paradoxical sleep (PS); 2) in lower panel, ciproxifan (i.p., at 

11h30 during light phase or sleeping period) caused a significant increase in W and a decrease in SWS; 3) in 

lower panel, the W-increasing and SWS-decreasing effects of ciproxifan were attenuated significantly by 

larger doses of imetit (i.p. at 12h), namely 3 and 10 mg/kg. PS remains decreased although statistically non 

significant. (*p < 0.05; Dunnett's t test after significant ANOVA; n = 8). 

Figure 6. Effects of modafinil on cortical EEG and sleep-wake states in wild type (HDC+/+, upper traces) and 

histidine decarboxylase knockout (HDC-/-, lower traces) mice. Examples of polygraphic recordings, cortical 

EEG power spectral density (µV2) in different frequency bands, and the corresponding hypnograms 

illustrating, in both genotypes, an identical awakening effect of modafinil (32 mg/kg, in 20% DMSO, i.p., 10:00 

as indicated by arrow) accompanied with a suppression of cortical slow activity (0.8-5 Hz) and continuous 
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cortical fast rhythms (30-60 Hz). EEG, electroencephalogram; EMG, electromyogram; PS, paradoxical sleep; 

SWS, slow wave sleep; W, wake. 

Figure 7. Effects of amphetamine, modafinil and ciproxifan on the sleep-wake states during 4h in wild type 

(HDC+/+, upper) and histidine-decarboxylase knockout (HDC-/-, bottom) mice. Note that amphetamine or 

modafinil dosing (i.p.) produced a similar increase in waking (W) and a concomitant decrease in slow wave 

sleep (SWS) and paradoxical sleep (PS) in both mouse genotypes and that ciproxifan increased waking and 

decrease SWS and PS in HDC+/+ mice, but had no effect in HDC-/-mice. *, **, *** p < 0.05, 0.01, 0.001 

respectively, Student’s t test as compared with control.  
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