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Abstract. This paper tackles the problem of model complexity in the
context of additive models. Several methods have been proposed to es-
timate smoothing parameters, as well as to perform variable selection.
However, these procedures are inefficient or computationally expensive
in high dimension. To answer this problem, the lasso technique has been
adapted to additive models, but its experimental performance has not
been analyzed.
We propose a modified lasso for additive models, performing variable
selection. A benchmark is developed to examine its practical behavior,
comparing it with forward selection. Our simulation studies suggest abil-
ity to carry out model selection of the proposed method. The lasso tech-
nique shows up better than forward selection in the most complex sit-
uations. The computing time of modified lasso is considerably smaller
since it does not depend on the number of relevant variables.

1 Introduction

Additive nonparametric regression model has become a useful statistical tool in
analysis of high–dimensional data sets. An additive model [10] is defined by

Y = f0 +
p∑

j=1

fj(Xj) + ε, (1)

where the errors ε are independent of the predictor variables Xj , E(ε) = 0 and
var(ε) = σ2. The fj , are univariate smooth functions and f0 is a constant. Y is
the response variable.

This model’s popularity is due to its flexibility, as a nonparametric method,
and also to its interpretability. Furthermore, additive regression circumvents the
curse of dimensionality.

Some issues related to model complexity have been studied in the context
of additive models. Several methods have been proposed to estimate smoothing
parameters [10, 8, 11, 16, 4]. These methods are based on generalizing univariate
techniques. Nevertheless, the application of these procedures in high dimension
is often inefficient or highly time consuming.
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2 Marta Avalos et al.

Variable selection methods have also been formulated for additive models [10,
5, 13, 3, 16]. These proposals exploit the fact that additive regression generalizes
linear regression. Since nonparametric methods are used to fit the terms, model
selection develops some new flavors. We not only need to select which terms to
include in the model, but also how smooth they should be. Thus even for few
variables, these methods are computationally expensive.

Finally, the lasso technique [14] has been adapted to additive models fitted
by splines. The lasso (least absolute shrinkage and selection operator) is a regu-
larization procedure intended to tackle the problem of selection of accurate and
interpretable linear models. The lasso estimates a vector of regression coefficients
by minimizing the residual sum of squares subject to a constraint on the l1–norm
of coefficient vector.

For additive models, this technique transforms a high–dimensional into a
low–dimensional hyper–parameter selection problem, which implies many ad-
vantages. Some algorithms have been proposed [6, 7, 1]. Their experimental per-
formance has not been, however, analyzed, and above all, these discriminate
between linear and nonlinear variables, but do not perform variable selection.

There are many other approaches to model selection for supervised regression
tasks (see for example [9]). Computational costs are a primary issue in their
application to additive models.

We propose a modified lasso for additive spline regression, in order to dis-
criminate between linear and nonlinear variables, but also, between relevant and
irrelevant variables. We develop a benchmark based on Breiman’s work [2], to
analyze the practical behavior of the modified lasso, comparing it to forward
variable selection. We focus on the situations where the control of complexity
is a major problem. The results allow us to deduce conditions of application of
each regularization method. The computing time of modified lasso is consider-
ably smaller than the computing time of forward variable selection since it does
not depend on the number of relevant variables (when the total number of input
variables is fixed).

Section 2 presents lasso applied to additive models. Modifications are in-
troduced in section 3, as well as algorithmic issues. The schema of the testing
efficiency procedure and benchmark for additive models are presented in section
4. Section 5 gives simulation results and conclusions.

2 Lasso Adapted to Additive Models

Grandvalet et al. [6, 7] showed the equivalence between adaptive ridge regression
and lasso. Thanks to this link, the authors derived an EM algorithm to com-
pute the lasso estimates. Subsequently, results obtained for the linear case were
generalized to additive models fitted by smoothing splines.

Suppose that one has data L = {(x,y)}, x = (x1, . . . ,xp), xj = (x1j , . . . , xnj)t,
y = (y1, . . . , yn)t. To simplify, assume that the responses are centered. We re-
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Regularization for Additive Models 3

mind that the adaptive ridge estimate is the minimizer of the problem

min
α1,...,αp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

p∑
j=1

xjαj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+
p∑

j=1

λjα
2
j , (2)

subject to
p∑

j=1

1
λj

=
p

λ
λj > 0, (3)

and the lasso estimate is given by the solution of the following constrained op-
timization problem

min
α1,...,αp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

p∑
j=1

xjαj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

subject to
p∑

j=1

|αj | ≤ τ , (4)

where τ and λ are predefined values.
We also remind that the cubic smoothing spline is defined as the minimizer

of the penalized least squares criterion over all twice–continuously–differentiable
functions. This idea is extended to additive models in a straightforward manner:

min
f1,...,fp∈C2

∣∣∣∣∣∣
∣∣∣∣∣∣y −

p∑
j=1

fj(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+
p∑

j=1

λj

∫ bj

aj

f ′′j (x)2dx, (5)

where [aj , bj ] is the interval for which an estimate of fj is sought. This interval
is arbitrary, as long as it contains the data; f̂j is linear beyond the extreme
data points no matter what the values of aj and bj are. Each function in (5) is
penalized by a separate fixed smoothing parameter λj .

Let Nj denote the n× (n + 2) matrix of the unconstrained natural B–spline
basis, evaluated at xij . Let Ωj be the (n + 2)× (n + 2) matrix corresponding to
the penalization of the second derivative of f̂j . The coefficients of f̂j in the un-
constrained B–spline basis are noted βj . Then, the extension of lasso to additive
models fitted by cubic splines, using the equivalence between (4) and (2)–(3) is
given by

min
β1,...,βp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

p∑
j=1

Njβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+
p∑

j=1

λjβ
t
jΩjβj , (6)

subject to
p∑

j=1

1
λj

=
p

λ
λj > 0, (7)

where λ is a predefined value. The expression (6) shows that this problem is
equivalent to a standard additive spline model, where the penalization terms
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λj applied to each additive component are optimized subject to constraints (7).
This problem has the same solution as

min
β1,...,βp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

p∑
j=1

Njβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+
λ

p

 p∑
j=1

√
βt

jΩjβj

2

. (8)

The penalizer in (8) generalizes the lasso penalizer
∑p

j=1 |αj | =
∑p

j=1

√
α2

j .
Note that the writing (6)–(7) can also be motivated from a hierarchical Bayesian
viewpoint.

Grandvalet et al. proposed a generalized EM algorithm, where the M-step is
performed by backfitting (see Sect. 3.1) to estimate coefficients βj . This method
does not perform variable selection. When after convergence β̂t

jΩj β̂j = 0, the
jth predictor is not eliminated but linearized.

Another algorithm based on sequential quadratic programming was suggested
by Bakin [1]. This methodology seems to be more complex than the precedent
one and does not perform variable selection either.

3 Modified Lasso

3.1 Decomposition of the Smoother Matrix

Splines are linear smoothers, that is, the univariate fits can be written as f̂j =
Sjy, where Sj is an n×n matrix called smoother matrix. The latter depends on
the smoothing parameter and the observed points xj , but not on y.

The smoother matrix of a cubic smoothing spline has two unitary eigenvalues
corresponding to the constant and linear functions (its projection part), and
n−2 non–negative eigenvalues strictly smaller than 1 corresponding to different
compounds of the non-linear part (its shrinking part). Also, Sj is symmetric,
then Sj = Gj + S̃j , where Gj is the matrix that projects onto the space of
eigenvalue 1 for the jth smoother, and S̃j is the shrinking matrix [10].

For cubic smoothing splines, Gj is the hat matrix corresponding to the
least–squares regression on (1,xj), the smoother matrix is calculated as Sj =
Nj(Nt

jNj + λjΩj)−1Nt
j , and S̃j is found by Sj −Gj :

S̃j = Sj −
(

1
n
11t +

1
||xj ||22

xjxt
j

)
. (9)

Additive models can be estimated by the backfitting algorithm which consists
in fitting iteratively f̂j = Sj(y −

∑
k 6=j f̂k), j = 1, . . . , p.

Taking into account the decomposition of Sj , the backfitting algorithm can
be divided into two steps: 1. estimation of the projection part, g = G(y−

∑
f̃j),

where G is the hat matrix corresponding to the least–squares regression on
(1,x1, . . . ,xp), and 2. estimation of the shrinking parts, f̃j = S̃j(y−g−

∑
k 6=j f̃k).

The final estimate for the overall fit is f̂ = g +
∑

f̃j .
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Regularization for Additive Models 5

In addition, linear and nonlinear parts work on orthogonal spaces: Gf̃j = 0
and S̃jg = 0, so estimation of additive models fitted by cubic splines, using the
backfitting algorithm can be separated in its linear and its nonlinear part.

3.2 Isolating Linear from Nonlinear Penalization Terms

The penalization term in (7) only acts on the nonlinear components of f̂ . Conse-
quently, severely penalized covariates are not eliminated but linearized. Another
term acting on the linear component should be applied to perform subset selec-
tion.

The previous decomposition of cubic splines allows us to decompose the linear
and nonlinear parts:

f̂ = g + f̃ =
p∑

j=1

xjα̂j +
p∑

j=1

f̃j(xj) = xα̂ +
p∑

j=1

Ñj β̃j , (10)

where Ñj denotes the matrix of the nonlinear part of the unconstrained spline
basis, evaluated at xij , β̃j denotes the coefficients of f̃j in the nonlinear part of
the unconstrained spline basis, and α = (α1, . . . , αp)t denotes linear least squares
coefficients.

Regarding penalization terms, a simple extension of (7) is to minimize (with
respect to α and β̃j , j = 1, . . . , p)∣∣∣∣∣∣

∣∣∣∣∣∣y − xα−
p∑

j=1

f̃j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+
p∑

j=1

µjα
2
j +

p∑
j=1

λj β̃
t
jΩj β̃j , (11)

subject to

p∑
j=1

1
µj

=
p

µ
, µj > 0 and

p∑
j=1

1
λj

=
p

λ
, λj > 0, (12)

where µ and λ are predefined values1.
When after convergence, µj ≈ ∞ and λj ≈ ∞, the jth covariate is eliminated.

If µj < ∞ and λj ≈ ∞, the jth covariate is linearized. When µj ≈ ∞ and
λj < ∞, the jth covariate is estimated to be strictly nonlinear.

3.3 Algorithm

1. Initialize: µj = µ, Λ = µIp, λj = λ.
2. Linear components:

(a) Compute linear coefficients: α = (xtx + Λ)−1 xty.

1 Note that eΩj ≡ Ωj , where eΩj and Ωj are the matrix corresponding to the penal-

ization of the second derivative of efj and fj , respectively.
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6 Marta Avalos et al.

(b) Compute linear penalizers: µj = µ
‖α‖1
p|αj |

, Λ = diag(µj).

3. Repeat step 2 until convergence.
4. Nonlinear components:

(a) Initialize: f̃j , j = 1, . . . , p, f̃ =
∑p

j f̃j .

(b) Calculate: g = G
(
y − f̃

)
.

(c) One cycle of backfitting: f̃j = S̃j

(
y − g −

∑
k 6=j f̃k

)
, j = 1, . . . , p.

(d) Repeat step (b) and (c) until convergence.
(e) Compute β̃j from the final estimates.

(f) Compute nonlinear penalizers: λj = λ

∑p
j=1

√
β̃t

jΩj β̃j

p
√

β̃t
jΩj β̃t

j

.

5. Repeat step 4 until convergence.

In spite of orthogonality, projection step 4.(b) is iterated with backfitting step
4.(c) to improve the numerical stability of the algorithm. In order to compute
nonlinear penalizers in 4.(f), calculating βj instead of β̃j in 4.(e) is sufficient,
since Ωj is insensitive to the linear components.

An efficient lasso algorithm was proposed by Osborne et al. [12]. It could be
used for the linear part of the algorithm, and may be adapted to the nonlinear
part.

3.4 Complexity Parameter Selection

The initial multidimensional parameter selection problem is transformed into a
2–dimensional problem. A popular criterion for choosing complexity parameters
is cross–validation, which is an estimate of the prediction error (see Sect. 4.1).
Calculating the CV function, is computationally intensive. A fast approximation
of CV is generalized cross–validation [10, 8, 14]:

GCV(µ, λ) =
1
n

(y − f̂)t(y − f̂)
(1− df(µ, λ)/n)2

. (13)

The GCV function is evaluated over a 2–dimensional grid of values. The point
(µ̂, λ̂) yielding the lowest GCV is selected. The effective number of parameters
(or the effective degrees of freedom) df is estimated by the sum of the univariate
effective number of parameters, dfj [10]:

df(µ, λ) ≈
∑p

j=1 dfj(µ, λ) = tr
[
x (xtx + Λ)−1 xt

]
+

∑p
j=1 tr

[
S̃j(λj)

]
. (14)

Variable selection methods do not take into account the effect of model selec-
tion [17, 15]. It is assumed that the selected model is given a priori, which may
introduce a bias in the estimator. The present estimate suffers from the same in-
accuracy: the degrees of freedom spent in estimating the individual penalization
terms estimation are not measured.
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Regularization for Additive Models 7

4 Efficiency Testing Procedure

Our goal is to analyze the modified lasso behavior and compare it to another
model selection method: forward variable selection. Comparison criteria and pro-
cedures for simulations are detailed next.

4.1 Comparison Criteria

The objective of estimation is to construct a function f̂ providing accurate pre-
diction of future examples. That is, we want the prediction error

PE(f̂) = EY X[(Y − f̂(X))2] (15)

to be small.
Let λ̂ denote complexity parameter selected by GCV and λ∗ be the value

minimizing PE (Breiman’s crystal ball [2]):

λ̂ = argmin
λ

GCV
(
f̂(., λ)

)
, λ∗ = argmin

λ
PE

(
f̂(., λ)

)
. (16)

4.2 A Benchmark for Additive Models

Our objective is to define the bases of a benchmark for additive models inspired
by Breiman’s work [2]: “Which situations make estimation difficult?” and “What
parameters are these situations controlled through?”

The number of observations–effective number of parameters ratio, n/df. When
n/df is high, the problem is easy to solve. Every “reasonable” method will find
an accurate solution. Conversely, a low ratio makes the problem insolvable. The
effective number of parameters depends on the number of covariates, p, and on
other parameters described next.

Concurvity. Concurvity describes a situation in which predictors are linearly
or nonlinearly dependent. This phenomenon causes non–unicity of estimations.
Here we control collinearity through the correlation matrix of predictors:

X ∼ Np(0,Γ), Γij = ρ|i−j|. (17)

The number of relevant variables. The nonzero coefficients are in two clusters of
adjacent variables with centers at fixed l’s. The coefficient values are given by

δj = I{ω−|j−l|>0}, j = 1, . . . , p, (18)

where ω is a fixed integer governing the cluster width.
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8 Marta Avalos et al.

Underlying functions. The more the structures of the underlying functions are
complex, the harder they are to estimate. One factor that makes the structure
complex is rough changes in curvature. Sine functions allow us to handle diverse
situations, from almost linear to highly zig-zagged curves. We are interested in
controlling intra– and inter–covariates curvatures changes, thus define:

fj(xj) = δj sin 2πkjxj , (19)

and f0 = 0. Consider κ = kj+1 − kj , j = 1, . . . , p− 1, the sum
∑p

j=1 kj fixed to
keep the same overall degree of complexity.

Noise level. Noise is introduced through error variance

Y =
∑p

j=1 fj + ε, ε ∼ N (0, σ2). (20)

In order to avoid sensitivity to scale, the noise effect is controlled through the
determination coefficient, which is a function of σ.

5 Results

5.1 Example

Fig. 1 reproduces the simulated example in dimension five used in [7]. The fitted
univariate functions are plotted for four values of (µ, λ). The response variable
depends linearly on the first covariate. The last covariate is not relevant. The
other covariates affect the response, but the smoothness of the dependancies
decreases with the coordinate number of the covariates.

For µ = λ = 1, the individual penalization terms of the last covariate, µ5,
λ5, were estimated to be extremely large, as well as the individual nonlinear
penalization term corresponding to the first covariate, λ1. Therefore, the first
covariate was estimated to be linear and the last one was estimated to be irrele-
vant. For high values of µ and λ, the dependences on the least smooth covariates
are difficult to capture.

5.2 Comparison

Implementation. The forward selection version of the backward elimination al-
gorithm given in [3] was implemented. Both smoothing parameters and models
are selected by GCV. Given that the current model has q ≥ 0 variables, GCV is
computed for each of the p − q models embedding the current model with one
more variable. If the (q +1)–variable nested model minimizing GCV has smaller
GCV value than the q–variable model, then the q–model is replaced with this
“best” (q +1)–variable nested model and the procedure is continued. Otherwise,
the q–variable model is retained and the procedure is stopped. The PE value is
estimated from a test set of size 20000 sampled from the same distribution as
the learning set.
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Regularization for Additive Models 9

Fig. 1. Modified lasso on simulated data. The underlying model is y = x1 +cos(πx2)+
cos(2πx3) + cos(3πx4) + ε. The covariates are independently drawn from a uniform
distribution on [−1, 1] and ε is a Gaussian noise of standard deviation σ = 0.3. The
solid curves are the estimated univariate functions for different values of (µ, λ), and
dots are partial residuals.

The GCV criterion is used to select complexity parameters of modified lasso.
The GCV function is evaluated over a grid of 5 × 5 values. A reasonably large
range was adopted to produce the complexity parameters space, specifically,
λ, µ ∈ [0.02, 4]. The log–values are equally spaced on the grid. The PE value of
lasso is calculated similarly to the PE of forward selection.

Simulations. Parameters of control described in section (4.2) were fixed as fol-
lows. The number of observations and the number of covariates were, respec-
tively, n = 450 and p = 12. We considered two cases for ρ, low (ρ = 0.1) and
severe (ρ = 0.9) concurvity. With respect to relevant variables, the situations
taken into account in simulations were: ω = {1, 2, 3}, taken clusters centered at
l = 3 and l = 9. This gave 2, 6 and 10 relevant variables, over a total of 12. No
different curvature changes between covariates: κ = 0 and moderate curvature
changes within covariates:

∑
kj = 9, were taken into account. We studied a

lowly noisy situation: R2 = 0.9.
Table 1 shows estimated PE values for the two methods in comparison, mod-

ified lasso using the GCV criteria and forward variable selection, and PE values
for the optimal modified lasso, Lasso*, (that is, complexity parameters are the
minimizers of PE, they are estimated from an “infinite” test set).

We observe that only in the most difficult situations: 6 or 10 relevant vari-
ables (ω = 2 or 3) and severe correlation (ρ = 0.9), the lasso applied to additive
models had a lower PE than forward selection. Estimated PE values correspond-
ing to modified lasso using the GCV criteria are quite higher than PE values
corresponding to optimal modified lasso. This may be because this complexity
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10 Marta Avalos et al.

Table 1. Estimated PE values for the modified lasso and forward selection and PE
values for the optimal modified lasso, for each set of parameters.

ρ ω Lasso Forward Lasso*

0.1 1 0.109 0.081 0.104
0.1 2 0.346 0.262 0.341
0.1 3 0.754 0.713 0.746
0.9 1 0.199 0.172 0.182
0.9 2 0.907 0.935 0.881
0.9 3 1.823 2.212 0.812

parameter selection method is not sufficiently accurate. A more extended exper-
iment, including other described parameters of control, would be necessary to
validate these first results.

Table 2 shows average computing time in seconds. Whereas computing time
of lasso does not seem to depend on the number of relevant variables, computing
time of forward variable selection increases considerably with the number of
variables that actually generate the model.

Table 2. Average computing time in seconds needed by modified lasso and forward
selection, when 2, 6 and 10 variables generate the model (ω = {1, 2, 3}, respectively).

ω Lasso Forward

1 9854 4416
2 8707 26637
3 7771 108440

Forward selection never missed relevant variables. However, this is not the
best solution when ρ = 0.9, considering that variables are highly correlated.
Moreover forward variable selection picked two irrelevant variables in the situa-
tions ω = 1, ρ = 0.9 and ω = 2, ρ = 0.9. Linear components of modified lasso
were estimated to be highly penalized in all cases, for all variables (we remind
that underlying functions are centered sines). Fig. 2 shows inverse of estimated
univariate complexity parameters corresponding to the nonlinear components.
Modified lasso penalized severely irrelevant variables. Penalization of relevant
variables increased with concurvity and with the number of relevant variables.

5.3 Conclusion

We propose a modification of lasso for additive models in order to perform
variable selection. For each covariate, we differentiate its linear and its nonlinear
part, and penalize them independently. Penalization is regulated automatically
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Regularization for Additive Models 11

Fig. 2. Inverse of the estimated univariate complexity parameters corresponding to the

nonlinear components:
1

λj
, j = 1, ..., 12. All variables are represented in the horizontal

axis. Stars (∗) are relevant variables and plus (+) are irrelevant ones. First line of
graphics corresponds to low concurvity, second one corresponds to severe concurvity.
Graphics are ordered along ω from left to right.

from two global parameters which are estimated by generalized cross–validation.
We have tested this method on a set of problems, in which complexity was very
different.

Results of simulations allow us to conclude that lasso perform better than
forward selection in the most complex cases. Whereas computing time of lasso
does not depend on the number of relevant variables, computing time of forward
variable selection increases considerably with the number of variables that ac-
tually generate the model. Performance of modified lasso can be got better by
improving the complexity parameter selection method.
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