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Invited Paper 

Computational modeling and imaging in biology and medicine 
are gaining more and more interest with the discovery of in-depth 
structural and functional knowledge at all space and time scales 
(molecule to proteins, cells to organs and organizms). The recursion 
between description levels for highly dynamical, interacting and 
complex systems, i.e the integrative approach, is a very challenging 
topic where formal models, observational tools and experimental 
investigations have to be closely designed, coupled and confronted 
together. Imaging techniques play a major role in this interdiscipli-
nary attempt to elucidate this biocomplexity: they convey relevant 
information about the underlying mechanisms, depict the confor-
mations and anatomical topologies and draw the biophysical laws 
they may follow. Furthermore, the basic image analysis tools (from 
calibration to segmentation, motion estimation and registration up 
to pattern recognition) are generic enough to be of value whatever 
the objects under consideration. The same comments apply when 
Computer Graphics or Virtual Reality techniques are concerned. 
This paper will survey the recent contributions dealing with both 
models, imaging data and processing frames. Examples ranging 
over different scales, from macro to nano, will be given in order to 
enhance the mutual benefits and perspectives that can be expected 
from this coupling. 

Keywords—biological and medical imaging, interpretation, 
physiological modeling, simulation. 

I. INTRODUCTION 

The traditional image processing views rely most often on 
the application of innovative algorithms to clinical problems 
and, from there, it is expected that new clues will conse-
quently follow in terms of health concerns [61]. It is argued 
in this paper that an in-depth knowledge of the processes un-
derlying the observations will be more and more required to 
face the challenges of biocomplexity and will allow to visit 
and revisit a number of physiopathological issues thanks to 
the emergent imaging modalities at our disposal. There is a 
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condition, however, to succeed: to acquire a full pluridisci-
plinary culture in the area of concern. This statement will in-
volve the introduction of our modeling capabilities, directly 
based on biology, physiology, chemistry and others, into the 
biomedical engineering space. Let us first define more pre-
cisely this issue. 

Theoretical modeling and experimental investigations in 
the biomedical sciences are both aimed at the elucidation of 
the underlying biological or physiological processes, and one 
of the most critical features to deal with is the development 
and the evolution of complex spatio-temporal patterns, at dif-
ferent scales. Mathematical models for physiological pattern 
formation [54] have played a leading role in the formulation 
of hypotheses regarding possible mechanisms and in guiding 
the design of relevant experiments. From a general stand-
point, modeling requires 

— an in-depth understanding and a sound appreciation 
of the given problem: discipline frontiers have to be 
passed over; 

— an adequate mathematical representation (contin-
uous or discrete, qualitative or not, fine or coarse, 
etc.); 

— the capability to generate a biologically-based or 
physiologically-based interpretation of the mathe-
matical results in terms of expected behaviors, in-
sights, and knowledge. 

The need to merge knowledge coming from different 
sources about processes spanning several orders of 
spatio-temporal magnitudes is, at the same time, recognized 
as a critical step toward “integrative physiology.” The aim 
is not only to store or retrieve the last research results and 
make them available to the worldwide community: it is also 
to provide operational tools for combining and confronting 
them to new modeling techniques which represent a unique 
way to make them active and to provide the right perspective 
for any understanding of large, multilooped systems. The 
recursion from cellular and subcellular levels to tissues 



and organs is here of major importance in order to build 
observable sets consistent with comprehensive views. Such 
objectives are stated by the “physiome” project [5]1 and the 
“systeome” initiative2 . This focus on in-silico models of 
whole cells, with fully-sequenced genomes, is similar to the 
effort initiated by the Alliance for Cellular Signaling(AfCS)3 

for cardiomyocytes and B-cells or to the Microbial Cell 
Project (MCP)4 . 

These highly complex processes to be handled have also 
to be put in regards with the potential observables at our dis-
posal for further validation. Imaging techniques are evolving 
in parallel and they bring new resources to explore the living 
structures and their functions. Beyond the classical ones, like 
CT Scanner and MRI, which are continuously improving, a 
wide spectrum of new physical means (fluorescence-optical, 
ion mass spectrometry, etc.) is available to acquire data on 
molecules and cells, in other words, to bring more insights at 
nano and micro levels. However, advances in imaging tech-
niques will also strongly depend on the knowledge acquired 
about the biological mechanisms involved. Therefore, an in-
creasing demand can be expected for active developments of 
algorithmic tools aimed at image analysis levels (segmenta-
tion, registration, motion tracking, deformation estimation, 
pattern matching, and recognition). We are convinced that 
a joint and proper use of sub and supra cellular knowledge, 
observational modalities and processing methods will offer 
a full range of unprecedented possibilities for diagnosis and 
therapy. 

Some features of objects (i.e., structures and functions), 
imaging devices and models will be briefly examined 
Section II. Their coupling and confrontation as well as the 
transversal nature of information processing methods will 
be highlighted. The capability to draw well-posed questions 
from fundamental concerns or clinical objectives will be also 
addressed. Then, three examples will be described which 
operate at distinct object scales. The first one (Section III) 
deals with a generic approach capable to link textural 
features with tissue properties: it will be exemplified on a 
macroscopic model of the liver vascular trees coupled with 
CT Scanner data. Section IV is focussed on cell motion 
analysis observed by means of fluorescent confocal laser 
scanning microscope and, more precisely, on the phase 
corresponding to the nuclear envelope breakdown. The last 
example (Section V) is devoted to bio-array techniques 
allowing to provide some clues on the expression rate of 
genes. These examples underline the impact of a proper 
matching between models, data, and image analysis. Some 
perspectives will be given in conclusion. 

II. CONCEPTUAL AND INTEGRATED VIEWS 

A. Objects and Observations 

The targets range from molecules, proteins, genes, chro-
mosomes, cells, substructures, organs, and systems up to 

1http://www.physiome.org
2http://www.icsb2001.org/conference_schedule.html
3http://www.afcs.org/
4http://microbialcellproject.org

whole organisms and they have to be matched with imaging 
data (Fig. 1). The capabilities to extract, quantify, and 
interpret the information directly impact on the possibility 
to build, feed and validate relevant models. Diagnosis is 
the first objective and means that shape, tissue and function 
characterization will have a key role for the discrimination of 
diseases. However, diagnosis assessment is not the final goal 
and some therapeutic actions must be carried out such as 
surgery or radiotherapy strategies. They apply mainly to sub-
structures and organs, both operating at a macroscopic level. 
They require a full framework of image processing methods. 
In addition to the image formation issue (including recon-
struction algorithms, calibration, etc.), object extraction has 
to be performed which starts with the segmentation problem. 
In the medical context, the interindividual differences, the 
variability of disorder appearances, the inaccuracies and 
uncertainties in measurements are, among others, some of 
the intrinsic difficulties to deal with. This process requires 
the image volume or image sequence to be partitioned into 
regions representing meaningful objects. The current trend 
is to tackle this problem using some high level priors based 
on geometric and statistical models. Such models depart 
from the basic meaning used here: they can be considered 
as case-based constructs and do not refer to any underlying 
knowledge regarding tissue growth, disease evolution and 
the like. They can be identified as “surface models” [17]. 
Quantification is aimed at the characterization of the objects 
of interest like position, shape, tissue features, motion, 
deformation, etc., the outputs being numerical parameters 
that are assumed to fully define them as well as the relations 
they share with others. Registration techniques required for 
multimodal and interventional imaging can be derived from 
the same viewpoints. These issues are today well established 
and still represent an active area of research. We prefer to 
focus this section on more prospective topics tackling the 
cell level and below, and some of the corresponding imaging 
modalities. 

They start from the acquisition of genomic or proteomic 
information to the modeling of both genes expression and 
metabolic networking which lead to complex spatio-tem-
poral patterns and morphogenetic processes. 

The main scientific interests, that can be expected in this 
area, are as follows: 

— explaining morphogenetic mechanisms involved 
in embryology, tumor genesis and longevity 
processes; 

— measuring gene expression, metabolic, and physical 
aspects of cells and tissues functions; 

— investigating complex morphogenetic processes 
like tumour progression, neo-vascularization, 
wound healing; 

— modeling cell and tissue dynamical organization 
(proliferation, apoptosis, migration, remodeling, 
etc.) based on the evolution of highly orchestrated 
interactions and complex intra/extra cellular sig-
nalling pathways; 

— acquiring, processing, and interpreting images 
from various technologies such as cDNA-, protein-, 



Fig. 1. Objects–observations–models. These basic dimensions, explored at different scale levels by 
means of appropriate imaging modalities and models, can be submitted and coupled to generic 
components of information processing in order to gain in-depth understanding about normal and 
pathological features. 

tissue-arrays, image cytometry, or two-dimensional 
gel electrophoresis; 

— constituting databases and patient centred data 
warehouses allowing diagnosis and predictions in 
familial or population contexts. 

B. Multilevel Models and Imaging 

Any advance in understanding the cell functioning must 
be formalized by finding a high level of formal description 
of biochemical, mechanical, signalling processes used in 
cell biology, from the genome expression to cell motion 
and tissue morphogenesis. This close coupling between 
data, knowledge and models will allow us to come up with 
missing elements ensuring the coherence and the pertinence 
of the explanation of observed pathological phenomena in 
order to increase the efficiency of further medical actions. 
A bridge between the cell and molecular level, on the one 
hand, and higher levels of organization, on the other hand, 
has to be built. The elucidation of these interlevel processes 
relies on structural and functional information which in-
cludes membrane features, channel kinetics, transporter 
characteristics, metabolic network topology as well as tissue 
properties (architecture, elasticity, fluid dynamic, etc.). 

Such an ambitious perspective emphasizes that the future, 
and major challenge, in medicine is to move from diagnosis 
to disease prediction and prevention. It requires new means 
to detect very early the onset of a given pathology. The 
recent International Symposium on Biomedical Imaging 
(ISBI) [74], has shown that fluorescence imaging in 
optical diffusion tomography, near-infrared optical tomo-
graphic imaging, real-time and functional optical coherence 
imaging, soft X-ray microscopy among others [6], [25], 
[30], [39], will play a major role. DNA chips, Biochips, 

and Molecular Imaging will provide the key elements to 
reach such understanding. Molecular Imaging [33], [56], 
[76] can be seen as the capability to get a localized in vivo 
characterization of biological processes on the molecular 
and cellular level. In contrast to the morphological and 
functional changes that are caused by a disorder through 
conventional imaging, specific molecular abnormalities 
could be detected which are the cause of the disease. It relies 
on a transfer of methods developed in molecular biology and 
in in vitro diagnosis to imaging where the key elements will 
be the design of specific and biocompatible probes with high 
specificity, appropriate radiotracers and fluorescent dyes, 
amplification strategies (e.g using reporter genes in gene 
therapy for instance [56]) and sensitive detection systems. 

While CT Scanner and Ultrasound techniques provide 
morphological and physiological information, magnetic 
resonance imaging (MRI) and spectroscopy (MRS), nuclear 
imaging (PET, SPECT) and optical modalities bring clues on 
metabolism and molecule distribution. They differ, however, 
in their capability to capture these processes. The spatial 
resolution of PET Scanner can be expected to decrease 
beyond 1 mm [37] but requires an increased sensitivity, 
higher specific activity labeled compounds and improved 
reconstruction algorithms [26]. 

MRI [45] provides access to host intrinsic parameters, 
including molecular motions (such as diffusion and perfu-
sion), susceptibility effects and chemical shift differences. 
Enzymatically activated contrast agents have been already 
reported [47] which allow in vivo visualization of exogenous 
gene expression and this points out the MRI potential for 
cell therapy and gene therapy. 

Fluorescence-optical imaging with biologically activated 
contrast agents is limited by the penetration depth (about 



7–12 cm according to the type of tissues [55]). However, 
this modality is highly sensitive to molecular information, 
fast and cost effective and does not involve ionising radia-
tion. The objects close to the surface can be imaged directly 
and depth information can be obtained by means of tomo-
graphic techniques (it has been shown recently that deep 
brain tumours can be detected [76]). Near-infrared fluores-
cence imaging is also of interest when contrast agents can 
be switched on by enzymes of tumour metabolism (so-called 
“smart contrast agents”): an improved signal-to-noise ratio is 
provided. It can be imagined, even if it is far away, that virtual 
biopsy could be achieved instead of invasive tissue sampling 
and histology: the molecular characterization of disease in 
situ for personalized treatments of patients and the earlier de-
termination of therapy response would then be possible. 

Multiple isotope imaging mass spectrometry (MIMS) al-
lows to study the accumulation of molecules labeled with 
stable isotopes (15N, 2H, 33S, etc.) or radio-isotopes (14C, 
etc.) in a given target [63]. The image resolution (50 nm) is 
better than optical microscopy (about 0.3 m). It has a wide 
spectrum of biological applications from histological image 
to halogenous tracer mapping: cellular metabolic pathways, 
nucleo-cytoplasmic translocations, RNA and DNA expres-
sion, and distribution can be observed. 

Of course, as it can be already seen in medical equipment 
(CT-PET scanner), some of these sources may be combined 
in a unique device, with the major advantage to bring com-
plementary information and to avoid the image registration 
task. 

C. Models and Information Processing 

Modeling belongs in a general sense to cognition and 
can be seen basically as a predictive science. Model-driven 
plans can be found for data acquisition and are aimed at 
the optimization of measures. Model-driven experiment 
design in order to test hypotheses is another example of 
this. Conceptual modeling and planning are closely related 
together: the former helps to describe the world in which 
to operate, the latter provides a framework to organize the 
actions and anticipate on potential evolutions. This is of 
significance when dealing with computer assisted therapy 
([67]). However, modeling is not limited to a descriptive 
role but has a major interest in providing solutions to the 
problem at hands. It is expected to improve the resolution 
of a problem by introducing explicitly current knowledge in 
the reasoning and decision processes. This applies to low 
level tasks (capture of information, control of processing 
algorithms), intermediate level actions (feature grouping, 
focus of attention techniques, hypothesis generation,…) and 
to high level analysis (diagnosis, corrective therapies. etc.). 
When intelligent systems are concerned, explanations and 
causal relations are expected to be provided together with 
the solutions. 

Numerical simulations bring us closer to the core of this 
paper. They have to see with key research issues such as 
the paradigms regarding direct and inverse problems, image 
analysis and synthesis, etc. Simulation relies on a model of 
the physiopathological mechanisms to be studied and its first 

goal is to realistically reproduce the observed behaviors. It 
should be stressed that such mathematical descriptions of 
processes are not aimed at explanations. They are used to 
have more insights or understanding of a system, as a prior 
step before experimentation on real data but also when it 
is impossible for ethical reasons or technical constraints to 
make these experiments. Simulations have a direct link to 
the recent trend of virtual reality in medicine where training 
and planning in preoperative situations, and intraoperative 
guiding during computer-assisted interventions are central 
elements. 

Simulation can be obviously complemented by the more 
ambitious goal of identification which deals with both the 
system structure and the unmeasurable variables (estimating 
the internal parameters and variables of physiological 
interest). From that, prediction and control can be derived 
or tracking the administration of therapeutic agents can 
be achieved. Theoretical open problems however are still 
remaining due to the fact that the system complexity may 
be high and the observables are often sparse. System iden-
tification belongs to the general class of inverse problems 
previously mentioned: it still received a limited attention 
from the signal processing community despite the proximity 
of concepts and tools with automatic control. Inverse prob-
lems in biomedical engineering have been mainly addressed 
in image reconstruction [34] and brain or cardiac source 
identification in EEG or MEG recordings. 

D. Models and Biocomplexity 

Any mathematical study of physiopathological processes 
is first challenged by the intrinsic complexity to deal with 
and by the fact that numerous of mechanisms are still ill-un-
derstood (i.e the active cellular controls or the large loop 
regulations such as the autonomic nervous system for in-
stance). What can models do then? It is argued that they 
will be useful even in case of a complete understanding of 
the processes by the capabilities they offer to explore the 
influence of changing the variables associated to particular 
scenarios, to compare the outputs to the observations and 
to detect sensitive parameters (in particular those causing 
dramatic changes in the number or nature of stationary, 
periodic, or chaotic states). The hope behind is also, by 
establishing model parameter deviations from normal behav-
iors (structural changes may clearly occur which are much 
more complicated, in comparison with parameter control, to 
deal with), to conjecture the reverse process, in other words 
to derive ways to go back from abnormal to normal states. 
There is certainly a long way to follow before being able to 
reliably reproduce the multitude of physiopathological be-
haviors despite the theories that abound. Basic mechanisms 
and interactions involve a large number of variables acting 
at different levels of organization (molecule, gene, protein, 
cell, organ or individual, population, etc.) as well as strong 
reciprocal influences with the environmental conditions. The 
understanding of such complexity, from very local entities 
to large organizations, with all the required updates which 
can be assumed, can be only achieved by theoretical mod-
eling. This has motivated the emergence of the “integrative 



physiology” concept which, if limited to the accumula-
tion of knowledge advances coming from different fields 
of concern, will have a poor impact. Electrical mechanisms 
(excitation, propagation), biomechanics (contraction/expan-
sion/deformation estimation from motion in dynamic CT, 
elastography form ultrasound), haemodynamics (coronary 
blood flow imaging), etc. whatever the description level they 
convey, will never be sufficient as such to get an integrated 
view of the heart. When put in relations together, then, a 
real breakthrough can be expected and models here can play 
a major role for diagnosis and therapeutic assessment. By 
first describing the dynamics of the relevant variables at 
each level and then by modeling the interactions between 
them, a more complete understanding of the corresponding 
processes can emerge at higher levels or be questioned at 
lower levels. This can be seen as the essence of integrative 
physiology: a path from microscopic processes to global 
properties at macroscopic levels of organization. 

The models that have been suggested so far can not 
afford any completeness. They provide some insights on 
different aspects of the physiological processes. The study 
of the robustness of generated patterns to small (random or 
not) modifications of the initial and boundary conditions, 
to structural changes and the joint parameter variations, is 
of critical importance. 

Ordinary differential equations (ODEs) are well suited to 
render dynamical behaviors of individual entities or small 
size organizations, but they become intractable for large 
assemblies and, because of their intrinsic non linearity, rel-
evant physiological equations for populations can not be 
derived in a direct way from the equations governing ele-
mentary components. In other words, models of individuals 
are not matching models of assemblies. Alternative options 
to ODE systems should also be examined. 

To summarize this section, it can be said that modeling as 
such is not enough: it must be confronted and matched to 
experiments and observables. It is not advocated here that a 
physiological model must be either the first step to accom-
plish in biomedical image processing or the ideal solution 
to the problems at hands. Explicitation of simple properties 
and assumptions about structures and dynamics twinned with 
proper data models, in other words, surface models (i.e., not 
referring to physiological mechanisms, for instance textural 
features) may provide better prediction and decision capabil-
ities. Such external approaches, however, remain descriptive 
and physicians may have some reluctance in using them be-
cause no link is established with their knowledge. 

E. Modeling Issues 

Most of these issues apply to all classes of models what-
ever their purposes. The ways they are answered, when pos-
sible, are however depending on the nature of the models. 
They correspond mainly to important question marks and 
consequently to challenging problems to be solved, not to 
methodological answers [13]. Some are of concern only for 
mathematical models and of interest in the special case of 

closed-loop systems (i.e., coupled with observables): a key 
property is identifiability. 

The plausibility of a model can be appreciated with re-
gard to the realistic features (architecture and functioning) 
included into it. Its evaluation can be performed only with 
respect to another one: for instance, by the spectrum of sit-
uations that could be generated or by the amount of knowl-
edge it incorporates (but knowledge, its use and confidence, 
make any quantification difficult). It could be related also to 
the notion of completeness. A theoretical demonstration or 
proof that a model would be distinguishable from another is 
also desirable. However, other issues are equally critical. Is 
it possible to make a model minimal or parsimonious? The 
robustness of a priori knowledge (including parameter set-
ting and impact) and of constraints (introduced for instance 
through regularization techniques) have also to be estimated. 
The capability to integrate and merge exogenous data or in-
formation (clinical symptoms, electrical data and imaging 
examinations), is of high relevance but, with the exception of 
knowledge-based systems or statistical approaches, none of 
the theoretical models at our disposal is able to handle such 
requirements. The same comment can be done when hetero-
geneous model fusion or coupling (i.e qualitative or symbolic 
with numerical models) is considered. In addition, the com-
binatorial space to be faced, the nonconvex functionals to be 
minimized in some models lead to mathematical problems 
independently of the physiopathological concerns. 

Multiple factors will affect the recorded data (sensor in-
fluence, noise, nonstationarity, etc.) and will directly impact 
on model identifiability. In addition, in some cases, strong 
restrictions appear on the type and the modalities of mea-
surements. This is the case of compartmental models, ap-
plied to many functional imaging sources (MRI, SPECT, and 
PET), which have been specifically and extensively studied 
[38]. Important notions have been established regarding a 
priori, local and global identifiability for linear and nonlinear 
systems. Identification techniques for compartmental models 
may apply only on specific cases: for instance least square, 
maximum likelihood when the model is uniquely identifiable 
or, otherwise, derivations of bounds, parameter aggregation, 
model reduction can help in estimating some of the param-
eters. Recent contributions have focussed on differential al-
gebra for nonlinear model identification [3], [46] but they are 
limited to low order models. Not only complex models are in-
herently representative of physiopathological processes, but 
free noise data and error-free model structures are difficult 
to assume. The example reported Section III will however 
show that, a fairly complex model can be useful to better ap-
prehend the underlying role of vascular components in the 
image contents. Any model, in between external descriptions 
and physiologically based models, has a role to play from re-
search to clinical applications as far as it is associated to a 
right objective and a sound validation. 

Of course, other issues are coming up when a mod-
eling operation is launched. The selection of a model class 
(hidden Markov hodels, ODE, qualitative models, etc.) is 
among the early steps. There is no objective rule to do that 
and no class is capable to claim genericity and superiority. 



Competition between approaches should be the basic prin-
ciple but, unfortunately, the absence of communication and 
crossfertilization between disciplines most often prevents 
any comparison. It can be thought that the nature of both 
the observables and the knowledge at our disposal, the ca-
pability of a class to represent the processes and the formal 
properties which are attached to it (from identifiability to 
inversion problems), the time and space dimensions in which 
to operate, strongly condition this choice. Another critical 
issue is the description level (or scale) which highly influ-
ences the complexity of a model. This problem is identified 
under very different paradigms (granularity, surface/deep, 
fine-to-coarse, local/global, detail level) according to the 
field in which they have been used. It concerns time and 
space scale selection as well. A simple example can be 
found for spatial qualitative relations in three-dimensional 
worlds (“object in front of,” “moving backward,” etc.) as op-
posed to numerical features (position, orientation described 
by means of a geometric coordinate frame). A possible 
rule to specify this scale could rely on the tuning between 
three entities: i) the level of details or decomposition of the 
model; ii) the scale of observations; and iii) the algorithmic 
processing capabilities at our disposal (i.e, the quality of 
the information that it is possible to extract). Here also, 
the modeling purpose is of great importance. Simulation 
will give more degrees of freedom (large scale, distributed 
systems) when compared to identification where higher ag-
gregation is required. 

The validation of models is also a complicated task 
in modeling physiological systems. It means to estimate 
whether or not a model fits with its purpose. It has been 
already said that properties like plausibility and quality 
of a model are difficult to formulate. Establishing the 
validity range, either for simple or complex models, can 
be performed on cases, learning sets, experimental data 
matching, expert confrontations, exception studies, etc., 
but an objective, widely accepted, measure is difficult to 
set. Its assessment can rely on its theoretical consistency, 
its robustness to changes or noises, the deviations from 
experimental data, its testability (protocols of practical tests) 
but can be appreciated through its utility (assistance to a 
decision, capacity of prediction or conjecture formulation). 
It must be understood for instance that complex models are 
inherently incomplete, with a high degree of imprecision 
and uncertainty on the structure and the parameters, and 
consequently more difficult to validate. 

In other words, no ground truth can be established for 
living systems and diseases. Performances of biomedical 
image processing algorithms are equally difficult to assess 
for the same reason. A progressive scheme may rely on 
phantom design, fully simulated data (without any link to the 
underlying mechanisms), hybrid data (a mixture of synthetic 
data and real data) and real images with expert annotations. 
The ground truth is therefore partially controlled but its 
realism can be still questioned. Symmetrically, model-based 
simulations can be performed, statistical features measured 
on the generated images and compared to their equivalent 
on real data. This idea shows how the image processing can 
be closely linked to modeling for validation purposes. 

F. Biomedical Triangle 

The all stages depicted Fig. 1 are evolving very fast and 
a full review will go beyond the scope of this paper. Two 
examples of methods related to extraction and quantification 
in images are mentionned below which brought seminal 
contributions. Deformable and functional models, inspired 
by the physics of flexible materials [68], [69], evolve 
according to forces derived from the image data and can be 
used to fit, reconstruct, match and track objects when some 
salient features like edges are present along the boundaries 
of these objects. In the level set approach [62], a curve (or 
a surface) representing the boundary of a structure is em-
bedded as a zero level of a higher dimensional surface. Some 
energy-based active contour minimization problem is solved 
by computing the geodesics or minimal distance curves. 
Because local and global information is used, robustness 
to weak edges can be achieved. Numerical stability and 
topological flexibility are also one of the most interesting 
properties of this approach. Structured deformable models 
composed of a group of basic shape elements have also been 
proposed. They follow a growth process controlled by the 
morphogenesis [36]. All these methods belong to the wide 
field of computer vision and they are of value in medical 
imaging as well as in traffic analysis, indoor navigation, 
remote sensing detection, etc. They are generic enough to 
deal with the several objects, images and tasks which have 
been sketched above provided that some adaptations are 
made. In other words, image analysis methods, but also 
computer graphics techniques for visualization purpose, 
apply to the multiscale objects and observations of concern. 
This justifies their transversal positioning and displays the 
active role they have when a cooperation with models are 
looked for. However, as pointed out in Fig. 2, imaging 
modalities and algorithmic resources are not enough: the 
combinatorial explosion that exists behind the objects can 
only be faced through well posed questions. This is not 
an easy task because it assumes a sound knowledge of the 
all facets of a given biomedical problem. The triangle and 
the bidirectional arrows in Fig. 2 exemplifies the partial 
space into which relevant and operational views have to 
be built. For instance, in-silico simulations of cell or organ 
behaviors can complement in vitro and in vivo studies: going 
from a medical problem of pathologic morphogenesis to 
the knowledge mining and modeling, passing through the 
data acquisition. The need for a language of description 
of the many different entities like cell functions, intra- or 
intercellular interactions, localization (growth and motion), 
signalling, referring to cell physiology, systems biology 
and cell anatomy is a major concern. Such language will 
allow the implementation of relevant algorithms that are 
able to simulate functions, interactions, localization and 
signalling by using hybrid models (e.g., Boolean systems 
for the genomic interactions, fixing the values of parameters 
of partial differential systems whose attractors represent the 
final morphologies to be explained). 

The three examples illustrated in the following sections do 
not pretend to cover this wide spectrum: they just highlight 



Fig. 2. Interrelations depicted by this triangle point out the diverse facets to deal with patient 
diagnosis and therapy, from medical knowledge, quality control up to database collection. 

situations encountered along the object scales, the role 
of modeling and the transversal place of image analysis 
methods. 

III. MACROSCOPIC MODEL: APPLICATION TO THE LIVER 

VASCULAR NETWORK 

A generic scheme is described Fig. 3. It can deal with the 
all features of relevance for an in-depth model-based repre-
sentation, the “object space,” from structural and functional 
properties to the deviations that can occur during the organ 
formation or after (reflecting inter-individual variations as 
well as pathological evolutions). The sensing device, speci-
fied here as “virtual imaging system” must also be modeled 
in a realistic way in order to simulate valuable images. This 
task involves to take into account the physical principles of 
the imaging modality and the image reconstruction algo-
rithms (both being merged into the “sensor space”) leading 
to image formation. Any imaging device can be considered 
according to the organ properties to be analyzed. Modeling 
“object” and “sensor” is very challenging as such but it is 
the only way to get a really relevant “image space.” The 
virtual data so produced can then be submitted to any image 
analysis method. Such processing can be oriented toward 
morphological or structural studies and focussed, among 
many others, on segmentation and characterization tasks 
[static two-dimensional (2-D) or three-dimensional (3-D) 
images]. They can deal with functional features when time 
stamped images are generated (i.e., time image sequences) 
using motion estimation or compartmental models when 
they are of concern. The overall system output belongs to 
what is called the “decision space”, which may rely on 
any pattern recognition methods (statistical data analysis, 
neural networks, etc). From this standpoint, an equivalence 
can be established between the “virtual space” and its dual, 
the “physical space.” 

An instantiation of this conceptual approach is presented in 
this paragraph, where the object is then the vascular network 
of a given organ, the liver, which is modeled at each step of its 
development, with structural, morphological and functional 

information. The virtual sensing device is a standard CT 
Scanner providing 3-D observations and, in simulation, time 
image sequences when blood flow is considered. The image 
analysis deals with both detection problems (testing how far 
the most advanced methods can go to extract small vessels 
for instance) and texture characterization (emphasizing the 
need for feature meaning). These issues will be detailed in 
Sections IV–VI. 

The 3-D model concerns two main components: the tissue 
and the vascular network that perfuses it and adapts to its 
local geometry. 3-D models have already been proposed to 
simulate the heart vascularization [40]. In the model we pro-
pose, the process starts with an organ (here the liver), whose 
size is a small fraction of the one of an adult organ, and 
whose growth continues until it reaches its full size. The 
changes in the size and structure of the organ and the corre-
sponding vascular trees operate at discrete time instants (cy-
cles). The organ is constituted of “macroscopic functional 
units” (MFUs) evenly distributed. Each MFU belongs to a 
class, characterized by functional and structural properties 
(e.g., minimal distance between MFUs, probability of mi-
tosis/necrosis) and physiological features (e.g., blood flow 
rate or corresponding pressures). Several classes of MFUs 
can co-exist in the model, leading to regions with different 
functional properties. For instance, an hypervascular tumor 
can be simulated by introducing, among the normal MFUs, 
some abnormal ones, which lead to local vascular modifi-
cations. The tumor has only an arterial blood supply and 
does not receive portal venous blood flow, when normal he-
patic tissue is perfused by the three hepatic trees (Fig. 4). 
Moreover, probability of mitosis, maximum local density and 
blood flow are increased in the pathological case. 

In Fig. 5, CT scans simulated with variable acquisition pa-
rameters (spatial resolution, slice thickness, arterial or portal 
phase) are presented. The method is based on projections/fil-
tered backprojections computation and take into account 
the partial volume effect [43]. These images are located in 
the tumoral part of the liver. The lesion appears hyperdense 
compared to the normal surrounding parenchyma during 
the arterial phase, and slightly hypodense during the portal 
phase [8], [9]. This temporal evolution is in agreement with 



Fig. 3. Generic model-based approach for medical image analysis. The decomposition into 
virtual/physical spaces and object/sensor/image/decision spaces allows us to precisely identify the 
several intervening components in place and to define the relevant matching stages for comparison 
and validation (depicted here by C). 

Fig. 4. Simulated hepatic vascular network with an hypervascular 
tumour. (Left) Hepatic artery (HA). (Middle) Portal vein (PV). 
(Right) Hepatic vein. The tumor is supplied only by the artery and 
not by the portal vein (it corresponds to a region with a higher 
density of vessels in the left and right pictures). 

the complex hepatic enhancement observed in in vivo ex-
aminations [4], [28]. During the first early acquisition phase 
(around 20–30 s after contrast infusion), the hypervascular 
lesion receives highly concentrated dye product coming 
from the HA, while the liver parenchyma is less enhanced 
because receiving less CM (PV does not contain CM yet), 
which leads to a high lesion conspicuity. In a second phase, 
the normal parenchyma enhances a lot, due to the important 
flow of CM arriving through the PV (representing around 
80% of the total flow). The parenchyma enhancement be-
comes comparable (hypo or iso-density) to the tumor’s one, 
leading to a decreasing conspicuity. This global behavior 
can be further analyzed by compartmental methods, both in 
the virtual and the physical spaces, and the results compared 
for validation purpose. 

Fig. 6 displays the evolution of the textural feature Gray 
level distribution [12], [13], derived from the run-length ma-
trix with time, slice thickness, and zoom, in the normal and 
the pathological situations. The two surfaces, describing the 
evolution of this feature, intersect in a similar way at both 
phases. These results confirm that different acquisition con-

ditions of CT scanning influence strongly the texture ob-
served on images. They also point out that textural features 
can potentially be used for discrimination purposes in clin-
ical examinations, but only when the same (or at least sim-
ilar) protocols are used. This model, as well as other models 
of enhancement [48], can also be useful to study the injec-
tion and the acquisition times (arterial phase, portal phase), 
in order to optimize the lesion detection and characterization 
[24]. 

Using this example and coming back to Fig. 3, a number 
of highly meaningful concepts can then be projected onto 
this 2 4 matrix. A few are exemplified here. The first one 
corresponds to the capability at each step to compare the 
real and virtual outcomes either at a visual level or through 
quantitative characteristics. For example, local and global 
statistical measures (the above textures, but also distances, 
volumes, etc.) can be performed on the simulated as well 
as on in vitro or in vivo data. They can bring new clues 
for model building and adjustment (initialization conditions, 
error criteria, etc.). 

The second one emphasizes the possibility to directly link 
the decision space (and the extracted features) to relevant 
physiopathological patterns: this opens the road toward phys-
iologically founded understanding of image features. Direct 
or inverse problems are here of main interest if it can be 
proven that the corresponding system is identifiable. How-
ever, a pragmatic solution consists to estimate the linear or 
nonlinear relations between the measures and the underlying, 
fully controlled, physiological variables as it has been shown 
Fig. 6. 

Moreover, through these simulation capabilities, the im-
pact of changing the acquisition parameters (for instance 



Fig. 5. Simulation of CT scans during the contrast medium (CM) propagation, with two spatial 
resolutions (zoom 2 1, 2 2) and two slice thicknesses’ (4 mm, 8 mm). The hypervascular lesion is 
hyperdense during the arterial phase and slightly hypodense during the portal phase. 

Fig. 6. Evolution of the “gray level distribution” (vertical axis) according to zoom and slice 
thickness and acquisition time, in normal parenchyma (dashed line) and hypervascular tumor 
(solid line). 

the spatial resolution, the time windows and delays) on 
the “decision space” can be objectively anticipated. For in-
stance, instead to make use of simple shaped phantoms with 
additive noise to evaluate the performances of detection, 
segmentation, reconstruction algorithms among others, re-
alistic objects with varying observation conditions can lead 
to more robust conclusions. Appropriate protocols can then 
be derived in a predictive way. 

To summarize, model-driven acquisition, analysis and 
interpretation are offered by such a generic frame. Of 
course, its relevance goes well beyond the imaging field here 
addressed. The same views can be applied to model-based 
signal processing [17]. 

IV. ANALYSIS OF DYNAMIC SUB CELLULAR PROCESSES IN 

IMAGE SEQUENCES 

At a lower scale, fluorescent confocal microscopy per-
mits to observe marked subcellular structures over time, 
such as the chromatin or the nuclear envelope. A general 

objective of the researchers in different disciplines con-
cerned with such dynamic processes is to better understand 
the subcellular mechanisms involved in order to arrive to 
a better comprehension of the cell. The knowledge about 
the dynamics in biological systems provides also highlights 
about their biophysical or biochemical condition (i.e a lack 
of some components in cell membranes changes the way 
they move). Therefore, we are looking for the extraction of 
meaningful quantitative parameters from image sequences 
and for a concise description of complex movements. A 
related challenge is the conception of an appropriate dy-
namical model for certain biological processes. 

In this section, we consider an example from cell biology 
related to the dynamics during cell division (the breakdown 
of the nuclear envelope). 

A. Nuclear Envelope Breakdown (NEBD) 

We will summarize shortly the biological aspects related 
to the NEBD and its position and role in the cell division 
cycle. 



Fig. 7. Different phases in the cell division cycle related 
to the division of the cell nucleus (reproduced from 
http://www.embl-heidelberg.de/ExternalInfo/ellenberg/). 

1) Mitosis: The cell cycle—from the formation of a cell 
(after the division of its mother cell) until its division in 
two daughter cells—consists of several phases, where the 
phases related to the division of the cell nucleus (except the 
replication of the chromatin) form the mitosis [1]. These 
temporally consecutive phases are (in their temporal order) 
the prophase, prometaphase, metaphase, anaphase and the 
telophase (Fig. 7). The breakdown of the nuclear envelope 
(NE) is prepared in prophase. The formation of the first hole 
in the envelope (constituted by an inner and outer membrane) 
introduces prometaphase during which the whole envelope 
breaks down into small fragments. Therefore, we consider in 
detail only these two phases of mitosis. In prophase the chro-
mosomes condense slowly and their characteristic “X-form” 
begins to appear in which two sister chromatids can be distin-
guished. At the same time, the mitotic spindle begins to form. 
It is an apparatus of a number of tube-like flexible struc-
tures—called microtubules—centered in the spindle poles 
and able to move and to exert forces. When the first hole in 
the NE appears, the condensation rate of chromatin increases 
dramatically. Also, some of the microtubules can then enter 
into the nuclear region. They attach on each sister chromatid 
and move the chromosome to the metaphase plate. 

2) A Model for the Nuclear Envelope Breakdown: A 
model of the NEBD has been proposed by Beaudouin et al. 
[7]. It is of particular interest for us as it emphasizes the part 
played by the biomechanical forces tearing the envelope 
which can be investigated by analyzing the movements 
of the envelope (Fig. 8). NEBD is prepared in prophase. 
The earliest morphological changes of the cell nucleus 
accompanying the entry into mitosis are invaginations in 
the NE at the site of the centrosomes. At the same time, 
it can be observed that the motor protein dynein attaches 
to the NE. However, a stretching and, finally, the tearing 
of the lamina is observed at a position distal from the 
centrosomes at the upper surface of the envelope (whereas 

Fig. 8. Microtubule dependent forces acting on the nuclear 
envelope (reproduced from [2]). 

the centrosomes are at its lower surface). Based on these 
observations, Beaudouin et al. [7] proposed a model of the 
nuclear envelope breakdown with microtubule dependent 
forces as the fundamental phenomena relating the observa-
tions. The assumption of the authors is that the forces are 
produced by dynein moving on the microtubules toward 
the microtubules’ minus end situated at the centrosomes 
and that these forces are mediated over the whole envelope 
(or lamina) surface creating a tension on its upper side 
(Fig. 8). This tension is supposed to lead to the tearing of 
lamina and envelope. Another observation is that the site 
of tearing was always detected in an area not in contact 
with chromosomes. Independently, it was noticed [65] that 
in the areas of chromosome binding the concentration of 
lamin proteins is higher. After the tearing of the lamina, the 
gaps in the envelope expand, the lamina depolimerizes and 
NE fragments move toward the centrosomes, possibly in a 
dynein-mediated way. 

B. Imaging the NEBD and Motion Analysis 

A quantitative approach based on image motion analysis 
is required to validate and refine the above assumptions and 
knowledge. It can be performed with a confocal laser scan-
ning microscope, the nuclear lamina being fluorescently la-
beled. A grid can then be photobleached on the surface of the 
lamina [49] which moves with the surface and on which the 
movement analysis is based. Another possibility to track the 
movements on the envelope surface is to image the nuclear 
pore complexes which permits a higher temporal resolution 
as no photobleaching is necessary [19]. The images are taken 
at different time points around the formation of the first hole. 

Using the example of the nuclear envelope breakdown, 
some of the issues of a computer based motion analysis in 
image sequences can be illustrated. As we are interested not 
only on a special sequence of the NEBD of a single cell but on 
the common observations during the breakdown for different 
cells, a first issue is “how to compare complex movements in 
different sequences.” This implies to find common character-
istics or a common structure of the movement in different se-
quences and to the capability to discriminate different types 
of movement (i.e., normal cells or tumor cells, for instance). 
Further issues, directly of concern for the above model of the 
NEBD, must be addressed to specify if the forces are me-
diated globally or not, and if we can observe a continuous 
increase of the tension (or decrease after the formation of 
the first hole). Which conclusions can be drawn about the 
sources of the forces and about the physical properties of the 
lamina ? How are the forces mediated by the lamina; can a re-
lationship be established—in a mathematically controllable 



Fig. 9. Visualization of the extracted motion by using 
deformation grids. Reproduced from [27] with the permission of 
Springer-Verlag, New York. 

way—between the lamin concentration and the way how the 
lamina moves? In order to investigate these aspects, a pow-
erful tool would be a biomechanical model of the NEBD in-
tegrating the information extracted by image processing. 

From the image processing side, two of the required basic 
steps are: i) to extract accurate parameters (global parameters 
as well as local ones) which are related to the movement; and 
ii) to propose a concise description of complex movement 
facilitating its interpretation. 

Different approaches of motion estimation have been 
applied to the analysis of dynamic processes in biomedicine 
among which: i) the local determination of the optical 
flow based on the motion constraint equation [18], [35], 
[53]; ii) the tracking of segmented small particles moving 
individually [32], [73]; and iii) the use of parametric non-
rigid registration which determines the parameters of a 
predefined transformation [29], [49]. All these techniques 
are extensively studied in the literature (reviews can be 
found in [11] and [53]). 

Complex movements are however difficult to describe and 
interpret. Germain et al. [29] proposed a continuous descrip-
tion with the eigenvalues of the affine motion matrix ex-
tracted from two consecutive images and tried to characterize 
in that way differences in the movement of cells involved in 
the wound healing process. The motion model presented in 
[Fieres, 00] is aimed at associating the observed deforma-
tions and the forces causing them and their location. Another 
possibility is the representation of the motion in a feature 
space, for instance by a velocity histogram [75] or a velocity 
intensity image [49], where each pixel encodes the absolute 
value of velocity in it. 

The example depicted Fig. 9 has been obtained through: 
i) the calculation of the registering transformation for each 
time step to a fixed time step of the sequence; and ii) the 
application of this transformation to the raw images and the 
writing out the transformed images. This allows to better sep-
arate global effects from more local ones and eventually to 
detect local motors of motion. 

Most of these techniques yield a description allowing the 
comparison, characterization, classification of movements 
and therewith also an interpretation of the occurring motion. 
For a better understanding of the mechanisms behind the 
movements and for the determination of the functional re-
lationships-leading to biophysical laws-between forces, the 
physical constitution of the object under consideration, and 

Fig. 10. Image coming from a Fuji bio-array device based 
on the � isotopic activity of hybridized c-DNA’s acquired 
by a phospho-imager ; we can see a) the raw data, each peak 
corresponding to a gene, b) a low-pass filtering, eliminating the 
high spatial frequencies, c) a watershed processing showing an 
over-segmentation in the water basins, and d) the contouring of the 
limits between water basins [49]. 

the observed movements, an investigation going beyond the 
mentioned interpretation is necessary. For instance, in the 
case of the lamina movements described in Section IV-A, 
a biophysical surface model could help to determine which 
forces (and their locations) are involved in an observed 
motion and lamin concentration. Here, the lamin protein 
meshwork can be cloned simulated by a model meshwork 
integrating finite element methods. 

V. BIO-ARRAY IMAGING AND GENETIC REGULATION 

NETWORK MODELING 

During recent years the rapid development of bio-arrays 
techniques based on isotopic or fluorescent activity of hy-
bridized DNA chips (Fig. 10) allowed the biologist to give 
to a gray level peak the signification of an expression rate 
for the genes studied in the bio-array [22]. If we repeat the 
bio-array acquisition at different times of the cell cycle for 
different cells of the same tissue, we can calculate correla-
tions between genes expression rates and hence we are able 
to make explicit a matrix called the intergenic interaction 
matrix representing the repression or induction influences a 
gene can exert on other genes. 

The interaction matrix is similar to the synaptic weight 
matrix, which rules the relationships between neurons in a 
neural network. An interaction between the gene and the 
gene is identified through the coefficient of , equal 
to (respectively, , 0) if the gene activates (respec-
tively, inhibits, does not influence) the gene , the state 

of the gene being equal to (respectively, ), if 
it is (respectively, is not) expressed. The value of is fixed 
by the activity level detected in the bio-array image by seg-
menting their peaks (Fig. 11) and integrating the gray level 
inside these peaks: if the integrated activity of the th peak 
is sufficiently high, then ; if not, then . In  
the case of small genetic regulatory networks (the smallest 
ones are called operons and the first historically studied is 
the lactose operon), the knowledge of such a matrix W per-
mits to explicit all possible stationary behaviors of the or-
ganizms having the corresponding genome. The change of 



Fig. 11. Gastrulation operon graph showing the positive and 
negative interactions between the genes involved at this step of 
the embryogenesis; the loops (four positive and one negative) are 
indicated by thick arrows (from [2] and [44]). 

state of gene between times and obeys a threshold 
rule: or in vecto-
rial form: , where is the 
Heaviside step function between and ( , if  

if ), and the ’s are threshold values. The 
values of the parameters ’s and ’s are calculated from 
the bio-array image. For calculating the ’s, we can de-
termine the s-directional correlation between the state 
vector of gene at time t-s and the state 
vector of gene at time , varying during the 
cell cycle supposed of length and corresponding to ob-
servation times of the bio-array images 

where 

and then take 

if ; , if  , being a decorrelation 
threshold. 

When is increasing, the genes states reach a stable set 
of configurations (fixed configuration or cycle of configu-
rations) called attractors of the genetic network dynamics. 
For example, in the regulatory network ruling Arabidopsis 
thaliana flower morphogenesis, the interaction matrix W 
is a (11,11)-matrix with only 22 nonzero coefficients [52]. 
This matrix presents positive loops (i.e., its 
incidence graph has four closed paths starting with 
a gene and coming back to it after an even number of 
inhibitions) and attractors. It is in general of 
great biological interest and relevance to determine matrices 
having characteristic properties like: 1) a minimal number 
of non zero coefficients for a given set of attractors (fixed 
points or cycles); or 2) a minimal number of positive 
loops, controlling the number of attractors and their 

stability (cf. [23], [31], [58], and [64] for results in the 
continuous case, and [15] for the discrete one). 

When it is impossible to obtain all coefficients of (nei-
ther from literature nor from bio-array calculations), we can 
complete . We choose randomly the missing coefficients 
by respecting the connectivity coefficient , 
ratio between the number of interactions and the number 

of genes, and the mean inhibition weight , 
ratio between the number of inhibitions (or repressions) 
and . is in general between 1.5 and 3 and 
between 1/3–2/3, for many known regulatory networks (lac-
tose or phage lytic operons, gastrulation, i.e., digestive tube 
embryogenesis, or Arabidopsis thaliana flowering networks, 
etc.). 

If is the incidence graph associated to , then we 
call connected component of each set of genes such 
that there is a path between every pair of genes along a se-
quence of arcs in . A garden of Eden is a gene receiving 
no arc, but influencing at least one other gene. A regulon is a 
connected component of having exactly one positive 
autocatalysis (i.e., a loop from a gene to itself) and one neg-
ative loop, these loops sharing the autocatalyzed gene. Such 
a regulon is present for example in the lactose operon. 

In 1948, Delbrück [20] conjectured that positive loops in 
the interaction graph of a regulatory network was a necessary 
condition for the cell differentiation, i.e., for the existence of 
multiple attractors of the genes expression; this conjecture 
has been written in a good mathematical context by Thomas 
in 1981 [71]. The presence of positive loops is related to the 
observation of multiple attractors, which definitively gives 
to the positive loop another signification that to the negative 
loop, more related to the stability of the system (like in 
the classical Watt regulator, well known in cybernetics). 
In 1992, Kauffman [41] conjectured that the mean number 
of attractors for a Boolean genetic network with n genes 
and connectivity , was of order of [21]. 
This conjecture is now supported by real observations: we 
have about 30 000 genes in the human genome and about 
200 different tissues, which can be considered as different 
attractors of the same dynamics. For Arabidopsis thaliana, 
there is different tissues (sepals, petals, 
stamens and carpels) [21] and for the lytic operon of the 
phage , , and there is 

(lytic and lysogenic) attractors [70]. 
If we consider the network ruling the gastrulation in 

Drosophila (cf. Fig. 11 and [2], [44]), it is easy to check that 
, , and 

(the corresponding cells being the ordinary ectoderm cells, 
for the skin, and the trapezoidal cells, for the intestine). 
The regulation graph contains five connected components 
(whose three are singletons). In this case, the classical Kol-
mogorov–Rashevski–Turing models of reaction–diffusion 
[42], [60], [72] are well explaining the epigenetic part of 
the start of the gastrulation, but only after the apparition 
of a new trapezoidal cell presenting an apical constriction 
due to the change of intracellular energetic balance due to 
the expression of the genes A [adenylate kinase (ADK)] 
and N [nucleoside diphosphate kinase (NDK)], and to their 



action on the cytoskeleton genes C. This is explained by a 
change of attractor basin by the trapezoidal cell starting the 
gastrulation process due to the genetic regulation pathway 
of the Fig. 11. This regulatory network is now confirmed by 
the genes expression calculated from bio-array imaging as 
explained above. 

From a general standpoint, simulations of the model above 
allow the biologist to pay attention for the crucial parameters 
to acquire in bio-array imaging. The notion of crucial param-
eters comes from the classical proposal by Popper [59] for a 
general modeling approach. 

1) Propound empirically testable model with measur-
able variables and parameters 

2) Aim to refute them by comparing parameters critical 
values calculated in the model (e.g., causing a qual-
itative change in the dynamics, as the passage from a 
stationary state to an oscillatory one) and measured in 
the experiment 

3) If is refuted, aim to replace it by another model 
more general and precise (i.e., with higher information 
content), explaining the refuting evidence of and 
moreover independently testable. 

The few examples reported in this paper are far from 
describing the wide spectrum of applications and complex 
mixed problems to be addressed for image processing and 
shape modeling in morphogenesis. It is likely that many 
attempts will be devoted for instance to evaluate tumor 
growth duration and initial starting localization (with inverse 
dynamics studies based on microscopic and NMR imaging), 
to track cells in wound healing process and modeling cells 
migration, or to explain mitochondrial inner membrane 
building in the adaptation to effort and aging. 

VI. CONCLUSION AND FUTURE CHALLENGES 

The combined modeling, acquisition and processing ap-
proaches advocated for several future demands: increasing 
the interest for physiological modeling as such and its 
coupling with image analysis methods. The complexity 
of the living systems (which can be represented by the 
number of differential equations, the number of parameters 
or unmeasured variables, etc.), the theoretical limits to deal 
with can not prevent this effort. Any spatio-temporal scale 
of observation and modeling of nonlinear, deterministic 
or stochastic, multivariate systems will provide significant 
clues on the underlying interactions and behaviors and 
sketch new features of the biological picture. It is our 
belief that the wide range of model-driven applications 
(from experiment guiding, data acquisition setting, problem 
solving to process understanding, etc.), already visible in 
most areas, is an enough strong motivation for engineering 
researchers. Pluridisciplinarity is going more and more 
critical to balance the trend toward highly specialized fields 
and to make the best benefits of their impressive advances. 
It is clearly a challenge because mathematics, physics, 
physiology, biology, and others are concerned. However, 
image processing, with its capability to efficiently extract 

information from data, can not get away from this challenge. 
Data and model fusion is a natural frame in which integrative 
physiology can be soundly stated if a real implication into 
physiological mechanisms is achieved. This joint effort 
must be associated to new initiatives able to answer to the 
clinical requirements (patient-based fitting, international 
data sets, large scale evaluation) and closely linked with 
the breakthroughs emerging from micro-arrays, integrated 
sensing-actuating devices, etc., which will determine the 
nature, scale, and quality of observations, all elements 
critical for any improvements in information processing. 
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