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Abstract

We present a new method for function estimation and variable selection, specifically
designed for additive models fitted by cubic splines. Our method involves regular-
izing additive models using the l1–norm, which generalizes Tibshirani’s lasso to the
nonparametric setting. As in the linear case, it shrinks coefficients, some of them
reducing exactly to zero. It gives parsimonious models, select significant variables,
and reveal nonlinearities in the effects of predictors. Two strategies for finding a par-
simonious additive model solutions are proposed. Both algorithms are based on a
fixed point algorithm, combined with a singular value decomposition that consider-
ably reduces computation. The empirical behavior of parsimonious additive models
is compared to the adaptive backfitting BRUTO algorithm. The results allow us to
characterise the domains in which our approach is effective: it performs significantly
better than BRUTO when model estimation is challenging. An implementation of
this method is illustrated using real data from the Cophar 1 ANRS 102 trial. Parsi-
monious additive models are applied to predict the indinavir plasma concentration
in HIV patients. Results suggest that our method is a promising technique for the
research and application areas.
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1 Introduction

Nonparametric regression methods encompass a large class of flexible models
which provide a means of investigating how a response variable Y depends
on one or more predictor variables X1, ..., Xp, without assuming a specific
shape for the relationship. However, as dimension p increases, these techniques
suffer from the curse of dimensionality ; moreover the ability to visually inspect
estimated relationships is often lost when p > 2.

An elegant solution to these problems is provided by additive models, popu-
larized by Hastie and Tibshirani [23]. An additive model is defined by

Y = α0 +
p∑

j=1

fj(Xj) + ε, (1)

where the error ε is independent of the predictor variables Xj, E(ε) = 0 and
var(ε) = σ2. fj are univariate smooth functions, defined such that EXj

(fj) = 0
in order to ensure unicity, and α0 is a constant.

The additive structure does not assume a rigid form for the dependence of
Y on X1, ..., Xp so nonparametric flexibility is preserved. Also, the additive
model retains an important interpretive feature of the linear model: we can
represent the functions fj to analyze the effects of the predictors on the re-
sponse. Moreover, it overcomes problems of high–dimensionality: since the
response variable is modeled as the sum of univariate functions of predictor
variables, the number of observations required to get variance–stable estimates
grows only linearly in p. The price to pay for such interesting properties is the
possible misspecification of the model.

As in any statistical learning task, model selection is an important issue in
the estimation of additive models. The problem of determining the model
structure that best fits the data can be decomposed in two subproblems: com-
plexity tuning and variable selection. In nonparametric regression there is a
fundamental trade–off between the bias and variance of the estimate, which
is typically governed by a regularization or smoothing parameter. Complexity
tuning addresses the question “what is the right amount of smoothing” [23,24].
Variable selection consists in selecting input variables that are most predictive
of a given outcome. Appropriate variable selection aims at improving predic-
tion performance, enhancing understanding of the underlying concept that
generated the data and reducing training time [21].

Subset selection strategies have been applied to additive models. These pro-
posals exploit the fact that additive regression generalizes linear regression.
Thus, we find hypothesis tests [12,10,22,40,16], techniques based on a predic-
tion error estimator [9,7,32], as well as Bayesian approaches [34,33].
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A different approach to variable selection consists of regularizing additive mod-
els using the l1–norm. We present a new method for variable selection and
complexity tuning specifically designed for additive models fitted by cubic
splines. We use a three–part objective function that includes goodness–of–fit
and a double penalty: on the l1–norm of linear components of cubic splines
coefficients and on the (generalized) l1–norm of nonlinear components of cubic
spline coefficients. Because of their nature, these penalties shrink linear and
nonlinear compounds, some of them reducing exactly to zero. Hence they give
parsimonious models, select significant variables, and reveal nonlinearities in
the effects of predictors.

Two strategies for finding a parsimonious additive model solutions are pro-
posed. In both of them, curve fitting is based on a fixed–point algorithm
solving the penalized optimization problem, combined with a singular value
decomposition that considerably reduces computation. The empirical behav-
ior of parsimonious additive models is compared to the adaptive backfitting
BRUTO algorithm for additive models [23]. The results allow us to deduce
conditions of application for each method. Our method performs significantly
better than BRUTO when model estimation is challenging.

This new approach is applied to predict indinavir (an antiretroviral from
the protease inhibitor class) plasma concentration in HIV patients, from the
Cophar 1 ANRS 102 trial.

This article is organized as follows. In section 2 we review penalization tech-
niques. Additive models fitted by cubic splines are introduced in section 3.
We present our approach in section 4. In section 5 we discuss estimation of
the regularization parameters. Simulation studies are described in section 6. A
real data example is given in section 7. Finally, section 8 contains concluding
remarks and perspectives.

2 Penalization Techniques for Linear Models

In this section we provide a brief review of penalization techniques for linear
models by way of an introduction to our approach for additive models.

Consider the usual linear regression setting. The ordinary least–squares esti-
mate is obtained by minimizing the residual squared error. However, if the
number of covariates p is large (with respect to the number of examples n)
or if the regressor variables are highly correlated, then the variance of the
least–squares estimate may be high, leading to prediction inaccuracy.

Penalization is extensively used to address these difficulties. It decreases the
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predictor variability to improve the accuracy of prediction. It also tends to
produce models with few non–zero coefficients if interpretation is planned.
Ridge regression (l2 penalization) and subset selection (l0 penalization) are the
two main penalization procedures. The former is stable, but does not shrink
parameters to zero, whereas the latter gives simple models, but is unstable [5].

l1 penalization, termed the lasso (least absolute shrinkage and selection oper-
ator) [36,24] provides an alternative to these techniques. The lasso estimates
the vector of linear regression coefficients by minimizing the residual sum of
squares, subject to a constraint on the l1–norm of the coefficient vector. An
attractive feature of the l1–norm constraint is that it shrinks coefficients and
sets some of them to zero. The smooth form of the constraint leads to a convex
optimization problem which provides a stable model.

Suppose we have data (xi1, . . . , xip, yi), i = 1, . . . , n, where xij are the stan-
dardized predictor variables and y = (y1, . . . , yn)t are the centered responses.
The observations are assumed to be independent and identically distributed.
We denote by X the design matrix {xij}, and by xj the vector (x1j , . . . , xnj)

t,
i = 1, . . . , n, j = 1, . . . , p. To simplify the notation, we suppose there is no
intercept in the model.

The lasso estimator solves the optimization problem

min
α1,...,αp

∣∣∣∣∣∣

∣∣∣∣∣∣
y −

p∑

j=1

xjαj

∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

subject to
p∑

j=1

|αj | ≤ τ , (2)

where the predefined value τ controls model complexity.

A convenient formulation of the lasso is given by the adaptive ridge [18], which
was proposed as a means of automatically balancing penalization on each
variable. The two procedures are equivalent, in the sense that they produce
the same estimate [17].

The adaptive ridge estimate is the minimizer of the problem

min
α1,...,αp

µ1,...,µp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj

∥∥∥∥∥∥

2

2

+
p∑

j=1

µjα
2
j

subject to
p∑

j=1

1

µj
=

p

µ

µj > 0,

(3)

where the predefined value µ controls global model complexity, and the values
of µj are automatically induced from the sample.
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Sketch of proof of equivalence (a rigorous detailed proof is given in ap-
pendix A)

The Lagrangian L corresponding to problem (3) is

∥∥∥∥∥∥
y −

p∑

j=1

xjαj

∥∥∥∥∥∥

2

2

+
p∑

j=1

µjα
2
j + ν




p∑

j=1

1

µj
− p

µ


+

p∑

j=1

ηjµj ,

where ν and ηj’s are the Lagrange multipliers pertaining to the constraints in
problem (3). A necessary condition for optimality is obtained by deriving the
Lagrangian with respect to µj, which reads

µj =

√
ν

|αj|
,

and pluging this expression in the first constraint of problem (3) yields

√
ν =

µ

p

p∑

j=1

|αj| .

The optimal µj are then obtained from µ and αk’s, so that problem (3) is
rewritten

min
α1,...,αp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj

∥∥∥∥∥∥

2

2

+
µ

p




p∑

j=1

|αj|



2

,

which is equivalent to minimizing the squared error loss subject to
∑p

j=1 |αj| ≤
t for some t, which is exaclty the lasso problem.

�

The adaptive ridge formulation of lasso does not explicitely entail sparse so-
lutions, but it suggests means to generalize the lasso idea to the sums of
quadratic penalties. It inspired the parsimonious additive models described in
section 4.

3 Additive Models

The cubic smoothing spline estimator is defined as the minimizer of a penalized
least–squares criterion over functions belonging to a reproducing kernel Hilbert
space (RKHS), H,

min
f∈H

‖y − f(x)‖2
2 + λ

∥∥∥D2f
∥∥∥
2

L2

, (4)
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where f(x) denotes the vector (f(x1), . . . , f(xn))t, the differential operator D2

maps functions to their second derivative, ‖ · ‖L2 denotes the L2 norm and H
is defined as the space of twice–continuously–differentiable functions f , with
all points evaluation functional and finite ‖D2f‖L2

.

Cubic splines are extended to additive models in a straightforward man-
ner [38,24]:

min
(f1,...,fp)∈H1×...×Hp

∥∥∥∥∥∥
y −

p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

, (5)

where each space Hj is defined as the space of twice–continuously–
differentiable functions fj of Xj, with all points evaluation functional and
finite ‖D2fj‖L2

.

Each function in (5) is penalized by a smoothing parameter λj. Large values
of λj produce smoother curves for the jth component, while smaller values
produce more wiggly curves [23]. At the one extreme, as λj → ∞, the penalty
term dominates, forcing D2fj ≡ 0, and thus the solution for the jth component
is the least–squares line. At the other extreme, λj → 0, the penalty term
becomes unimportant and the solution for the jth component tends to an
interpolating twice–differentiable function.

Before solving (5), we should have already determined p smoothing parameters
λj. Several methods have been proposed to estimate smoothing parameters.
These methods are based on generalizing univariate techniques such as gen-
eralized cross validation (used at each step of the backfitting procedure in
BRUTO [23], optimised by a Newton method [19,40] or combined with a di-
agonalization technique for penalized splines [31]), Akaike information criteria
[23,25,27], Bayesian information criteria [27], plug in [28], or hypothesis testing
[8].

A different approach to this problem was proposed by Grandvalet et al. [17,18].
It involves the extension of the lasso to additive models fitted by cubic splines,
using the adaptive ridge formulation

min
(f1,...,fp)∈H1×...×Hp

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

subject to
p∑

j=1

1

λj
=

p

λ

λj > 0,

(6)

where the penalization on each variable is optimized to minimize residuals,
and consequently only λ has to be defined prior to the estimation procedure.
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Transposing the linear adaptive ridge (3) to additive cubic spline fitting (6)
amounts essentially to transforming a l2–norm in a L2–norm.

Expression (6) shows that we address the standard additive spline model (5),
except that the penalization terms λj applied to each additive component
are optimized subject to constraints. This writing can be motivated from a
hierarchical Bayesian viewpoint in the maximum a posteriori framework.

Again, if some λj goes to infinity, the solution for the jth component is the
least–squares line. Hence no predictor is likely to be eliminated by solving (6).
The following section presents two proposals dedicated at removing irrelevant
variables from the model.

4 Parsimonious Additive Models

Following [23], additive models form the subspace Hadd, which can be de-
composed as Hadd = H1 + . . . + Hp ⊂ H. Furthermore, the RKHS of cubic
spline functions H can be decomposed in the direct sum of two components
HL ⊕ H̃. The space of linear functions HL corresponds to the null space of
the semi-norm ‖D2f‖2

L2
, that is, ultimately smooth functions according to

the roughness penalty. The orthogonal complement H̃ is the space where the
roughness penalty defines a norm.

Our approach to Parsimonious Additive Models (PAM) consists in defining
new roughness penalties that are norms on Hadd, for which the solution can
still be expressed as an additive cubic spline model. The abovementioned de-
compositions of Hadd and H suggest the two penalization schemes detailed
below.

4.1 Modified Roughness Penalties (PAM1)

A first penalization scheme stems from the usual decomposition
Hadd = H1 + . . . + Hp ⊂ H, followed by Hj = Hj

L ⊕ H̃j . The idea is to use
a standard additive model, where we modify the roughness penalty on each
component. We first define the norm on the subspaces Hj

L as the l1–norm on
the expansion on the basis (1, xj).
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The optimization problem is now:

min
α,(f1,...,fp)∈H̃1×...×H̃p

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj| +
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

subject to
p∑

j=1

1

λj

=
p

λ

λj > 0 .

(7)
where the two predefined values µ and λ tune the global model complexity,
while the induced values λj control the individual complexities of fj .

In (7), each function fj is restricted to lie in H̃j , the orthogonal of linear func-
tions in (1, xj). This optimisation problem can be reformulated using functions
of the usual cubic spline spaces H1 . . .Hp as follows

min
α,(f1,...,fp)∈H1×...×Hp

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj| +
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

subject to
p∑

j=1

1

λj
=

p

λ

λj > 0

〈fj, 1〉 = 0 j = 1, . . . , p

〈fj,xj〉 = 0 j = 1, . . . , p ,

(8)
where 1 is a n–dimensional vector of ones and fj is the vector of the jth
additive component evaluated at xj .

The parsimony of (8) follows from the equivalence between adaptive ridge and

l1 penalization. If, after convergence,
1

λj

= 0, then ‖D2fj‖2

L2
is shrunk to zero

and the effect of the jth variable is linearized. If αj is null, the effect of the
jth variable is estimated to be strictly nonlinear (since 〈fj ,xj〉 = 0). Finally,

if αj = 0 and ‖D2fj‖2

L2
= 0, the corresponding variable is removed from the

model.

We can represent (8) in terms of spline bases. Let Nj denote the n × (n + 2)
matrix of the unconstrained natural B–spline basis, evaluated at xij . Let Ωj

be the (n+2)× (n+2) matrix corresponding to the penalization of the second
derivative of fj . The coefficients of fj in the unconstrained B–spline basis are

noted βj. We thus have fj = Njβj , and ‖D2fj‖2

L2
= βt

jΩjβj . Problem (8) can
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be rewritten as

min
α,β1,...,βp

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

Njβj

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj| +
p∑

j=1

λjβ
t
jΩjβj

subject to
p∑

j=1

1

λj
=

p

λ

λj > 0

1tNjβj = 0 j = 1, . . . , p

xt
jNjβj = 0 j = 1, . . . , p .

(9)

4.2 Additive Nonlinear Effects (PAM2)

The second penalization scheme originates from the opposite processing, where
the decomposition H = HL ⊕ H̃, is followed by H̃ ⊃ H̃1 + . . . + H̃p. The idea
now is to process linear and nonlinear components separately, the nonlinear
component being handled by the additive model. Such a decomposition favors
interpretability, since the nonlinear components are restricted to explain what
cannot be described by linear effects 1 . We now define the norm on the sub-
space HL as the l1–norm on the expansion on the basis (1, x1, . . . , xp) and the
optimization problem is

min
α,(f1,...,fp)∈H̃1×...×H̃p

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj| +
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

subject to
p∑

j=1

1

λj

=
p

λ

λj > 0 .

(10)

In (10) the functions fj are restricted to lie in H̃j, which are subsets of H̃,
the orthogonal of linear functions in (1, x1, . . . , xp). This optimisation problem
can be reformulated using functions of the usual cubic spline spaces H1 . . .Hp

1 This restraint occurs in the usual additive spline model, as a consequence of the
shrinking of all nonlinear effects coupled with the projection on linear effects.

9

H
A

L author m
anuscript    inserm

-00149798, version 1
H

A
L author m

anuscript    inserm
-00149798, version 1



as follows

min
α,(f1,...,fp)∈H1×...×Hp

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj| +
p∑

j=1

λj

∥∥∥D2fj

∥∥∥
2

L2

subject to
p∑

j=1

1

λj
=

p

λ

λj > 0

〈fj, 1〉 = 0 j = 1, . . . , p

〈fj,xk〉 = 0 j = 1, . . . , p k = 1, . . . , p .

(11)

Note that this approach differs from the previous one only in the last con-
straints, where fj are required to be orthogonal to xk for k 6= j.

In terms of a spline bases, (11) can be rewritten as

min
α,β1,...,βp

λ1,...,λp

∥∥∥∥∥∥
y −

p∑

j=1

xjαj −
p∑

j=1

Njβj

∥∥∥∥∥∥

2

2

+ µ
p∑

j=1

|αj | +
p∑

j=1

λjβ
t
jΩjβj

subject to
p∑

j=1

1

λj
=

p

λ

λj > 0

1tNjβj = 0 j = 1, . . . , p

xt
kNjβj = 0 j = 1, . . . , p k = 1, . . . , p .

(12)

4.3 Actual decomposition into linear and nonlinear subspaces

Splines are linear smoothers: that is, the univariate fits can be written as
f̂j = Sjy, where Sj is a n × n matrix, called the smoother matrix, free of y.

For the jth covariate, the smoother matrix is computed as

Sj = Nj(N
t
jNj + λjΩj)

−1Nt
j . (13)

It has two unitary eigenvalues corresponding to the constant and linear func-
tions (its projection part), and n−2 non–negative eigenvalues strictly smaller
than 1 corresponding to higher–order functions (its shrinking part). For the
purpose of minimizing (9) and (12), we decompose the smoother matrix:
Sj = Hj + S̃j , where Hj is the matrix that projects onto the space of eigen-
value 1 for the jth smoother (the hat matrix corresponding to least–squares
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Algorithm PAM1:
(1) Fix µ and λ
(2) Initialize βj (0 by default) and λj (λ by default), j = 1, . . . , p .
(3) Singular value decomposition and hat matrices:

(a) Compute eigenvalue decomposition: Ωj = PjDjP
t
j .

(b) Replace the eigenvalues corresponding to the null space
(linear and constant functions) by a positive value (1 by default).

(c) Denote: Qj = NjPjD
−1/2
j .

(d) Compute singular value decomposition: Qj = UjZjV
t
j .

(e) Compute hat matrices: Hj = xj(x
t
jxj)

−1xt
j .

(4) Linear components:
(a) Compute residual: r = y −

∑p

j=1
Njβj .

(b) Compute coefficients:

α = argminα

∥∥∥r −
∑p

j=1
xjαj

∥∥∥
2

2
+ µ

p∑

j=1

|αj | .

(5) Nonlinear components:
(a) Estimate nonlinear coefficients via backfitting:

(i) Compute smoother and shrinking matrices:

Sj = UjZj

(
Zt

jZj + λjI
)−1

Zt
jU

t
j and S̃j = Sj − Hj .

(ii) Compute partial residual: rj = y −
∑

k 6=j
Njβj .

(iii) Compute coefficients: Njβj = S̃jrj .

(b) Re-estimate penalizers: λj = λ

∑p

j=1

√
βt

jΩjβj

p
√

βt
jΩjβj

.

(6) Repeat (4) and (5) until convergence.

Fig. 1. Iterative algorithm PAM1 (modified roughness penalties) for carrying out
both function estimation and variable selection in additive models.

regression on xj), and S̃j is the shrinking matrix [23]. This decomposition is

practical for PAM1 as for PAM2: using S̃j (instead of Sj) in the backfitting
loop improves the numerical stability.

4.4 Algorithms

Problems (9) and (12) can be solved by a fixed point algorithm including
backfitting.

The general outline of the algorithm (figures 1 and 2) is the following. Firstly,
the two regularization parameters are fixed (step 1) and penalization terms are
initialized (step 2). Secondly, the matrices Sj are decomposed to improve effi-
ciency in the backfitting loop (step 3). Thirdly, in step 4, the linear components
are estimated by solving a lasso problem, using the algorithm proposed by Os-
borne et al. [29]. Recently, Efron et al. [14] developed a least–angle regression
which can readily provide all lasso solutions in a highly efficient fashion. Us-
ing this algorithm could marginally increase the computational efficiency for
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Algorithm PAM2:
(1) Fix µ and λ
(2) Initialize βj (0 by default) and λj (λ by default), j = 1, . . . , p .
(3) Singular value decomposition and hat matrices:

(a) Compute eigenvalue decomposition: Ωj = PjDjP
t
j .

(b) Replace the eigenvalues corresponding to the null space
(linear and constant functions) by a positive value (1 by default).

(c) Denote: Qj = NjPjD
−1/2
j .

(d) Compute singular value decomposition: Qj = UjZjV
t
j .

(e) Compute hat matrices: Hj = xj(x
t
jxj)

−1xt
j .

(4) Linear components:
(a) Compute the ordinary least–squares estimate:

αols = argminα

∥∥∥y −
∑p

j=1
xjαj

∥∥∥
2

2

.

(b) Compute coefficients

α = argminα

∥∥∥y −
∑p

j=1
xjαj

∥∥∥
2

2
+ µ

p∑

j=1

|αj | .

(5) Nonlinear components:
(a) Estimate nonlinear coefficients via backfitting

(i) Compute smoother and shrinking matrices:

Sj = UjZj

(
Zt

jZj + λjI
)−1

Zt
jU

t
j and S̃j = Sj − Hj .

(ii) Compute partial residual: rj = y − Xαols −
∑

k 6=j
Njβj .

(iii) Compute coefficients: Njβj = S̃jrj .

(b) Re-estimate penalizers: λj = λ

∑p

j=1

√
βt

jΩjβj

p
√

βt
jΩjβj

.

(c) Repeat 5.(b) and 5.(c) until convergence.

Fig. 2. Iterative algorithm PAM2 (additive nonlinear effects) for carrying out both
function estimation and variable selection in additive models.

PAM2, where linear and nonlinear components are computed independently.
Note that step 4(b) differs for the two algorithms: the predicted variable is
the residual of the nonlinear fit in PAM1, wheras it is the response variable
for PAM2. Finally, given a current estimate for penalization terms, the spline
coefficients are calculated (step 5(a)). These coefficient values are then used
to get a new estimate for the penalization terms (step 5(b)). In PAM1, this is
followed by the re-estimation of the linear component (step 4), and in PAM2,
the two steps are iterated until convergence is achieved.

Step 5(a) is an iteration of the backfitting algorithm, which is used to esti-
mate the nonlinear components. First, given the current estimate for penal-
ization terms, smoother and shrinking matrices are calculated (step 5(a)i).
Smoother matrices are computed efficiently, using the singular value decom-
position of step 3 detailed below. Shrinking matrices are then obtained by
an orthogonal projection of smoother matrices onto the space spanned by
nonlinear components. Secondly, partial residuals are computed (step 5(a)ii).
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Here, PAM1 and PAM2 differ. In PAM1, partial residuals are obtained by
subtracting from y the nonlinear fits from the other covariates. in PAM2, the
ordinary least–squares fit is also subtracted from y. This subtraction ensures
the orthogonality of linear and nonlinear fits. Thirdly, in step 5(a)iii, using S̃j

to fit residuals ensures the orthogonality constraints 〈fj ,xj〉 = 0. 2 The coef-
ficients βj themselves are in fact not computed explicitely, since we are only
interested in Njβj in step 5(a)iii and βt

jΩjβj in step 5(b). The latter can be
directly computed using the singular value decomposition results of step 3 as
rt

jUjZj(Z
t
jZj + λjI)

−2Zt
jU

t
jrj.

Singular Value Decomposition We propose a singular value decomposi-
tion (step 3 in figures 1 and 2) that allows us to speed up the computation
of the nonlinear components by avoiding matrix inversions in the backfitting
inner loop.

The first part of the procedure is to transform Ωj in a full rank matrix. The
penalization matrix has two null eigenvalues corresponding to the constant
and linear functions (as the second derivative of these functions is the null
function). However, if a penalization on the linear functions is added, then Ωj

becomes a full rank matrix. This is performed by replacing the null eigenvalues
in the penalization matrix by positive values (step 3(a)). This substitution
does not change coefficient estimates, since linear and nonlinear components
are treated independently.

Let Ω′
j be the full rank matrix such that S′

j = Nj(N
t
jNj + λjΩ

′
j)

−1Nt
j has the

same eigenvalues and eigenvectors as Sj , except for the two unit eigenvalues
(and corresponding eigenvectors). This matrix is obtained as

Ω′
j = Ωj +

1

n
Nt

jxxtN +
1

n
Nt

j11tN. (14)

Let Pj be a unitary matrix and let Dj be a diagonal matrix such that

Ω′
j = PjDjP

t
j (step 3(b)). Define Qj = NjPjD

−1/2
j (step 3(c)) and let

Qj = UjZjV
t
j be its singular value decomposition (step 3(d)), where Zj is

a diagonal matrix of the same dimension as Qj and with nonnegative diago-
nal elements, and Uj and Vj are unitary matrices. Then we can write

S′
j = UjZj(Z

t
jZj + λjI)

−1Zt
jU

t
j . (15)

2 For PAM2, this constraint is ensured by the subtraction of the ordinary least–
squares fit in step 5(a)ii. However, using S̃j improves stability. Note also that the
subtraction of the ordinary least–squares fit could be made only once, after step
4(b), but including it in the loop also improves stability.

13

H
A

L author m
anuscript    inserm

-00149798, version 1
H

A
L author m

anuscript    inserm
-00149798, version 1



The projections of S′
j and Sj onto the nonlinear space (S̃′

j and S̃j, respectively)
coincide.

Using the singular value decomposition we obtain a simple calculation of the
smoother matrices. Matrices Uj and Zj do not depend on either coefficients
βj or penalizers λj, and so factors UjZj and Zt

jZj only need to be calculated
once for given data. On the other hand, we avoid matrix inversions in the
iterative step, since matrices

(
Zt

jZj + λjI
)

are diagonal.

Notice that the computations needed for the singular value decomposition do
not depend on λ. Model selection methods based on evaluation over a grid of
(µ, λ) values (section 5) will make use of this fact. Indeed, step 3 only needs
to be computed once for the entire set of (µ, λ) values.

Algorithm improvements The practical difference between PAM1 and
PAM2 is that, in the latter, linear and nonlinear components span orthogonal
spaces, they are computed independently, whereas in PAM1, steps 4 and 5
have to be iterated until convergence (step 6 of figure 1).

Independence of linear and nonlinear steps in PAM2 has an important impli-
cation for the model selection problem (section 5). As the model complexity is
tuned by only two parameters, µ and λ, (no matter how many input variables
there are in the data set), it is possible to perform regularization parameter
selection by direct grid search optimization of a given criterion. Direct search
methods solve unconstrained optimization problems without forming or esti-
mating derivatives. They are based on evaluating a criterion over an admissible
set of values, which may be a grid or random, and selecting the optimization
parameter values that minimize this criterion. In the present case, indepen-
dence of linear and nonlinear components implies that the grid of values is
not quadratic (the number of µ–values × the number of λ–values) but linear
(the number of µ–values + the number of λ–values). Model selection for the
PAM1 algorithm is also performed by direct grid search optimization, but it
involves much more calculations.

Adapting the algorithms for finding the lasso solution [29,14] to the estima-
tion of the nonlinear components (step 5) would improve the computational
efficiency. However, lasso–type problems are only a special case of the more
general problems (9) or (12), for which no such algorithm is currently available.

An alternative to backfitting is to fit all the smooth components simultane-
ously, achievable using penalized regression splines [27,40,31]. This approach,
which has been shown to be computationally efficient, can be integrated into
our algorithm in a straightforward manner.
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4.5 More General Models

Parsimonious additive models can be extended to generalized parsimonious
additive models using an iteratively reweighted least–squares (IRLS) proce-
dure to compute coefficients [23,24]. Thus we can solve the penalized problem
by iterative application of the weighted version of algorithm in figures 1 and
2 within an IRLS loop.

This algorithm nevertheless presents new difficulties. First, the hat and
smoother matrices depend on the weights, which change at each IRLS it-
eration. The singular value decomposition step (step 3) has to be incorpo-
rated within the iterated nonlinear coefficients estimation step (step 5(a)).
Secondly, the estimation of linear and nonlinear coefficients is not indepen-
dent anymore for PAM2, since the two procedures interact via the weight
matrices. Thus, complexity parameter selection based on direct grid search
optimization (section 5) implies the evaluation of a quadratic, instead of a
linear number of values. Consequently, computation becomes more intensive
than in the Gaussian–type responses case.

4.6 Related Methods

The l1–based penalizer is used in the context of linear [36,24], wavelet [11] and
kernel [30,20] regressions. It has also been adapted to additive models fitted
by cubic smoothing splines [18,3]. Nevertheless, as pointed out previously,
selected variables are not eliminated, but linearized.

Our solution is close to the COSSO (COmponent Selection and Smoothing Op-
erator), a general regularization scheme for smoothing spline ANOVA models,
where the penalty functional is defined as the sum of component norms [26].

In the context of additive cubic smoothing splines, problem (6) is a special
form of the COSSO, as it can rewritten as

min
(f1,...,fp)∈H1×...×Hp

∥∥∥∥∥∥
y −

p∑

j=1

fj(xj)

∥∥∥∥∥∥

2

2

+
λ

p




p∑

j=1

∥∥∥D2fj

∥∥∥
L2




2

. (16)

In the present paper, we depart from this formulation, with the aim to en-
courage variable selection. This goal was also pursued by Lin and Zhang,
who considered the space of univariate functions defined on the second order
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Sobolev Hilbert space W2[0, 1] endowed with the norm

‖f‖2 =
(∫ 1

0
f(t)dt

)2

+
(∫ 1

0
f ′(t)dt

)2

+
∫ 1

0
(f ′′(t))

2
dt .

In this approach, only one penalization term is needed to penalize linear and
nonlinear components [26].

PAM differs from the COSSO in the respect that the amount of regularization
on the linear and nonlinear component is not tied by the definition of the
regularization functional. PAM thus requires a second tuning parameter at
the selection step, but this burden is compensated by the additional flexibility,
which results in invariance with respect to global scale changes (where all
explicative variables are multiplied by a constant). In this regard, PAM is
similar to Likelihood Basis Pursuit (LBP) [41]. The main effect model in [41]
is an additive model expressed as a linear combination of kernels, where two
regularization parameters are provided: one for the parametric component and
the other one for the nonparametric component.

PAM departs from LBP in the estimation of the nonparametric component.
The estimate returned by LBP is a sparse expansion of kernel coefficients,
but all variables are likely to contribute to the model, each one being repre-
sented by a small number of kernels. The regularizers of PAM aim at providing
sparsity with respect to the number of variables entering the nonparametric
expansion. When a significant nonlinear effect is detected, all βj are non-zero:
LBP favors compact representations and PAM favors interpretability.

5 Complexity Tuning

Model selection refers to the problem of selecting, among a class of models,
the one that minimizes the prediction error. This task is difficult to implement
for additive models in the form (5) since there are p complexity parameters.
Our proposal requires only two complexity parameters to be tuned, whatever
the number of variables in the model. The optimal (µ, λ) values are those that
minimize prediction error. This error is unknown and has to be estimated.

A popular criterion for choosing complexity parameters is K–fold cross–
validation (CV), which is an unbiased estimate of the expected prediction
error [35]. This computer intensive technique uses all available examples as
training and test examples. It mimics the use of training and test sets by
repeatedly training the algorithm K times with (approximately) a fraction
1/K of training examples left out for testing purposes. If K equals the sample
size, this is called “leave–one–out” cross–validation. Leave–one–out CV for
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linear smoother operators admits an analytic formulation, then no resampling
is required and computing time is accelerated [23].

6 Experiments

We evaluate the performance of our method by comparing it to BRUTO, an
adaptive method for estimating an additive model using smoothing splines
that combines backfitting and model selection, allowing a continuous regimen
of fits for each term [23]. Model selection is based on an approximation to the
GCV criterion, which is used to determine the λj parameters, one parameter
at a time, at each step of the backfitting procedure. Once the selection process
stops, the model is backfit using the chosen amount of smoothing. Simulations
with BRUTO were carried out using the mda package of R 2.1.1. Results
obtained by the constant model (CM), estimated by the mean response, are
also provided as a reference.

Parsimonious additive models are computed by the two proposed algorithms:
PAM1 and PAM2. Model selection for parsimonious additive models is carried
out using CV criterias, which are evaluated over a 8×8 grid of (µ, λ) values reg-
ularly spaced on a logarithmic scale. For PAM1, model selection is performed
by 5–fold CV. The analytical approximation of leave-one-out CV for linear
smoothers turned out to perform well enough for PAM2, with the benefit of
avoiding a great deal of calculations. The performance of CV is compared to
the optimal performance, achieved by choosing the model that minimizes the
test error (the crystal ball model 3 , using Breiman’s terminology [5]), and cal-
culated over the same grid of values. Simulations with parsimonious additive
models were carried out using Matlab 6.5.

6.1 Protocol

The synthetic data sets were randomly generated as follows. There are p = 18
explanatory variables identically distributed from the standard normal dis-
tribution, and 1 response variable. Explanatory variables are grouped in 6
clusters of 3 variables: Xk = (Xk

1 , Xk
2 , Xk

3 ), k = 1, . . . , 6. The variables be-
longing to different clusters are independent, and the variables within each
group are correlated: Xk ∼ N (0,Λ), Λij = ρ|i−j|, where ρ is the parameter
controlling correlation. Dealing with small clusters allows us, first, to control

3 The crystal ball method consists in picking up the predictor having minimum
prediction error. Without prior information, one uses for example, test sets.
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correlation in a precise way and, secondly, to localize redundant information
easily.

The underlying functions in each group are: f1(x
k
1) = xk

1, f2(x
k
2) = cos(π

2
xk

2),
f3(x

k
3) = 1

2
xk

3 + 1
2
sin(πxk

3), k = 1, . . . , 6. Hence we take into account a wide
range of functions with respect to their curvature. The response is calculated
as

y =
∑6

k=1 δk[f1(x
k
1) + f2(x

k
2) + f3(x

k
3)] + ε, (17)

where δk ∈ {0, 1} controls the relevance of cluster k and ε ∼ N (0, σ2). The
noise level defines R2.

We consider the following scenarios:

• Low (ρ = 0.1) and severe (ρ = 0.9) intra–clusters correlation,
• Few (δ1 = δ2 = 1, δ3 = δ4 = δ5 = δ6 = 0) and several (δ1 = δ2 = δ3 = δ4 =

δ5 = 1, δ6 = 0) relevant variables (d = 6 among 18 and d = 15 among 18,
respectively).

• Low (R2 = 0.95) and moderate noise (R2 = 0.75),
• Small (n = 50) and moderate (n = 200) sample size,

Table 1
Summary of analyzed scenarios as functions of control parameters.

Case Correlation Relevant variables Noise Observations

1 low (ρ = 0.1) low (d = 6) low (R2 = 0.95) low (n = 50)

2 low (ρ = 0.1) low (d = 6) low (R2 = 0.95) moderate (n = 200)

3 low (ρ = 0.1) low (d = 6) moderate (R2 = 0.75) low (n = 50)

4 low (ρ = 0.1) low (d = 6) moderate (R2 = 0.75) moderate (n = 200)

5 low (ρ = 0.1) high (d = 15) low (R2 = 0.95) low (n = 50)

6 low (ρ = 0.1) high (d = 15) low (R2 = 0.95) moderate (n = 200)

7 low (ρ = 0.1) high (d = 15) moderate (R2 = 0.75) low (n = 50)

8 low (ρ = 0.1) high (d = 15) moderate (R2 = 0.75) moderate (n = 200)

9 severe (ρ = 0.9) low (d = 6) low (R2 = 0.95) low (n = 50)

10 severe (ρ = 0.9) low (d = 6) low (R2 = 0.95) moderate (n = 200)

11 severe (ρ = 0.9) low (d = 6) moderate (R2 = 0.75) low (n = 50)

12 severe (ρ = 0.9) low (d = 6) moderate (R2 = 0.75) moderate (n = 200)

13 severe (ρ = 0.9) high (d = 15) low (R2 = 0.95) low (n = 50)

14 severe (ρ = 0.9) high (d = 15) low (R2 = 0.95) moderate (n = 200)

15 severe (ρ = 0.9) high (d = 15) moderate (R2 = 0.75) low (n = 50)

16 severe (ρ = 0.9) high (d = 15) moderate (R2 = 0.75) moderate (n = 200)

Table 1 shows a summary of the different scenarios studied here as functions
of control parameters. For each one of the 16 scenarios, 50 experiments were
conducted.

18

H
A

L author m
anuscript    inserm

-00149798, version 1
H

A
L author m

anuscript    inserm
-00149798, version 1



Table 2
Mean test error of BRUTO and parsimonious additive models (PAM1 and PAM2).
The mean test error of the constant model (CM) and optimal parsimonious additive
model (CB1 and CB2) are also given for reference. Values are means and standard
deviations of prediction error over 50 simulations. For each scenario, when the PAM1
error is smaller than the BRUTO error, the PAM1 value is shown in bold type (and
similar for PAM2). A significant difference (T–test, p < 0.05) between BRUTO and
PAM1 or BRUTO and PAM2 is indicated by ∗ .

Case CM CB1 PAM1 CB2 PAM2 BRUTO

1 3.581 (1.043) 0.315 (0.075) 0.363 (0.108)∗ 0.488 (0.137) 0.722 (0.198)∗ 0.566 (0.237)

2 3.297 (0.436) 0.137 (0.012) 0.140 (0.013)∗ 0.175 (0.020) 0.209 (0.044)∗ 0.128 (0.012)

3 3.877 (1.032) 1.287 (0.188) 1.531 (0.343)∗ 1.433 (0.227) 1.559 (0.268) 1.629 (0.338)

4 3.864 (0.577) 0.767 (0.043) 0.787 (0.050) 0.814 (0.058) 0.826 (0.065)∗ 0.739 (0.048)

5 13.210 (4.221) 1.405 (0.396) 1.783 (0.665)∗ 1.833 (0.328) 2.473 (0.496)∗ 3.344 (0.714)

6 12.828 (2.172) 0.382 (0.038) 0.382 (0.037)∗ 0.553 (0.073) 0.753 (0.175)∗ 0.416 (0.045)

7 13.871 (3.499) 3.897 (0.469) 4.611 (0.891)∗ 4.130 (0.510) 4.429 (0.589)∗ 5.818 (0.823)

8 14.249 (1.927) 2.112 (0.128) 2.165 (0.161)∗ 2.308 (0.172) 2.434 (0.218) 2.441 (0.241)

9 4.626 (1.148) 0.321 (0.050) 0.367 (0.083)∗ 0.439 (0.088) 0.526 (0.119)∗ 0.791 (0.293)

10 4.374 (0.627) 0.190 (0.017) 0.193 (0.017)∗ 0.213 (0.023) 0.215 (0.023)∗ 0.194 (0.022)

11 5.867 (1.379) 1.537 (0.161) 1.722 (0.258)∗ 1.591 (0.200) 1.717 (0.254)∗ 2.240 (0.582)

12 5.185 (0.588) 1.160 (0.057) 1.182 (0.067)∗ 1.180 (0.065) 1.192 (0.071)∗ 1.240 (0.091)

13 15.297 (4.054) 1.306 (0.216) 1.552 (0.401)∗ 1.509 (0.196) 1.894 (0.286)∗ 2.695 (0.353)

14 15.450 (2.294) 0.544 (0.053) 0.555 (0.059)∗ 0.656 (0.069) 0.723 (0.076) 0.704 (0.133)

15 18.236 (4.356) 4.394 (0.411) 5.001 (0.688)∗ 4.500 (0.463) 4.726 (0.524)∗ 6.274 (1.069)

16 17.550 (2.342) 3.112 (0.152) 3.170 (0.184)∗ 3.187 (0.163) 3.269 (0.168)∗ 3.564 (0.253)

6.2 Results

Table 2 shows the performances achieved by BRUTO (for which model selec-
tion is carried out by GCV), and parsimonious additive models (PAM1 and
PAM2, for which model selection is carried out by 5-fold CV and leave–one–
out CV, respectively). For reference, we also provide the mean test errors of
the constant model (CM) and of the crystal ball models CB1 and CB2, that is
the optimaly tuned models obtained respectively by PAM1 and PAM2. Pre-
diction errors are estimated on a test set of size 10000 and performances are
reported by the means and standard deviations of prediction error over 50
experiments.

PAM1 performs significatively better than BRUTO, except in cases 2 and 4.
For the latter, the difference is not significative, and the former is the simpliest
estimation problem, with low correlation, few relevant variables, low noise and
the highest number of observations.

PAM2 achieves slightly lower results. BRUTO performs significantly better in
five cases (1, 2, 4, 6, 10) out of 13 significant differences. The five situations
where BRUTO wins are characterized by relatively easy setups: low noise,
larger sample sizes and low correlation between covariates, or low noise, larger
sample sizes and few relevant variables.
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The results obtained by BRUTO are more variable than those obtained by
PAM, especially when either the sample size is small, the number of relevant
variables is high, variables are correlated or the noise level is high. We suspect
that BRUTO unstability may be due to the local search of the model selection
technique, where one λj parameter is optimized at a time.

The 5–fold CV model selection technique used with PAM1 is, in general, close
to the optimal performance (reported as CB1). This is an indicator of the
stability of the algorithm. The analytical leave–one–out CV used for PAM2
performs also well (the optimal performance is CB2), except for low sample
size and little noise.

Finally, BRUTO executes faster than PAM. However, we note that the com-
puting time of PAM does not depend on the number of relevant variables.

Concerning differences between the two proposed algorithms, the optimaly
tuned PAM1 (CB1) is always better than CB2. This is explained by the fact
that PAM1 explores a larger space. PAM2 is only better than PAM1 in very
difficult situations with high noise and small sample sizes, but avoiding the
exact CV procedure reduces drastically the computing time.

Table 3
Average number of total and irrelevant eliminated variables obtained by BRUTO
and parsimonious additive models (PAM1 and PAM2).

Case Total Irrelevant

PAM1 PAM2 BRUTO PAM1 PAM2 BRUTO

1 2.5 4.5 11.7 2.5 4.4 11.1

2 3.0 3.0 11.4 3.0 3.0 11.4

3 5.0 4.9 12.8 4.8 4.7 10.9

4 2.6 2.2 11.3 2.6 2.2 11.3

5 1.9 2.3 10.6 1.0 1.1 2.8

6 1.0 0.3 2.8 1.0 0.3 2.8

7 3.7 3.0 12.4 1.4 1.0 2.7

8 1.1 0.6 3.7 1.1 0.6 3.0

9 3.9 6.6 9.1 3.9 6.5 7.4

10 4.1 5.4 8.5 4.1 5.4 8.5

11 6.9 6.7 9.3 6.4 6.0 6.8

12 3.8 4.6 8.0 3.8 4.6 7.5

13 2.0 4.3 8.0 1.4 1.9 1.8

14 1.0 1.0 2.7 1.0 1.0 2.0

15 4.4 4.6 9.5 1.7 1.3 1.8

16 1.5 1.4 5.7 1.3 1.1 2.2

The average number of eliminated variables and the average number of elimi-
nated irrelevant variables are presented in table 3. As a general rule, BRUTO
discarded most of the irrelevant variables but it also eliminated desired vari-
ables. Conversely, PAM selected most relevant variables, but few irrelevant
variables were eliminated. Analyzing PAM results in detail, we see that even
if few irrelevant or redundant variables are eliminated, these variables are
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severely penalized.
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Fig. 3. Box plot summarizing the distribution (over 50 simulations) of normal-

ized linear and nonlinear components:
|αj |∑p

k=1
|αk|

and
‖D2fj‖L2∑p

k=1
‖D2fk‖L2

, respectively,

obtained by PAM2, for all 18 input variables and for the eight scenarios corre-
sponding to 6 relevant variables. Vertical lines separate relevant from irrelevant
variables.

Figures 3 and 4 show box plots of normalized relevance index for linear compo-

nents,
|αj |∑p

k=1
|αk|

and normalized nonlinear components,
‖D2fj‖

L2∑p

k=1
‖D2fk‖L2

, obtained

by PAM2, for the 18 input variables. Figure 3 gathers all scenarios in which
there are 6 relevant variables and figure 4 corresponds to the ones where there
are 15 relevant variables. As pointed out above, many indexes corresponding
to irrelevant variables (j = 7, . . . , 18, in figure 3 and j = 16, . . . , 18, in figure
4) are near–zeroes, but most of them are not exactly null.

We also observe that variables that are only linearly related to the response
variable (j = 1, 4, in figure 3 and j = 1, 4, 7, 10, 13, in figure 4) present a
severely penalized nonlinear components. Similarly, underlying functions with-
out a linear effect (j = 2, 5, in figure 3, and j = 2, 5, 8, 11, 14, in figure 4)
present a severely penalized linear component although their nonlinear com-
ponent is important. Thus, linear and nonlinear trends are well identified.
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Fig. 4. Box plot summarizing the distribution (over 50 simulations) of normal-

ized linear and nonlinear components:
|αj |∑p

k=1
|αk|

and
‖D2fj‖L2∑p

k=1
‖D2fk‖L2

, respectively,

obtained by PAM2, for all 18 input variables and for the eight scenarios corre-
sponding to 15 relevant variables. Vertical lines separate relevant from irrelevant
variables.

Alternative model selection criteria Inferring an estimator of the ef-
fective number of parameters, would allow us to adapt normal model selec-
tion criteria (as generalized cross–validation or Akaike information criteria)
to tune the complexity of our problem. Orthogonality constraints of PAM2
justify calculation of the effective number of parameters as the effective num-
ber of parameters associated to linear components plus the effective number
of parameters associated to nonlinear components. The estimator proposed
by Fu [15] could be used to approximate the effective number of parameters
associated to linear components. Another possibility consists in considering
the problem under the adaptive ridge formulation and exploiting analogies
between ridge and adaptive ridge regressions. The effective number of param-
eters associated to nonlinear components can be calculated as the addition
of individual effective number of parameters [23]. This proposal must to be
tested thoroughly, yet our experience has been very favourable.
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7 Prediction of Indinavir Plasma Concentration

Pharmacokinetic characteristics (absorption, distribution and elimination) of
certain antiretrovirals, and especially of protease inhibitors, are very variable.
The concentration/effect (therapeutic or toxic) relationship is therefore a bet-
ter indicator than the dose/effect relationship. The Cophar 1 ANRS 102 trial
aims at establishing a window of efficacy and safe plasma concentrations for
protease inhibitor treatments. We apply our approach to data concerning the
protease inhibitor indinavir [6].

The data-set corresponds to 42 HIV–infected patients (one of them hav-
ing missing values is excluded), described by several demographic and clin-
ical characteristics: 1. gender (female/male); 2. age at examination in years;
3. weight in kg; 4. body mass index (BMI) in kg/m2; 5. body surface area
(BSA) in m2; 6. number of lymphocytes CD4 cells/mm3; 7. disease stage
according to the CDC classification (1=no immunosuppression, 2=moderate
immunosuppression and 3=severe immunosuppression); 8. duration of treat-
ment (T) in months; 9. duration of indinavir treatment (IT) in months; 10. and
11. number of different molecules included in the antiretroviral multitherapy
treatment (M1, ranged from 0 to 2, and M2, ranged from 0 to 1); 12. daily
indinavir dose (dosage) in mg; 13. indinavir dose per unit intake in mg; and
14. absence/presence (0/1) of ritonavir treatment, that allows less frequent
dosing of indinavir by slowing elimination. The Gaussian type response vari-
able is the log plasma through concentration of indinavir (LPTCI), in ng/ml.
We fitted LPTCI on standardized predictors using a parsimonious additive
model (using PAM2). Categorical unordered covariates (gender and ritonavir)
appear in the form of linear parametric functions and are penalized by only
one constraint. Model selection was achieved by leave–one–out CV and 10–fold
CV. Both criteria selected the same (µ, λ) values.

Figure 5 shows important effects of age, weight, dosage, BMI, IT and M1 (al-
though the poor representativeness of one of the values for the later covariate
may lead to overestimation). Weight and dosage have negative linear effects
on the plasma concentration. The former is unsurprising, the latter can be ex-
plained by the fact that the smallest doses correspond to ritonavir treatments,
and so they are accompanied by a slower elimination. The BMI covariates and
the duration of indinavir treatment seem to have a quadratic effect on the
LPTCI. The highest concentrations are found in the window of the standard
BMI values, and the lowest concentrations are found in the overweight and
underweight regions. Inversely, the LPTCI decreases slowly during the two
first months of indinavir treatment, and increases afterwards. Concentration
is initially a linear function of age, having a quadratic behavior that reaches
its maxima between 45 and 55 years old.
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Fig. 5. Estimated univariate components for selected variables (solid curves) and
partial residuals (dots).

The disease stage and BSA effects are very low. Indeed, the CDC classification
is not always a good indicator of the severity of disease, since it does not
take into account the regression of disease when the patient is undergoing
treatment. As regards the effect of BSA, similar explanations can be given as
for weight and BMI.

The dose, CD4, duration of treatment, M2, gender and ritonavir covariates
are eliminated. Duration of treatment is, in part, explained by IT. Similarly,
dosage is an important factor that depends on dose and ritonavir.

BRUTO was also applied to fit an additive model to the 14 predictors and to
perform variable selection. Variables retained in the final model are age, which
shows a quadratic effect, weight, BMI, BSA and dosage. Weight and dosage
have negative linear effects on the plasma concentration, similar to the ones
obtained with parsimonious additive models. However, the negative influence
of weight is much more important according to BRUTO, while BMI and BSA
have strong positive linear effects. In this respect, BRUTO differs significantly
from PAM. One may be suspicious about BRUTO’s results, since weight, BMI
and BSA are highly positively correlated. The high negative influence of weight
compensated by the strong positive effect of BSA is a further indication of
the unstable behavior of BRUTO, which may result from the local search of
complexity parameters, which are tuned one at a time.
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Parsimonious additive models provided an adequate analysis of the concen-
trations of the Cophar 1 data set. On the one hand, they uncovered highly
nonlinear effects on some of the covariates (BMI and IT), which would have
been hard to detect by a parametric strategy. On the other hand, they could
handle a small data set, where the relatively high number of covariates (with
respect to the small sample size) makes difficult the use of standard nonpara-
metric procedures, and where the high correlation between covariates may
cause problems to local search strategies like BRUTO.

8 Conclusions

Additive and generalized additive models provide a flexible alternative to the
standard linear and generalized linear models, preserving the ability to sum-
marize relationships in an intuitive way. These models are thus applied in
several domains including economics [34,4], engineering [39] and public health
[2,13]. Most of these applications deal with few predictor variables. Additive
models are seldom applied to variable selection problems, owing to the limi-
tations of current methods.

In this paper we have proposed an extension of the lasso technique to additive
models. We examined the relative merits of the adaptive backfitting procedure
called BRUTO and parsimonious additive models PAM1 and PAM2 in 16
different scenarios.

BRUTO eliminates most irrelevant variables, but it may also discard signifi-
cant variables. Conversely, parsimonious additive models select most relevant
variables, but few irrelevant or redundant variables are eliminated. These vari-
ables are however severely penalized. In nonparametric additive regression,
variable elimination may be more difficult, since it demands a zero coefficient
for the linear component and a zero coefficient for its nonlinear component.

Globally, PAM1 performs (generally) better than PAM2, which is itself su-
perior to BRUTO. The latter is however competitive in the easiest situation
characterized by large sample sizes, low noise, low correlation between vari-
ables and/or few relevant variables. Parsimonious additive models are well
adapted when model estimation is challenging. Hence, the results reported
here suggest that our approach leads to promising techniques for the parsimo-
nious additive modelling of the relationship between a response and several
continuous covariates.
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A Proof of equivalence

This appendix details the derivation between adaptive ridge and lasso [17].

Let L be any differentiable loss function (throughout this paper, L is the
quadratic loss function). To simplify, suppose that the responses are centered.
The adaptive ridge solution α̂ = (α̂1, . . . , α̂p) is the minimizer of





(α̂, µ̂) = arg min
α,µ

L(α) +
p∑

j=1

µjα
2
j ,

subject to
p∑

j=1

1

µj
=

p

µ
, µj > 0,

(A.1)

where µ ∈]0, +∞[. The parameterization avoiding divergent solution is

γj =

√
µj

µ
αj and cj =

√
µ

µj
for j = 1, . . . , p (A.2)

The optimization problem of adaptive ridge is then stated as





(ĉ, γ̂) = arg min
c,γ

L(c, γ) + µ
p∑

j=1

γ2
j ,

subject to
p∑

j=1

c2
j = p, cj ≥ 0.

(A.3)

The corresponding Lagrangian L is

L(c, γ) = L(c, γ) + µ
p∑

j=1

γ2
j + ν




p∑

j=1

c2
j − p


− ξtc, (A.4)

where ν and ξ are the Lagrange multipliers corresponding, respectively, to
the equality and the positivity constraints on {cj}. The normal equations for
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(A.4) are thus 



∂L
∂γ

=
∂L(c, γ)

∂γ
+ 2µγ

∂L
∂c

=
∂L(c, γ)

∂c
+ 2νc − ξ.

(A.5)

First we state a relation between the partial derivatives of L with respect to
c and γ. This relation stems from the relation αj = cjγj:





∂L

∂γj
= cj

∂L

∂αj
∂L

∂cj
= γj

∂L

∂αj
.

(A.6)

For this system, we have

γj
∂L

∂γj

= cj
∂L

∂cj

. (A.7)

This equation is used to derive a relationship between ĉj and γ̂j, independently
of L and the Lagrange multipliers:





diag(γ̂)
∂L
∂γ

= diag(γ̂)
∂L(c, γ)

∂γ

∣∣∣∣∣
(̂c,γ̂)

+ 2µdiag(γ̂)γ̂

diag(ĉ)
∂L
∂c

= diag(ĉ)
∂L(c, γ)

∂c

∣∣∣∣∣
(̂c,γ̂)

+ 2νdiag(ĉ)ĉ − diag(ĉ)ξ.
(A.8)

Since a Lagrange multiplier is zero for inactive constraints, we have
diag(ĉ)ξ = 0. As (A.7) holds for (ĉ, γ̂), and that optimality of (ĉ, γ̂) implies
∂L
∂γ

=
∂L
∂c

= 0, then, from (A.8), we have

ĉ2
j =

µ

ν
γ̂2

j , ∀j. (A.9)

The equality constraint (A.3) on {cj} implies:

ĉj =

√
p|γ̂j|√∑p
k=1 γ̂2

k

, ∀j. (A.10)

We finally use this equation to give the optimality conditions as a function of
the original variables α̂j. As |α̂j| = ĉj |γ̂j|, we have

|α̂j| =

√
pγ̂2

j√∑p
k=1 γ̂2

k

⇒ |α̂j|∑p
k=1 |α̂k|

=
γ̂2

j∑p
k=1 γ̂2

k

⇔ ĉ2
j =

p|α̂j|∑p
k=1 |α̂k|

. (A.11)

This value of ĉj is now plugged into the first equation of system (A.5) evaluated
at (ĉ, γ̂), using the first equation of system (A.6):

ĉj =
∂L

∂αj

∣∣∣∣∣
α̂j

+ 2µγ̂j = 0, ∀j. (A.12)
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Therefore, either ĉj = γ̂j = α̂j = 0, either
∂L

∂αj

∣∣∣∣∣
α̂j

+ 2µ
γ̂j

ĉj

= 0. From (A.11),

γ̂j/ĉj can be rewritten using α as follows:

γ̂j

ĉj
= γ̂j ĉj

1

ĉ2
j

= α̂j

∑p
k=1 |α̂k|
p|α̂j|

=
1

p
sign(α̂j)

p∑

k=1

|α̂k|.

(A.13)

The optimality conditions are thus





∂L

∂αj

∣∣∣∣∣
α̂j

+ 2
µ

p
sign(α̂j)

p∑

k=1

|α̂k| = 0,

or α̂j = 0,

∀j, (A.14)

wich are recognized as the normal equations of

L(α) +
µ

p

( p∑

k=1

|αk|
)2

. (A.15)

This concludes the proof.
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