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Abstract 

The aim of this study was to carry out a statistical analysis of the Banister model to 

verify how useful it is in monitoring the training programmes of elite swimmers. 

The accuracy, the ill-conditioning and the stability of this model were thus 

investigated. Training loads of nine elite swimmers, measured over one season, 

were related to performances with the Banister model. Firstly, to assess accuracy, 

the 95% bootstrap confidence interval (95% CI) of parameter estimates and 

modelled performances were calculated. Secondly, to study ill-conditioning, the 

correlation matrix of parameter estimates was computed. Finally, to analyse 

stability, iterative computation was performed with the same data but minus one 

performance, chosen randomly. Performances were significantly related to training 

loads in all subjects (R2= 0.79 ± 0.13, P < 0.05) and the estimation procedure 

seemed to be stable. Nevertheless, the 95% CI of the most useful parameters for 

monitoring training were wide τa =38 (17, 59), τf =19 (6, 32), tn =19 (7, 35), tg =43 

(25, 61). Furthermore, some parameters were highly correlated making their 

interpretation worthless. The study suggested possible ways to deal with these 

problems and reviewed alternative methods to model the training-performance 

relationships. 
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Introduction 

The relationships between training and performance may be of practical use to 

sports elite coaches when organizing their athletes' training programs. These 

relationships are known to be highly individualized (Mujika et al., 1996b; Avalos et 

al., 2003). These differences can be attributed to genetic factors (Wolfarth et al., 

2000), individual training background (Mujika et al., 1996a; Avalos et al., 2003), 

psychological factors (Banister et al., 1975), technical factors (Toussaint et 

Hollander, 1994; Wakayoshi et al., 1995) and specialty (Mujika et al., 1996a,b; 

Stewart and Hopkins, 2000; Avalos et al., 2003). There is a large consensus that 

modelling training-performance relations provides pertinent information concerning 

inter-individual differences enabling highly individualised training programmes 

(Banister et al., 1975, 1999; Morton et al., 1990, 1991, 1997; Mujika et al., 1996a, 

b; Avalos et al., 2003). The model proposed by Banister et al. (1975) and its 

different extensions (Calvert et al., 1976; Busso et al., 1997, 2002; Busso, 2003) 

aimed to relate training loads to performance, taking into account the dynamic and 

temporal characteristics of training and therefore the effects of load sequences over 

time. These effects may be described by two antagonistic transfer functions: first, a 

positive influence that synthesizes all the positive effects leading to an increase in 

performance, second a negative function that synthesizes all the negative effects 

leading to short- or long-term fatigue and having a negative influence on 

performance (Busso et al., 1994; Mujika et al., 1996a). The function is as follows 

(Banister et al., 1975; Busso et al., 1994):  
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where pt is the modelled performance at time t; p0 is the initial performance level; 

ka and kf are the fitness and fatigue magnitude factor, respectively; τa and τf are the 

fitness and fatigue decay time constant, respectively; and wt is the known training 

load per week (or day) from the first week of training to the week (or day) 

preceding the performance. These parameters were interpreted as individual 

responses profiles (Mujika et al., 1996a), presented as usable within the training 

prescription; e.g. tn, the time to recover performance and tg, the time to peak 

performance after training completion (Fitz-Clarke et al., 1991). However, several 

authors (Busso et al., 1990; Mujika et al., 1996a; Taha and Thomas, 2003) reported 

that the practical interpretation of the positive and negative influences might be 

difficult. For example, Busso et al. (1990) reported a positive correlation between 

the testosterone level and the function of fatigue, while a negative relationship was 

expected. Recently, Taha and Thomas (2003) criticized the different models 

stemming from the original Banister model (Banister et al., 1975), stressing (i) the 

inability of the model to accurately predict future performance; (ii) the differences 

between the estimated time course of change in performance and experimental 

observations; (iii) the fact that most of these models were poorly corroborated by 

the physiological mechanisms.  

Moreover, quality measures of models were commonly limited to determination 

coefficient (R2) associated with the F-ratio test. R2 evaluates the goodness of fit but 

does not necessarily guarantee accurate prediction (Bartley, 1997; Atkinson and 

Nevill, 1998). With the F-ratio test, the hypothesis H0: ka = 0 and kf = 0 and τa = 0 

and τf = 0 is tested versus H1: ka ≠ 0 and/or kf ≠ 0 and/or τa ≠ 0 and/or τf ≠ 0 (Sen and 

Shrivastava, 1990). A significant F-test implies that the Banister model is better 

than the constant model, pt = p0, in which training load does not affect performance. 
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Complementary measures are needed to indicate accuracy and sensitivity (Wetherill 

et al., 1986; Efron and Tibshirani, 1993). Thus 95% CI’s quantifies accuracy of 

parameter estimates and modelled performances. The asymptotic correlation matrix 

of parameter estimates assesses ill-conditioning and variability, which affect the 

accuracy and precision of parameter estimates (Bates and Watts, 1988; Belsley, 

1991; Arsac et al., 2004). A different criterion of quality concerns stability of the 

estimation procedure. A method is unstable if small perturbations in the data can 

cause significant changes in the estimations (Breiman, 1996).  

Another important question is how many data points are needed per parameter to 

enable pertinent statistical analysis. For multiple linear regression, a nominal 

number of 15 observations per parameter (except the intercept parameter) is 

recommended (Stevens, 1986). But since the Banister model is non-linear, inference 

is based on asymptotic theory (Bates and Watts, 1988; Sen and Shrivastava, 1990; 

Davidian and Giltinan, 1995; Huet et al., 1996), which implies more data points per 

parameter than for a linear regression model. In fact, the studies having modelled 

“real” performances in elite sport did not exceed more than 20 performances per 

year (Mujika et al., 1996a; Millet et al., 2002).  

The problem of accuracy when modelling the training-performance relationship is 

crucial in high-level athletes. The higher the performance level, the smaller the 

difference in performance. For example, during the Athens Olympic Games, the 

mean difference in the swimming finals was 2.16 ± 0.75% between the Olympic 

Champion and the poorest (8th) performance, while for the national championship, 

this difference was 6.55 ± 2.32%. 

Therefore, the aims of the present study were 1) to assess the goodness of fit, 

accuracy, ill-conditioning and stability of the Banister model for real data; 2) To 
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review and suggest alternative methods to model the training-performance 

relationships. 

 

Methods 

Subjects 

Nine (five females, four males) elite swimmers participated in the present study. All 

subjects were of international level (e.g. qualified as junior or elite in the national 

team for the European, World Championships or Olympic Games). Written 

informed consent was obtained from the subjects. Their training characteristics and 

performances were analyzed over a whole season composed of a training period (52 

weeks) and a rest period (8 weeks) (see Table 1). Individualised training 

programmes were prescribed by coaches for each swimmer, depending on age, 

training background, individual profiles and specialty. The proportion of the 

training performed at each intensity level was compared between the group of 

sprint swimmers (SS) specialised in 50 and 100m events, the group of intermediary 

distance swimmers (IS) specialised in 100 and 200m events, and the group of 

middle distance swimmers (MDS) specialised in 200 and 400m events. The season 

was composed of four training cycles. A linear model of periodization characterized 

the training cycles (Fry et al., 1992; ACSM, 2002): each training cycle, lasting 

between 8 and 14 weeks, commenced with high training volume and low intensity. 

As training progressed, volume decreased and intensity increased. The last three 

weeks prior the competitive period was defined as the taper phase.  

 

**** Table 1 near here **** 
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Training and performance 

An incremental stepwise test to exhaustion (6 x 200-m) was repeated four times in 

the season to determine the relationship between blood lactate concentration and 

swimming velocity. Then, intensity levels for swim workouts [below (I1 ≈ 2 

mmol⋅l-1), equal to (I2 ≈ 4 mmol⋅l-1), slightly above (I3 ≈ 6 mmol⋅l-1) the onset of 

blood lactate accumulation, respectively; I4 ≈ 10 mmol⋅l-1; I5 = maximal intensity] 

were determined as proposed by Mujika et al. (1996a). I6 and I7 consisted in 40-

70% and 70%-100% of 1 maximal repetition strength training, respectively.  

For the whole group, the content of the volume, intensity and taper phases of the 

last training cycle before the main competitions of the year were compared (Table 

2). Quantification of the training load was performed as indicated by Avalos et al. 

(2003); briefly, it was expressed as percentage of the maximal volume measured at 

each intensity level throughout the whole period studied for each subject.  

For each swimmer, performances were measured during real competitions for the 

same event, during the entire study period. Since performance, in the case of 

swimming, is represented by a time, it appears simpler to operate in terms of the 

percentage of the best performance ( )tt
Pmin  achieved in the course of the studied 

period. The performance can thus be computed in the following manner: 

( )
100*

P

Pmin
p

t

tt
t = .  

Performances achieved during the competition were compared with those achieved 

three weeks earlier during a preparatory competition.  

Fitting the model 

The model proposed by Banister et al. (1975) was used. Model parameters were 

estimated for each subject using the non-linear least squares iterative method, by 
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minimizing the residual sum of quadratic differences between the real and the 

modelled performances (RSS) with a Gauss-Newton type algorithm (Bates and 

Watts, 1988; Sen and Shrivastava, 1990; Davidian and Giltinan, 1995; Huet et al., 

1996). The values of parameters were generally reported as τa = 45 days, τf = 15 

days, ka = 1 arbitrary units (a.u.) and kf = 2 a.u. (Morton et al., 1990). However, in 

swimming, with similar swimmers and daily training loads, these values were τa = 

41.4 days, τf = 12.4 days, ka = 0.128 a.u. and kf = 0.055 a.u. (Mujika et al., 1996a). 

The latter were therefore retained as the initial values in the iterative procedure for 

each subject of the present study. Computations were completed using Matlab 2000 

(version 6.0, Optimization Toolbox, Mathworks Eds). After testing the normality 

and homoscedasticity of the residuals, 95% CI were calculated for the estimated 

parameters. The determination coefficient was calculated as: R2 = 1 - (RSS / TSS), 

where TSS is the total sum of squares. In addition, the statistical significance of the 

fit was tested by analysis of variance (F-ratio test). The average standard error 

values (ASE) were computed as the mean difference between modelled and real 

performances. 

Calculation of tn and tg

The time to recover performance, tn, and the time to peak performance after training 

completion, tg, were calculated as 
1

2
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(subscripts “1” and “2” correspond to “a” and “f”)  (Fitz-Clarke et al., 1991).  

Estimating the change in performance during the rest period  

The time it took each swimmer to reach peak performance was evaluated during the 

rest period (during the final eight weeks of the season).  

Accuracy 
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Bootstrap method was used to calculate the 95% CI of parameter estimates and 

modelled performances. Bootstrap is a powerful method for estimating tests 

statistics like CI, especially in small samples (Efron and Tibshirani, 1993; Huet et 

al., 1996). Briefly, the procedure consisted of resampling the original data set with 

replacement to create 1000 “bootstrap replicate” data sets of the same size as the 

original data set. A random number generator was used to determine which data 

from the original data set to include in a replicate data set. Therefore a given data 

could be used more than once in the replicate data set, or not at all. This was 

repeated 1000 times. For each parameter, the estimates that fell between the 2.5th 

and the 97.5th percentiles of the 1000 estimates were used to construct a 95% CI for 

parameter estimates (τa, τf, ka , kf , tn, tg) and modelled performances. In addition the 

coefficient of variation (CV) was calculated as the ratio of the standard deviation 

over the mean of the 1000 replicates.  

Ill-conditioning  

Ill-conditioning is the nonlinear generalization of the collinearity problem in linear 

regression. The asymptotic correlation matrix of parameter estimates was checked 

to see whether any parameters were excessively highly correlated, since high 

correlations may reveal ill-conditioning problems, indicating that the model is over 

parameterised for the data set (Bates and Watts, 1988). The correlation matrix was 

obtained as follows. Let xi be the explanatory variable and yi the response variable, i 

= 1,…, n, where n is the number of observations. Suppose the relationship yi = f (xi, 

θ) + εi, where the function f is the deterministic part of the model, depending on the 

explanatory variable and some parameters θ = (θ1,…,θp), and εi is the random part 

of the model: εi  ~ N(0, σ2). Let  be the non-linear least squares estimation, then, 

asymptotically, ~ N(θ, V), where V = (D

θ̂

θ̂ 2σ̂ f̂ ’ D f̂ )-1, D f̂  is the derivative matrix 
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of f̂  with respect to θ, f̂  is the estimation of f, and  is the standard unbiased 

estimator of the error variance. Elements of the correlation matrix, ρ

2σ̂

jk, j,k = 1,…,p, 

are then obtained from the covariance matrix as ρjk = (V)jk/[(V)jj(V)kk]1/2 (Bates and 

Watts, 1988; Sen and Shrivastava, 1990; Davidian and Giltinan, 1995; Huet et al., 

1996). 

Stability  

The stability of the Banister model fitted by minimizing the RSS value was studied 

as follows. For each subject, iterative computation was performed with the same 

data, but minus one performance, that was chosen randomly. The initial parameters 

were the same as those presented above.  

Statistical analysis 

All values were reported as mean ± s.d. For all variables the hypothesis of a normal 

distribution was tested with the Shapiro Wilk W-test for small samples 

(performances) and the Kolmogorov test for the large samples (training loads) 

(Wetherill et al., 1986; Sen and Shrivastava, 1990). The variations in performance 

and in the content between each training phase were evaluated with a multiple 

paired t-test with Bonferonni’s correction. The training content was compared 

between each training group using a nonparametric Mann-Whitney U test. Bartlett 

test was used to verify homoscedasticity of performances. All statistical analyses 

were completed using Statistica 5.1. (Statsoft, Tulsa, OK, USA). Statistical 

significance was accepted at P < 0.05. 

 

Results 

Training characteristics and performances 
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For the whole group of swimmers, training volume measured during a season was 

1675 ± 215 km (mean ± s.d.). During the entire study period, 13 ± 2 performances 

were recorded for each swimmer (see Table 1). Coefficient of variation (CV) of the 

actual performances was 2.0 ± 0.4%. The SS group performed more I1 training and 

less I2 training than the IS group (P <0.05). The MDS group performed more I4 

training than the IS group (P <0.05) (see Table 2). Training volume equal to I2, 

decreased between the volume and the intensity phase (P <0.05), whereas training 

volume equal to I4 and strength training (I7) increased. Total meters swum, training 

volumes equals to I1 and I2 and strength training (I6, I7) decreased between the 

intensity and the taper phase (P <0.05), whereas training volumes equals to I3, I4 

and the maximal intensity (I5) remained constant (see Table 3). 

 

******Table 3 near here*****.  

 

Performances improved 2.24 ± 1.24 % (P <0.05) during the taper phase. The 

pattern of training loads and performances during a season exhibited an undulating 

trend (Fig. 1). The predicted peak performance was in weeks 61 and 62, that is to 

say three or four weeks after the end of the taper period and after complete 

cessation of training. 

 

**** Figure 1 near here **** 

 

Performances estimation during the rest period 

For the whole group, the time to peak performance was 17 ± 9 days (range 7-35 

days) after the end of the training period. 
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Goodness of fit and accuracy 

The relationship between training and performance (using the original estimation 

method) was significant in all subjects: R2 = 0.79 ± 0.13, P < 0.05. ASE for all 

subjects was 1.05 ± 0.63%. 95% CI of the parameters and mean 95% CI width for 

the modelled performances are presented in Table 4. 95% CI of the parameters tn, 

and tg are presented in table 5. The mean CV were 32 ± 14; 42 ± 16; 64 ± 22; 98 ± 

32; 44 ± 22; 41 ± 22% for τa, τf, ka , kf , tn, tg  respectively. 

 

**** Table 4 near here **** 

 

****Table 5 near here **** 

 

Ill-conditioning 

Correlation between parameter estimates (mean absolute values ± s.d.) are shown in 

Table 6. Parameters τa and τf were highly correlated (0.99 ± 0.01). A high 

correlation was also found between ka and kf (0.91 ± 0.13). Finally, the fatigue 

magnitude factor was correlated with the fitness and fatigue decay time constants 

(0.75 ± 0.30 and 0.76 ± 0.27, respectively). 

 

**** Table 6 near here **** 

 

Stability  

The values of the Banister model parameters computed for each athlete with all 

performances minus one are shown in Table 7. 
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**** Table 7 near here **** 

 

No significant differences were found between the results of Table 3 (all 

performances) and Table 7 (all performances minus one).  

 

Discussion 

The main findings of the present study were: 

1. For the whole group, the time to peak performance was 17 days (in average), 

after the end of the training period and the main competition of the season. 

2. Banister model parameters exhibited wide variability. For illustration, the 95% 

CI for tn and tg were, in average, (7, 35) and (25, 61) days, respectively.  In 

addition, the coefficients of variation for the parameter estimates calculated from 

1000 bootstrap replicates were greater than 30%. Conversely, the variability in 

modelled performances was reasonably small. 

3. The Banister model appears to be stable since no significant differences in the 

parameters were found when the computation was performed with one performance 

less.  

 

In the present study, the characteristics of training and performances were similar to 

those reported previously (Mujika et al., 1995, 1996a; Stewart and Hopkins, 2000; 

Avalos et al., 2003). The mean positive and negative decay time constant (τa = 38 ± 

16 days; τ f = 19 ± 11 days) were close to those reported in endurance athletes 

(Mujika et al., 1996a; Morton, 1997; Bannister et al., 1999). It is noteworthy that 

the parameter values and the determination coefficients are near those reported by 

Mujika et al. (1995, 1996a,b) in a study of similar athletes (international-level 
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swimmers) over the same duration (one season). However, these values were also 

close to those reported in studies with different types of athletes. For example, the 

present decay constant time for the fitness function is similar to the values (~40 

days) calculated with less-fit athletes (Morton et al., 1990; Busso et al., 1991). It is 

therefore unlikely that the range of the parameter values would be similar, 

irrespective of the quality of the athletes. The mean standard error values for all 

subjects were less than the difference in performance between the first and the last 

swimmer in the Athens Olympic Games finals. But they were less accurate than 

those reported by Avalos et al. (2003) who used a linear mixed model (1.05 ± 0.63 

% vs. 0.33 ± 0.11 %). 

Training and performance quantification 

Other methods were applied to quantify the training load and performance. The 

total training load was also expressed as the summation of the volume in each 

training level weighed by a coefficient according to relationship between the 

swimming velocity and the lactate level (Mujika et al., 1996a,b). Performance was 

also modelled using a logarithm transformation, expressed as a percentage of the 

world record as well as the criterion points scale proposed by Morton et al. (1990). 

These different methods produced a less reliable adjustment and a significant 

change in the ka parameter, expressing the sensitivity of the model to the scale used. 

Performance prediction during the rest period 

For the whole group, the modelled performance peaks occurred approximately 17 ± 

9 days (range 7-35 days), after training ceased. Indeed, these results are consistent 

with those of Morton in 1991 who, using the original dose-response model of 

Calvert et al. (1976), studied by simulation the effects of variation in ten parameters 

(four from the dose-response model and six describing the differing shape of 
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several seasonal training profiles). These authors reported that peak performance 

occurs on average 23 ± 34 days after the end of training. As the season ended with 

the most important competition of the year, these results are undesirable from a 

practical point of view: it would have been more logical for performance to peak 

during the key competition, and not some 17 days later. These results cannot likely 

be attributed to poor tapering. The taper phase lasting three weeks was 

characterised by an approximate 50% decline in training volume and by a decrease 

in low intensity and dry land training as well as maintained high-intensity as 

recommended in the literature (Mujika and Padilla, 2003). In addition, 

performances improved 2.24 ± 1.24% during the taper phase which is equivalent to 

the 2.2 ± 1,5% reported by Mujika et al. (2002) during the final 3 weeks of training 

leading to the Sidney Olympic Games and greater than the 1.48% and 2.07% 

reported by Bonifazi et al. (2000) in male swimmers during two seasons. Moreover, 

the results of the present study are not in agreement with work carried out on short-

term detraining (stopping training for 2 to 4 weeks), which generates a rapid decline 

in maximal oxygen uptake (VO2max) (Mujika and Padilla, 2000) and decreased 

swim power, i.e. the ability to apply force during swimming (Neufer et al., 1987). It 

is noteworthy however that these qualities have been shown to be strongly linked 

with the level of swimming performance (Hawley et al., 1992 ; Wakayoshi et al., 

1995). The fact that the changes in the parameters of the present model were not 

taken into account (time-unvarying model) may also explain why the modelled 

performance peaks occurred such a long time after training had ceased. With a 

time-varying model, Busso et al. (2002) reported a decrease in tn and tg when 

training frequency was reduced. The time needed to recover performance levels 

after a training session increased from 0.9 ± 2.1 days at the end of low-frequency 
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training to 3.6 ± 2.0 days at the end of high-frequency training. The same author 

used a non-linear model introducing a variable to account for training-related 

changes in the magnitude and duration of exercise-induced fatigue, reported a 

decrease in time to peak performance when the training load was reduced from 37 

days for a daily training load of 500 a.u. to 7 days for 300 a.u. (Busso, 2003). 

However, in the latter two models, estimates must be provided for 6 parameters 

implying the need for at least 15 performances per parameter (Stevens, 1986), i.e. 

90 performances – totally unworkable under real sporting conditions (Mujika et al., 

1996a,b; Millet et al., 2002; Avalos et al., 2003).  

Another problem concerns the method used to calculate the global training load, 

based on a summation of the different types of training. Training in elite swimmers 

comprises a wide range of diversified exercises (aerobic and anaerobic training, 

speed exercises, strength training). These different types of training have to be 

individualised depending on age, training background, individual profiles and 

specialty (Mujika et al., 1996a; Stewart and Hopkins, 2000; Avalos et al., 2003). 

For example, in our study sprint swimmers performed a larger proportion of speed 

training compared with middle distance swimmers who had a higher proportion of 

≈4 mmol⋅l-1 training. The nature of the immediate and long-term training effects of 

these different exercises on the organism are so diverse that grouping them together 

or considering them as making up one single training stimulus would be unrealistic 

(Banister et al., 1975). A similar overall training load may correspond to two very 

different types of training. (There is a compensation in training volume in each 

intensity level). Accordingly, Taha and Thomas (2003) argued that the Banister 

model implicitly assumed that the performance activity matches the training 

activity and therefore does not consider the specificity of training. Furthermore, 
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classification in 5 intensity levels may be insufficient when compared to the large 

number of different training variables used by the coaches in their programmes 

such as arm and leg training, training in the four styles, and technical training 

(Mujika et al., 1996b; Stewart and Hopkins, 2000; Avalos et al., 2003). In addition, 

training for start and turn, which account for about 30% of the event time 

(Thomson and Haljand, 2000) was not taken into consideration for calculating load 

for the Banister model. In fact several authors pointed out the multi-faceted nature 

of performance excellence (Banister et al., 1975; Morton et al., 1990; Mujika et al., 

1996a ; Avalos et al. , 2003). Psychological, nutritional (Banister et al., 1975; 

Morton et al., 1990) and technical factors (Toussaint and Hollander, 1994; 

Wakayoshi et al., 1995) also affect performance. These two authors demonstrated 

that swimming efficiency, a factor that cannot be quantified in overall load, is a 

major factor in swimming performance. Nevertheless, the impacts of the various 

types of training loads on performance have an upper limit above which training 

does not elicit further adaptation of the subjects (Morton et al., 1997). Hence, the 

long-term and cumulative effects of training, that may be evidenced some macro-

cycles after, may not have been taken into account (Counsilman and Counsilman, 

1991; Werchoschanski, 1992; Avalos et al., 2003). 

Variability in the parameters of the Banister model 

The present study showed that the 95% CI in all parameters was large, in particular, 

for tn and tg, 19 (7, 35) and 43 (25, 61) days, respectively. The 95% CI for the 

modelled performances was reasonably small (1.89 ± 0.42%), representing from a 

practical point of view ~1 s for a 100-m event performed in 55 s. CI provides an 

interval of reasonable estimates, where the width of the interval is determined by 

the uncertainty in the point estimate. The greater the uncertainty, the wider the CI 
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(Efron and Tibshirani, 1993; Huet et al., 1996). In addition, the coefficients of 

variation for the parameter estimates were high (greater than 30%) (Arsac et al., 

2004). Parameter variability was much larger compared to the variability in time-

dependent parameters reported by Busso et al. (1997) and Busso (2003), 

suggesting, unlike the latter study, that some methodological issues could be 

involved.  

Study of the correlation matrix of parameter estimates revealed ill-conditioning 

problems, which are known to affect the accuracy of parameter estimates. Ill-

conditioning and its effects are well known in linear regression (collinearity) 

(Wetherill et al., 1986; Sen and Shrivastava, 1990). In non-linear regression, the 

problem is more complex, and different types of ill-conditioning can be identified 

(Bates and Watts, 1988; Belsley, 1991). Thus, in the linear case, the inaccuracies of 

parameter estimates and estimated responses are generally comparable, whereas in 

the non-linear case, inaccuracy of parameter estimates (estimator conditioning) and 

inaccuracy of response estimation (data conditioning) can differ (Belsley, 1991). In 

the present study the 95% CI for parameters was very large, whereas the 95% CI 

for the modelled performances was reasonably small.  

 

The origins of the present ill-conditioning can be explained by: 

1) A poor sample size. The most direct and obvious means for improving 

conditioning is through the collection and use of additional data. Unfortunately, the 

remedy of obtaining new data is rarely possible in studies dealing with elite 

athletes, having only a few precious observations. Furthermore, even if new data 

were obtainable, there is often no guarantee that they will be consistent with the 

 19

H
A

L author m
anuscript    inserm

-00149782, version 1



original data or that they will indeed provide independent information (Belsley, 

1991). 

2) Interaction between parameters. If parameters are inter-dependent, their 

interpretation is conditioned and their practical use becomes useless. Several sets of 

parameters can be the (best) solution for a given loads and performances data set.  

3) Misspecification of the model (Bates and Watts, 1988; Huet et al., 1996). Some 

hypotheses are supposed in the regression problem: normality, homoscedasticity 

and independence of errors (regarding the random structure), and the Banister 

model function (regarding the deterministic structure). If one of these hypotheses is 

false, the model will be misspecified. As a consequence of ill-conditioning, the 

estimation of the parameters tn and tg was very inaccurate. This is supported by the 

findings of Fitz-Clark et al. (1991) who reported that small (10-15%) changes in τf, 

ka and kf induced large variations in tn and tg, (41% and 21%, respectively). Thus for 

elite swimmers, the use of these parameters to provide valuable information for the 

understanding of individual responses to training and to develop individual training 

schedules from observational data appears to be hazardous. 

Possible solutions to variability 

Penalization techniques, based on decreasing variability to improve accuracy, are 

extensively used to resolve ill-conditioning problems in linear regression (Wetherill 

et al., 1988; Sen and Shrivastava, 1990). Subset selection and ridge regression are 

the two main penalization procedures. The former consists in selecting a subset of 

the most relevant variables (Sen and Shrivastava, 1990; Breiman, 1996). Its 

adaptation to the present problem consists in selecting a subset of parameters. The 

studies of Busso et al. (1991) and Busso (2003) can be understood from a 

parameter subset selection viewpoint. Thus, the goodness of fit of models with 
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different numbers of components (i.e. different numbers of parameters) was 

examined.  

Ridge regression imposes a constraint on parameters (Wetherill et al., 1988; Sen 

and Shrivastava, 1990; Breiman, 1996). To date, ridge regression has not been 

applied to sport data and only few studies have dealt with the adaptation of ridge 

regression to non-linear regression (see, for example, Minor et al., 1996; 

O’Sullivan and Saha, 1999; Zhou et al. 2002).  

Short of new data, the introduction of appropriate prior information is another 

available solution to the ill-conditioning problem. Procedures to introduce prior 

information are, for example, mixed-estimation techniques (Belsley, 1991; 

Davidian and Giltinan, 1995). An application of mixed models to sport data was 

proposed by Avalos et al. (2003).  

The re-parameterization of the Banister model may improve conditioning (Bates 

and Watts, 1988; Huet et al., 1996). Since a high correlation between the fitness 

and fatigue decay time constants and between the fitness and fatigue magnitude 

factors was found, dissymmetrizing fitness and fatigue functions may overcome the 

parameters correlation. For example, one of the decay time constants and one of the 

magnitude factors could be inversed: υa = 1/τa, la = 1/ka. These operations do not 

affect the interpretation of parameters (as initial parameters can be easily computed 

from the new ones), however, they may be numerically advantageous. 

Misspecification problems are probably involved in the present study: (i) the 

Banister model does not take into account the possible dependence between 

performances, a typical problem in longitudinal data studies (Avalos et al., 2003); 

(ii) In the Banister model, training impulses are proportional to the training loads 

then, greater loads induce more fitness and fatigue acquisition. But previous studies 
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reported that the impact of training loads on performance may have an upper limit 

above which training does not elicit further adaptation of the organism (Fry et al., 

1991; Morton, 1997); (iii) The procedure assumes the parameters remain constant 

over time, an assumption that is not consistent with observed time-dependent 

alterations in responses to training (Busso et al., 1997; Avalos et al., 2003; Busso, 

2003). 

Stability  

The Banister model estimated by the non-linear least squares method seemed to be 

stable since no significant differences were found when the computation was 

performed with one performance less. The change in the temporal parameters were 

~1-3 days for most of the subjects. However, in one subject (n° 6) the difference in 

τf was 8 days. Moreover, the values of tn and tg are greatly modified by little change 

in τa or τf. For example, in subject 1, the values of tn and tg were decreased from 12 

to 7 days and 24 to 15 days, respectively, when τf
 decreased by three days and in 

subject 9 the values of tn and tg were increased from 7 to 17 days and 54 to 66 days, 

when τa decreased by 3 days and τf by 2 days. These changes may have important 

practical implications in planning training loads. 

Therefore proposing a single set of parameters might be dubious. Breiman (1996) 

showed that the averaged estimator of the bootstrap estimations is more stable than 

the original one. Stabilizing non-linear methods can give non-linear estimators with 

improved accuracy. This technique was used in the present study but a large 

variability was also observed in all parameters of the model and accuracy was not 

improved.  

Perspectives for future study and use of the Banister model. 
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Further studies should be conducted to determine whether the parameters 

estimation of the Banister model would be more accurate under standardised 

experimental conditions. Such standardised conditions would allow multiple 

recordings of performance and use of a single type of exercise, e.g. as in the study 

reported by Busso (2003) where exercises were limited to ergometer cycling. The 

accuracy and the stability of the performance estimations observed in the present 

study suggest that the pattern of performance changes could be assessed as a 

function of training load. Nevertheless, the mean error of performance estimates 

was greater than reported by Avalos et al. (2003) suggesting that the results need to 

be validated experimentally by another complementary method 

Other procedures 

Another possibility is to use nonparametric regression. Edelmann-Nusser et al. 

(2002) suggested applying a non-parametric model (multilayer perceptron neural 

networks) to model training load-performance relationships. These authors used an 

unconventional method giving a surprisingly small prediction error (0.04%). 

Indeed, the model was fitted with data pertaining to one particular swimmer and 

then used to predict the performance of a different swimmer, despite the consensus 

that reigns about the singularity of training responses (Mujika et al., 1996a,b; Busso 

et al., 1997; Millet et al., 2002; Avalos et al., 2003; Busso, 2003).  

Neural networks may be particularly useful when the primary goal is outcome 

prediction, but these techniques are a “black box” and have limited ability to 

explicitly identify possible causal relationships. Thus, the interpretation of the 

results obtained is not straightforward. However, in any given parametric problem, 

the parameters have meaningful interpretations (Hastie et al., 2001).  
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Recently, Perl (2002) developed a dynamic meta model based on two antagonistic 

systems (two internal buffer potentials: one positive and one negative, which 

influence the performance potential alternately). This meta model seems 

conceptually very rich because it takes into account the collapse effect in the wake 

of an overloaded training period, atrophy following a period of detraining, not to 

mention the long-term behaviour of the training-performance relationship (Perl et 

al., 2001). However, to date, no statistical study has validated the quality of this 

meta model. 

Finally, few authors have used multiple regressions to create a model for the 

relationship between training and performance. Mujika et al. (1996b), using 

stepwise regression, reported a very close match with the Banister model. Multiple 

regressions make it possible to integrate different training loads as independent 

variables and can take into account the effects of load sequences over time with 

short-term deferred effects during the three weeks that precede the performance 

(weeks 0, -1, -2), intermediate effects (weeks -3, -4 and –5) and long-term effects 

(weeks -6, -7, -8), as indicated by Avalos et al. (2003). The results we obtained 

with this method, using data from the present study, showed improved statistical 

accuracy in estimated parameters and modelled performances (more accurate CI). 

Moreover, in multiple regression each training variable could be transformed for 

instance by a quadratic function (or higher order functions) to take into account a 

potential parabolic relationship between the quantity of training loads and 

performance (Sen and Shrivastava, 1990). It is also possible to take into account 

any effects of interaction by associating the different input variables (Sen and 

Shrivastava, 1990).  
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Conclusion  

The aim of this study was to assess whether the Banister model could be used to 

monitor the training process in the “real world”, i.e. with real international-level 

performances. The present study assessed the goodness of fit, accuracy and stability 

of the Banister model as applied to training loads and performances in elite 

swimmers. The model showed substantial variability in its parameters, making it 

imprecise. To conclude, it seems inappropriate to use these parameters to monitor 

the training process in elite swimmers. Nevertheless, the variability in modelled 

performances was reasonably small and the Banister model appeared to be stable. 

Further research should be conducted to determine whether associating these 

Banister model qualities with other methods of modelling could provide pertinent 

information for monitoring training.  
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LEGEND OF FIGURES 

Figure 1 – Example for subject 3 (Olympic finalist): (a) Modelled (line) and actual 

performances (dotted line with triangles). 95% CI for modelled performances are also 

presented. Performances on vertical axis were expressed in percentage of the personal 

record  and computed as ( )tt
Pmin

( )
100*

P

Pmin
p

t

tt
t = . (b) Training loads on vertical axis 

are expressed as a percentage of the maximal training load performed by the subject 

during the course of the study. Time in horizontal axis is expressed in weeks.  
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Table 1. Selected characteristics of the subjects training over the one-year period studied.  

S G Age  

(years)

Height 

 (cm) 

Weight

 (kg) 

Training

 (km) 

Event Best Perf Number of

 Perf’s 

CV of  

Perf (%) 

1 F 24 168 61 1402 100 Free 00:55:65 11 2.3 

2 F 21 173 62 1856 200 Butt 02:10:8 12 1.6 

3 F 26 179 59 1677 200 Free 01:59:86 21 2.2 

4 M 27 185 84 1751 200 Medl 02:01:83 12 1.9 

5 M 23 181 81 1340 100 Breast 01:03:51 14 1.8 

6 F 26 168 50 1477 200 Back 02:15:00 18 2.4 

7 M 20 186 80 1815 100 Free 00:51:5 12 2.6 

8 F 19 167 52 1916 200 Free 02:03:51 11 1.6 

9 M 23 188 84 1843 400 Free 03:53:42 13 1.5 

Mean  23.2 177.2 68.1 1675   13.2 2.0 

s.d.  2.8 8.4 14.0 215   2.4 0.4 

S = Subjects, G = Gender, Perf = Performance, CV = coefficient of variation, Free = Freestyle, Butt = 

Butterfly, Medl = Medley, Breast = Breaststroke, Back =Backstroke. Training (km) = Total km swum 

during the period concerned. 
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Table 2. Annual swimming volume percentage and annual dry land training percentage 

(including rest periods) for each intensity level and group.  

SS IS MDS 
Intensity Level IS MDS SS MDS SS IS 

I1 * - * - - - 
(%⋅  yr-1) 69.3 (5.4) 57.3 (4.9) 48.1 (4.1)

I2 * - * - - -
(%⋅  yr-1) 21.6 (2.2) 34.6 (4.5) 44.1 (5.4)

I3 - - - - - -
(%⋅  yr-1) 4.6 (2.2) 4.7 (0.4) 3.8 (1.1)

I4 - - - # - #
(%⋅  yr-1) 2.3 (0.2) 2.5 (0.2) 3.3 (0.3)

I5 * - * - - -
(%⋅  yr-1) 2.3 (0.2) 0.9 (0.1) 0.7 (0.2)

I6 - - - - - -
(%⋅  yr-1) 41.7 (20.2) 37.8 (26.7) 29.6 (0.7)

I7 - - - - - -
(%⋅  yr-1) 58.5 (20.2) 62.2 (27.7) 70.4 (0.7)

Values are mean (s.d.). SS = sprint swimmers, IS = intermediate swimmers, MDS = middle 

distance swimmers. * Significant difference between SS and IS, for each intensity level (P ≤ 

0.05). # Significant difference between IS and MDS, for each intensity level (P ≤ 0.05). -Not 

significantly different. Mann Whitney U test for nonparametric distribution was used.  
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Table 3. Respective contents of the volume, intensity and taper phases during the 

fourth training cycle (Before the main competition of the year). 

 Volume phase  Intensity phase  Taper phase  

Total (m) 55200 ± 8772  49500 ± 7340 ** 28900 ± 3780 ++
I1 (m) 19108 ± 3375  24637 ± 2920  18841 ± 2941 + 

I2 (m) 33800 ± 6229 £ 21550 ± 5340 ** 7000 ± 973 ++

I3 (m) 1333 ± 472  1125 ± 382  1366 ± 502  

I4 (m) 533 ± 227 £ 1650 ± 443 * 1291 ± 483  

I5 (m) 425 ± 197  537 ± 176  478 ± 181  

I6 (mn) 12 ± 4  8 ± 3 ** 3 ± 1 ++

I7 (mn) 15 ± 5 £ 28 ± 7 * 12 ± 4 ++

Intensity levels for swim workouts: below (I1 ≈2 mmol⋅l-1), equal to (I2 ≈4 mmol⋅l-

1), slightly above (I3 ≈6 mmol⋅l-1) the onset of blood lactate accumulation, 

respectively; I4 ≈10 mmol⋅l-1; I5 = maximal intensity; I6 and I7 consisted in 40-

70% and 70%-100% of 1 maximal repetition strength training. Results are 

expressed in meters and minutes. £ Significant differences between volume and 

intensity phases (P <0.05). +, ++ Significant differences between volume and taper 

phases (P <0.05 and P <0.01, respectively). *, ** Significant differences between 

intensity and taper phases (P <0.05 and P <0.01, respectively). 
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Table 4. Banister model parameters measured over the one-year period studied.  

S p0 CI p0 ka CI ka kf CI kf τa CI τa τf CI τf R2 MIW

1 0.92 0.89, 0.95 0.002 -0.040, 0.044 0.016 -0.018, 0.051 40 8, 71 5 -6, 16 0.69* 3.17

2 0.95 0.92, 0.98 0.106 0.022, 0.189 0.129 0.071, 0.185 13 -6, 33 11 7, 15 0.84† 1.99

3 0.97 0.93, 1.01 0.039 0.006, 0.071 0.048 0.016, 0.081 33 8, 57 27 8, 46 0.65* 2.69

4 0.97 0.95, 0.98 0.050 -0.029, 0.068 0.068 0.048, 0.088 27 14, 40 20 15, 25 0.97§ 0.80

5 0.98 0.95, 1.01 0.003 -0.040, 0.046 0.022 -0.012, 0.057 41 11, 70 9 -1, 19 0.78† 1.80

6 0.90 0.84, 0.94 0.009 -0.014, 0.034 0.016 -0.009, 0.041 45 18, 71 18 4, 32 0.61§ 2.04

7 0.90 0.78, 1.02 0.018 -0.012, 0.046 0.028 -0.003, 0.057 57 39, 75 31 17, 46 0.95§ 1.55

8 0.95 0.92, 0.97 0.083 0.019, 0.148 0.112 0.048, 0.176 23 11, 34 16 9, 24 0.92§ 1.58

9 0.93 0.90, 0.96 0.010 -0.024, 0.046 0.012 -0.016, 0.042 65 50, 81 38 3, 64 0.73* 2.44

Mean 0.94 0.90, 0.98 0.036 -0.012, 0.077 0.050 0.014, 0.086 38 17, 59 19 6, 32 0.79 1.89

s.d. 0.03  0.038  0.044  16  11  0.13 0.49

S = subjects; p0 = the initial performance level (in % of the best performance); ka and kf = the fitness 

and fatigue magnitude factors, respectively (in arbitrary units); τa and τf = the fitness and fatigue decay 

time constants, respectively (in days). CI = Bootstrap 95% confidence interval of estimated parameters. 

* Significant, P < 0.05; † Significant, P < 0.01; § Significant, P < 0.001. MIW = Mean Interval Width 

of 95% confidence interval of modelled performances. 
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Table 5. Model parameters tn and tg 

computed from ka and kf (the fitness and 

fatigue magnitude factor) and τa and τf (the 

fitness and fatigue decay time constant).  

S tn CI tn tg CI tg

1 7 -2.15 15 -3.34 

2 10 1.19 21 9.32 

3 31 25.77 61 20.96 

4 25 21.28 48 43.53 

5 24 6.40 41 16.65 

6 12 5.19 35 20.50 

7 29 8.51 71 57.85 

8 17 12.20 36 28.41 

9 15 -14.45 64 34.95 

Mean 19 7.35 43 25.61 

s.d. 9  19  

S = subjects, tn = the time to recover 

performance, tg = the time to peak 

performance after training completion. CI = 

Bootstrap 95% confidence interval of 

estimated parameters.  
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Table 6. Correlation between parameter estimates 

for the Banister model (n = 9; mean absolute value 

± s.d.).  

Parameters Correlation 

p0 – ka 0.49 ± 0.27 

p0 – kf 0.31 ± 0.25 

p0 – τa 0.41 ± 0.27 

p0 – τf 0.41 ± 0.27 

ka – kf 0.91 ± 0.13 

ka – τa 0.69 ± 0.26 

ka – τf 0.69 ± 0.26 

kf – τa 0.75 ± 0.30 

kf – τf 0.76 ± 0.27 

τa – τf 0.99 ± 0.01 
p0 = the initial performance level; ka and kf = the 

fitness and fatigue magnitude factors, respectively; 

τa and τf = the fitness and fatigue decay time 

constants, respectively. 
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Table 7. Banister model parameters measured over the one-year period studied. One performance 

chosen randomly was removed in order to assess model stability. 

Subjects p0  ka  kf τa τf

1 0.93 0.002 0.077 39 2 

2 0.95 0.023 0.054 17 7 

3 0.98 0.032 0.040 33 26 

4 0.97 0.035 0.054 28 19 

5 0.98 0.003 0.021 41 10 

6 0.90 0.053 0.067 47 26 

7 0.90 0.020 0.030 55 32 

8 0.94 0.079 0.106 23 16 

9 0.92 0.011 0.012 62 36 

Mean 0.94 0.029 0.051 38 19 

s.d. 0.03 0.025 0.029 15 12 

p0 = the initial performance level; ka and kf = the fitness and fatigue magnitude factors, respectively; τa 

and τf = the fitness and fatigue decay time constants, respectively.  
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