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     ********* 

Abstract 

 As a key constituant of the cell membranes, cholesterol is an endogenous component 

of mammalian cells of primary importance, and is thus subjected to highly regulated 

homeostasis at the cellular level as well as at the level of the whole body. This regulation 

requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, 

as well as its transfer into or out of membranes, involving membrane proteins. A membrane 

exhibits functional properties largely depending on its lipid composition and on its structural 

organization, which very often involves cholesterol-rich microdomains. Then there is the 

appealing possibility that cholesterol may regulate its own transmembrane transport at a 

purely functional level, independently of any transcriptional regulation based on cholesterol-

sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the 
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main cholesterol “transporters” presently believed to mediate for instance the intestinal 

absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even 

P-glycoprotein, all present privileged functional relationships with membrane cholesterol-

containing microdomains. In particular, they all more or less clearly induce membrane 

disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. 

The actual lipid substrates handled by these transporters are not yet unambiguously 

determined, but they likely concern the components of membrane microdomains. Conversely, 

raft alterations may provide specific modulations of the transporter activities, as well as they 

can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol 

transporters undergo regulated intracellular trafficking, with presumably some relationships to 

rafts which remain to be clarified. 

 

 

Keywords: lipid rafts, cholesterol transport, ABC proteins, SR-BI, NPC1L1, intestinal 

absorption. 

 

Abbreviations: ABC: ATP-binding cassette; ACAT: acyl-coenzyme A:cholesterol 

acyltransferase; Cav1: caveolin 1; HDL: high density lipoprotein; HMGCoA: 

hydroxymethylglutaryl coenzyme A; LDL: low density lipoprotein; LXR: liver X receptor ; 

(M)βCD: (methyl)β-cyclodextrin; MDR: multidrug resistance; MLN64: metabolic lymph 

node 64 protein; NPC1(L1): Niemann-Pick C protein 1 (-like 1); NPC2: Niemann-Pick C 

protein 2; P-gp: P-glycoprotein; RND: resistance-nodulation-division; SCP-2: sterol carrier 

protein 2; SR-BI: scavenger receptor class B type I; SSD: sterol-sensing domain; SUV: small 

unilamelar vesicles. 
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Introduction: cholesterol “transport” versus membrane structure and organization. 

 

 Cholesterol, a key constituant of the cell membranes, is an endogenous component of 

mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis 

at the cellular and the whole body levels (Ikonen 2006). Its physiological metabolism and the 

patho-physiological bases for its observed dysregulations are deeply relevant for 

pharmacological perspectives in the field of cardiovascular diseases. 

 Cholesterol turn-over and homeostasis in the body involve many pathways: dietary 

incomes, entero-hepatic cycle with biliary excretion and intestinal reabsorption, reversible 

fluxes in the bloodstream between liver and peripheral tissues, biosynthesis (mainly) in liver 

and steroidogenic tissues, and fecal elimination. The intestinal absorption via the enterocytes 

is the main determinant process for the global input of cholesterol in the organism (Hui and 

Howles 2005). In the aqueous compartments of the body, cholesterol is “transported” through 

its association with lipoprotein particles in the plasma and in the lymph or by inclusion in bile 

salt micelles in the bile and in the digestive lumen, ensuring in every cases its solubility in the 

biological fluids. At the cellular level in peripheral cells, cholesterol metabolism relies on 

uptake from LDL, efflux to HDL, neosynthesis involving HMGCoA reductase and 

esterification involving ACAT for storage inside the cells. Furthermore, intracellular 

cholesterol trafficking is a complex process involving either vesicle flux or proteolipid 

assemblies involving various protein partners (e.g. SCP-2, NPC2, MLN64, 

Cav1/cyclophilins…) shuttling between organelles and the various intracellular membrane 

systems (Soccio and Breslow 2004). Anyway, the “limiting” step for cholesterol transfer from 

any aqueous compartment to another is the crossing of the cell membrane which forms the 

frontier between them. It is not clear whether a cholesterol molecule crossing a membrane 
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actually mixes with the membrane lipid phase or is only transfered through the membrane 

without inserting. However, since a membrane exhibits functional properties largely 

depending on its lipid composition, especially in cholesterol, and on its structural organization 

which very often involves cholesterol-rich microdomains, there is the appealing possibility 

that cholesterol may regulate its own transmembrane transport at a purely functional level, 

independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors 

controling the expression level of lipid transport proteins. 

 Indeed, the cell plasma membrane is currently described as composed of the 

juxtaposition of lateral heterogeneities, forming “membrane microdomains”, relying on local 

lipid and protein compositions that can be distinguished from the rest of “bulk” membrane 

phase: this is so viewed as “more mosaic, i.e. crowdy and heterogenous, than fluid” 

(Engelman 2005; Maxfield 2002). More precisely, these membrane microdomains are 

generally characterized by an enrichment in cholesterol and sphingolipids, leading to a lipid 

phase locally more ordered, more compact and thicker than the surrounding membrane, on 

which these so-called “lipid rafts” are floating (Pike 2004). They are also characterized by the 

segregation of some proteins, often presenting a GPI anchor, which can favor protein-protein 

interactions realizing functional regulations (Lucero and Robbins 2004). As a consequence, 

the lipid rafts are involved in various processes important in cell physiology such as signal 

transduction, protein and lipid traffic, endocytosis and even cellular entry of pathogens 

(Simons and Toomre 2000). However, the lipid rafts are presently under lively debates as 

regards to how they can be unambiguously detected. Indeed, their isolation depends on the 

protocol used to disrupt the plasma membrane, mostly based on their non-solubilization by a 

weak, generally non-ionic, detergent or by sonification in a detergent-free medium, and their 

microscopic observation using fluorescent probes seems to depend on the cell type (Munro 

2003). As a matter of fact, these lipid rafts are still badly defined considering their structures 
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at the molecular level, including their size, their lifetime or their dynamics (Lai 2003). To 

clarify our topic, and beyond the different sensibilities of the various authors cited, the term 

“lipid rafts” will be used here to refer to as cholesterol-enriched membrane microdomains 

creating lateral heterogeneities in the membrane phase; “caveolae”, whose definition is also 

subjected to discussion, will be considered as cholesterol-enriched membrane domains 

containing caveolin and presenting well-discernable morphological characteristics. 

Nevertheless, whatever their exact definitions, these lateral heterogeneities in the cell 

membrane must be taken into account, since the lipid rafts are responsible for biochemical, 

chemico-physical and biophysical influences on local membrane processes. 

 In the view of these observations, we will discuss here on the functional relationships 

between the cholesterol-containing membrane microdomains and the various cholesterol 

“transporters” present at the cell membrane. We will focus mainly on those expressed at the 

apical and basal poles of polarized cells such as enterocytes, and proved or suspected to be 

more or less directly involved in intestinal cholesterol absorption, taken as illustrative of the 

cellular cholesterol transport processes. Within this frame, the scope of this review will more 

generally address important questions such as: (i) the intracellular location and traffic of these 

membrane proteins, (ii) their possible presence in detergent-resistant membrane fractions and 

their functional modulation by them, (iii) the effects of the cholesterol “transporters” on the 

membrane structure and organization, (iv) their opportunities for being regulated by protein 

partners (e.g. caveolin) through possible cosegregation in membrane domains. 

 

 

SR-BI: a multifunction membrane “scavenger” receptor involved in cholesterol 

homeostasis. 
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 It is now well established that SR-BI, the scavenger receptor class B type I, is 

responsible for the selective (i.e. independent of whole HDL endocytosis (Acton et al. 1996)) 

cholesteryl ester cellular uptake. This occurs in particular at the level of hepatocytes but also 

in steroidogenic tissues, and for bidirectional free cholesterol exchange with plasma 

lipoproteins in peripheral tissues, especially in macrophages (Stangl et al. 1999). Binding of 

the lipoprotein constitutes the first key step in this process (Liu and Krieger 2002; Thuahnai et 

al. 2003). Actually, SR-BI is able to bind with fair but different affinities HDL and LDL, as 

well as modified (acetylated or oxidized) LDL, and HDL and LDL appear not to share the 

same binding sites (Gu et al. 2000). The exact facilitating role of lipoprotein binding to SR-BI 

on cholesterol exchange with the membrane is still under debate, since the two events are 

reported to be correlated or not, depending on the experimental system considered (Connelly 

et al. 2003; de la Llera-Moya et al. 1999; Liu et al. 2002). However, cholesterol transfer is 

quantitatively determined by the nature of the lipoprotein particle and its lipid composition 

(Pownall 2006; Thuahnai et al. 2004; Yancey et al. 2000), as well as by the cholesterol 

cellular content (de La Llera-Moya et al. 2001). Such a property is expected for a facilitated 

but passive (in the sense of energy-independent) process of transport of the lipid between the 

lipoprotein and the membrane. In the case of cholesterol transport in the absence of 

lipoprotein, for example with SUV-type vesicles or mixed biliary micelles as it happens in the 

intestine lumen, the direct role of SR-BI is strongly suspected in-vitro (Altmann et al. 2002; 

Hauser et al. 1998), but not yet ascertained in-vivo although it appears involved in the 

digestive absorption of cholesterol along with other lipids (Altmann et al. 2002; Bietrix et al. 

2006; Cai et al. 2004; Hansen et al. 2003; Levy et al. 2004; Mardones et al. 2001), and also 

liposoluble micronutrients such as vitamin E (Reboul et al. 2006). Anyway, the composition 

and the organizational structure of the membrane harboring SR-BI is obviously determining 

in the efficiency of the cholesterol transfer mediated by SR-BI. 
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 As an illustration, since caveolin-1 (Cav1), a protein characterizing the caveolae 

involved in cellular cholesterol efflux (Simons and Ikonen 2000), has been described to 

directly participate to cholesterol trafficking in cells (Smart et al. 2004; Uittenbogaard et al. 

2002; Uittenbogaard et al. 1998), relationships between SR-BI and Cav1 were investigated 

and reported. As a matter of fact, murine SR-BI expressed in transfected CHO cells was 

preferentially found in the low-density caveolin-rich plasma membrane fraction, and this was 

confirmed by immunofluorescence showing general colocalization of SR-BI with Cav1 in 

these cells, as well as in the constitutively SR-BI-expressing adrenocortical Y1-BS1 cells 

(Babitt et al. 1997). SR-BII, the isoform of SR-BI obtained by alternative splicing and 

truncated on its C-terminal part, displayed the same membrane distribution (Webb et al. 

1998). In human THP-1 monocytes, SR-BI was found mainly (55-70%) in the caveolar 

fraction of the cells, both in undifferentiated and differentiated states (Matveev et al. 1999). 

Otherwise, SR-BI and Cav1 exhibited closely correlated expression levels in HEK-293T cells 

transfected with either one of their encoding genes; further immunolocalization in COS-7 

cells cotransfected with both genes showed a cellular pattern similar to that of SR-BI-

transfected cells (i.e. mainly intracellular) and not that of Cav1-transfected cells (i.e. mainly at 

the plasma membrane), which suggested a “stabilizing” (in the sense of dragging) role for SR-

BI on Cav1 (Frank et al. 2002). Functionally, in SR-BI-transfected CHO cells, cholesterol 

ether (a non-hydrolyzable analogue of cholesterol ester) was rapidly and selectively uptaken 

from HDL in the caveolae membrane fraction, where SR-BI was mainly localized; it was also 

effluxed from caveolae to HDL, showing that caveolae membranes provide a reversible pool 

of cholesterol ether in the plasma membrane constituting a platform for exchanges with HDL 

(Graf et al. 1999). However, attempts on various cell types to perform chemical cross-linking 

or coimmunoprecipitation between SR-BI and Cav1 failed (Matveev et al. 2001), and no 

coimmunoprecipitation of SR-BI and Cav1 could be evidenced in duodenum detached 
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epithelial cells or in Caco-2 cells (Levy et al. 2004). Likewise, no colocalization was observed 

by immunofluorescence on either stably SR-BI-transfected WI38 (human lung fibroblasts) or 

ACTH-treated Y1-BS1 cells (Peng et al. 2004). It has been subsequently reported that Cav1 

expression was not necessary for the SR-BI activity in cholesterol handling. First, in the 

human adrenal cell line NCI-H295R expressing very low levels of Cav1 and devoid of any 

morphologically-defined caveolae, the SR-BI-mediated cholesterol ester selective uptake was 

normally upregulated by a forskolin treatment (Briand et al. 2003). Second, in the two cell 

lines HEK293 and FRT, both selective uptake of cholesterol ester and cholesterol efflux were 

similar when measured either in cells constitutively expressing no Cav1 or in Cav1-

transfected cells (Wang et al. 2003). Finally, in mice deleted for the Cav1 gene, intestinal 

absorption of cholesterol was unchanged with respect to the wild-type control mice, and their 

treatment by ezetimibe, a drug recently discovered to inhibit intestinal cholesterol absorption, 

was equally efficient in both mice types (Valasek et al. 2005). As a whole, functional 

relationships between SR-BI and Cav1 appear highly dependent on the cell type considered 

and the experimental method used for testing them; however, at the intestinal level, no 

connection could be evidenced. 

 Independently of these facultative relationships with Cav1, SR-BI was generally 

present, at least partially, in some cholesterol-rich membrane microdomains. In HepG2 cells, 

SR-BI was found in majority in the low density membrane fraction isolated on a sucrose 

gradient after carbonate treatment; interestingly, the unglycosylated non-mature form of SR-

BI (≈55 kDa instead of ≈82 kDa) was detected in the non-raft fractions (Rhainds et al. 2004). 

In primary adipocytes, SR-BI was present in the lowest density membrane sub-fraction 

isolated by a detergent-free protocol out of three sub-classes of rafts revealed by differences 

following density gradient ultracentifugation: these “low-density rafts” contain the highest 

cholesterol concentration (Ortegren et al. 2006). By contrast, in the microvillar fraction of pig 
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enterocytes treated by 1% Triton X100, SR-BI was completely extracted and found in the 

non-raft membranes (Hansen et al. 2003). In SR-BI-transfected Cos7 and WI38 cells, SR-BI 

was found in large majority in the membrane fractions solubilized by 1% Triton X-100, but 

also appeared to be partially present in the membrane fractions resistant to 1% Lubrol WX 

(Peng et al. 2004), evidencing the differences in composition of the “Triton-rafts” and the 

“Lubrol-rafts”, consistently with what has been previously demonstrated (Schuck et al. 2003). 

Similarly, in NCI-H295R cells, SR-BI was mainly present in the low density membrane 

fraction isolated by a detergent-free protocol, whereas less than 10% was associated to the 

“Triton-rafts” (Briand et al. 2003). 

 Whatever its membrane localization with respect to the (various types of) rafts, the 

presence of SR-BI is however able to induce some kinds of membrane perturbations, likely 

revealing specific effects on the local structural organization of the plasma membrane. In 

COS-7 cells, SR-BI expression induced an increased size of the cell membrane cholesterol 

pool sensitive to metabolisation by the soluble enzyme cholesterol oxidase, whereas the 

related class B scavenger receptor CD36 did not (de la Llera-Moya et al. 1999); moreover, the 

human homolog of SR-BI, CLA-1, had the same effect as SR-BI, and this was independent of 

the total cholesterol cellular content (de La Llera-Moya et al. 2001); also, cholesterol 

extraction by 2-hydroxypropyl-β-CD revealed the induction by SR-BI of an increased size of 

the cholesterol pool fastly desorbed from the membrane, whereas CD36 was without any 

effect (Kellner-Weibel et al. 2000). In addition, SR-BI-transfection of Sf9 insect cells allowed 

to observe an increased abundance of phosphatidylcholine with longer mono- or 

polyunsaturated acyl chains (Parathath et al. 2004). Otherwise, the same heterologous 

expression of SR-BI in insect cells promotes the formation of double-membraned microvillar 

channels (Reaven et al. 2001); these specific morphological differentiations are strickingly 

reminiscent of those observed on endocrine cells under trophic hormonal stimulation (Reaven 
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et al. 2000), but not in adrenal gland of SR-BI-KO mice (Williams et al. 2002), as well as in 

SR-BI-transfected WI38 cells (Peng et al. 2004). These modifications of plasma membrane 

shape are indicative of alterations in the lipid phase as regards to its local fluidity and/or its 

curvature, possibly linked to the modulation of intramembrane cholesterol (and possibly other 

lipids) distribution. It remains to determine the functional relationship of these effects with the 

cholesterol exchanging property of SR-BI between membranes and lipoproteins. 

 Reciprocally, various experimental manipulations of membrane cholesterol induced 

some alterations in SR-BI functioning. First, in SR-BI-transfected CHO cells, membrane 

cholesterol depletion by β-CD increased HDL cholesteryl ester selective uptake, while 

caveolae cholesterol enrichment by overexpressing Cav1 (consistent with previous data 

reported by the same authors (Uittenbogaard et al. 1998)) induced a decrease of cholesteryl 

ester uptake (Matveev et al. 2001). Second, in HepG2 cells, disruption of the lipid rafts by 

treatment with cholesterol oxidase or sphingomyelinase inhibited LDL-mediated cholesteryl 

ester selective uptake whereas it enhanced HDL3-mediated cholesteryl ester selective uptake; 

however, intramembrane cholesterol sequestering by the polyene antibiotic filipin decreased 

LDL-, but not HDL3-, mediated cholesteryl ester selective uptake; conversely, cholesterol 

extraction by β-CD increased HDL3-, but not LDL-, mediated cholesteryl ester selective 

uptake (Rhainds et al. 2004). Third, overexpression of Cav1 induced a concommitent decrease 

of LDL cholesteryl ester selective uptake and an increase of HDL3 cholesteryl ester selective 

uptake, correlated with SR-BI dimerization (Truong et al. 2006). Thus, beyond the different 

handling by SR-BI of the two endogenous ligands, LDL and HDL, as already described 

(Acton et al. 1996; Gu et al. 2000), membrane cholesterol is clearly involved in SR-BI 

functioning by subtle modulations involving free intramembrane cholesterol as well as 

cholesterol constituting the lipid rafts. 
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 In addition, SR-BI function appears to be modulated by some cellular processes which 

are more or less related to the membrane microdomains. In particular, a cholesterol depletion 

(by an acute MβCD treatment) of SR-BI-transfected MDCK cells induced the transcytosis of 

SR-BI from basolateral membrane, where it was colocalized with caveolae, to apical domain 

by a PKA-dependent process (Burgos et al. 2004). Furthermore, intracellular trafficking of 

SR-BI and its surface exposure, conditioning its activity, were under the dependence of PI-3-

kinase (Shetty et al. 2006). Finally, SR-BI is also described to mediate HDL-cholesterol 

exchange with the cell by an endocytosis/resecretion mechanism, so-called “retro-

endocytosis” (Pagler et al. 2006; Rhainds et al. 2004). The role of cholesterol-rich membrane 

microdomains on such cellular traffic of SR-BI is still unclear, especially in the enterocytes 

where it was observed by immunoelectron microscopy at the apical side in the microvilli and 

in plasma membrane invaginations (Levy et al. 2004). However, SR-BI appeared more 

associated with clathrin-coated pits than with caveolae (Hansen et al. 2003). Finally, the 

propency of SR-BI to dimerize or oligomerize (Reaven et al. 2004; Sahoo et al. 2006), as well 

as its specific interaction with its chaperone-like CLAMP/PDZK1 partner (Assanasen et al. 

2005; Ikemoto et al. 2000), may provide additional modulation mechanisms involving 

membrane microdomains, even if their functional relevancies are still under discussion. 

 As a whole, SR-BI is largely involved in cholesterol metabolism and homeostasis, at 

variance with the other scavenger receptors, SR-A or CD36, mostly involved in the 

interactions with various ligands (including pathogens) and signaling processes (Krieger 

2001). Indeed, although CD36 (also known as the fatty acid translocase FAT4) was partially 

found in CHAPS-insoluble, Cav-rich membrane fractions from adipocytes (Pohl et al. 2004), 

it contrasts from SR-BI since it displayed a cellular localization under the dependence of 

Cav1, which dragged CD36 (Frank et al. 2002), and it did not induce any change in the 

membrane sensitivity to cholesterol oxidase or cyclodextrin (Kellner-Weibel et al. 2000). 

H
A

L author m
anuscript    inserm

-00149309, version 1
H

A
L author m

anuscript    inserm
-00149309, version 1

H
A

L author m
anuscript    inserm

-00149309, version 1



 12 

 Thus, SR-BI appears to establish some crucial “privileged” relationships with lipid 

microdomains in the surrounding plasma membrane. In this way, SR-BI should be considered 

as coupling the destabilization of the lipid phase of the membrane to specific interactions with 

cholesterol donnors or acceptors in the extracellular medium in order to catalyze the passive 

(i.e. energy-independent) exchange of cholesterol. 

 

 

NPC1L1 & NPC1: two sterol “transporters” related to the bacterial multidrug 

transporters of the RND family. 

 

 Very recently, bioinformatic technics have pointed out a novel membrane protein, 

called NPC1L1, as being a fair candidate for playing an important role in intestinal absorption 

of cholesterol, mainly on the basis of presenting a “sterol sensing domain” (SSD) in its 

sequence (Altmann et al. 2004). Further, this role was confirmed since the mice deleted for its 

gene displayed a largely reduced cholesterol and sitosterol absorption, and a resistance to diet-

induced hypercholesterolemia, similarly to what was observed on wild-type mice treated with 

ezetimibe, the new potent drug inhibiting intestinal cholesterol absorption (Davis et al. 2004). 

Moreover, ezetimibe had no effect on the NPC1L1-deleted mice (Altmann et al. 2004), and 

the glucuronide derivative of this molecule (its metabolized form) could be shown to 

specifically bind to NPC1L1 with a high affinity (Garcia-Calvo et al. 2005). 

 However, very few is presently known on the functionning of NPC1L1 at the 

molecular level. In particular, its cellular localization, initially predicted to be at the plasma 

membrane in enterocytes (Altmann et al. 2004), and as actually observed in transiently 

transfected CHO cells (Iyer et al. 2005), was subsequently reported to be largely intracellular 

in various cells expressing NPC1L1 either spontaneously (Davies et al. 2005; Sane et al. 
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2006) or after transient or stable transfection (Davies et al. 2005; Yu et al. 2006). Some light 

was shed by the use of fibroblasts disrupted for NPC1L1 expression (obtained from NPC1L1-

null mice), that showed a marked mislocalization of Cav1 which was exclusively present at 

the plasma membrane where it appeared trapped, in contrast to the various intracellular 

structures observed in the wild-type cells; however, this “anti-caveolae effect” of the presence 

of NPC1L1 was not a consequence of its colocalization with Cav1 (Davies et al. 2005). 

Nevertheless, the SSD in NPC1L1 sequence suggests the likelyhood of a specific interaction 

with cholesterol, hence the possibility to sense cholesterol-rich microdomains in its vicinity. 

This could be consistent with the relative detergent resistance of NPC1L1 evidenced by 

biochemical fractionation experiments using sequential detergent extraction with taurocholate 

and digitonin (Iyer et al. 2005). It is worth noting that the measurements of ezetimibe binding 

on recombinant NPC1L1 was clearly enhanced by the presence of low concentrations of 

taurocholate and digitonin (Garcia-Calvo et al. 2005). In this context, it was important to 

observe that a cell cholesterol depletion by MβCD (or to a lesser extent by the cholesterol 

synthesis inhibitor mevinolin) induced on NPC1L1-overexpressing hepatoma cell line a 

stricking relocation of NPC1L1 (initially mainly intracellular) at the plasma membrane in a 

subdomain presenting some characteristics of an apical pole between adjacent cells (Yu et al. 

2006). Such an “apical sorting” of a membrane protein induced by cholesterol manipulations 

is reminiscent of the reported relationship in HepG2 cells between cell cholesterol level and 

the sorting of various membrane proteins, which suggested the involvement of different types 

of cholesterol-enriched microdomains (Slimane et al. 2003). In addition, this apical 

expression of NPC1L1 in hepatocytes appeared functionally relevant since it was 

accompanied by an increased, ezetimibe-sensitive cellular cholesterol uptake (Yu et al. 2006). 

Moreover, this polarization is consistent with the presence of NPC1L1 in the brush border 

membranes of enterocytes (Iyer et al. 2005; Sane et al. 2006). 
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 NPC1L1 has a high sequence homology with NPC1, the main protein whose mutation 

is responsible for Nieman-Pick type C disease: NPC1 also presents a SSD (Davies and 

Ioannou 2000), actually binding a photoactivatable cholesterol analog (Ohgami et al. 2004). 

This should provide some guidelines about NPC1L1 functionning in the cell assuming that 

both proteins can share common molecular mechanisms. As a matter of fact, NPC1L1 

disruption has been shown to provoke an altered intracellullar trafficking of sphingolipids 

such as lactosylceramide as well as of cholesterol (Davies et al. 2005). This is in line with the 

well-described abnomal membrane trafficking in NPC1-null cells, regarding cholesterol (Cruz 

et al. 2000; Millard et al. 2000; Puri et al. 1999) and sphingolipids (Sagiv et al. 2006; te 

Vruchte et al. 2004; Zhang et al. 2001b), but also sucrose, the weakly basic drug 

daunorubicin, and 70 kDa-dextran, all markers of fluid phase endocytosis (Gong et al. 2006; 

Neufeld et al. 1999). However, NPC1 was reported to reside in intracellular membranes, 

within dynamic compartments related to the late endosomes (Garver et al. 2000; Ko et al. 

2001; Neufeld et al. 1999; Zhang et al. 2001a). At that level, NPC1 is predominently present 

in non-raft membrane fractions (Garver et al. 2000; Lusa et al. 2001), with only partial 

colocalization with Cav1 (Garver et al. 2000). Nevertheless, when fibroblasts or CHO cells 

were loaded with LDL-derived cholesterol, the fraction of detergent-resistant NPC1 

increased, but it was proposed that the local cholesterol accumulation was the consequence of 

a defective intracellular traffic rather than of the actual working of NPC1 (Lusa et al. 2001). 

However, NPC1 deletion in liver homogenates from heterozygous and homozygous mice has 

been shown to induce an overexpression of Cav1 (Garver et al. 1997) and annexin II (Garver 

et al. 1999), respectively, which both participate to intracellular cholesterol trafficking 

(Uittenbogaard et al. 2002). Also, NPC1-deleted hepatocytes have been observed to exhibit 

increased raft-like microdomains, as reported by a decreased membrane fluidity and an 

increased resistance to detergent solubilization (Vainio et al. 2005). In addition, cholesterol 
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depletion induced ubiquitylation (a sorting signal) of NPC1 expressed in transfected COS 

cells and of endogenous NPC1 in human skin fibroblasts; it also induced the association of 

NPC1 with SKD1, a component of the endosomal sorting complex, and these events were 

attributed to cholesterol recognition of the SSD in NPC1 (Ohsaki et al. 2006). Furthermore, 

point mutations in the NPC1 SSD induced alterations of the intracellular trafficking of LDL-

derived cholesterol and of a fluorescent analog of the sphingolipid lactosylceramide (Millard 

et al. 2005). Otherwise, NPC1 has been shown to present a higher global level of homology 

with some bacterial multidrug transporters from the RND superfamily (like AcrB or MexD) 

than with some other SSD-containing eukaryotic proteins (Davies et al. 2000). Indeed, NPC1 

could be demonstrated to transport in a proton-dependent maner the cationic amphiphilic drug 

acriflavine, a substrate of AcrB along with various other lipophilic molecules, in normal 

fibroblasts and in NPC1-expressing E. coli; interestingly, a membrane transport of oleic acid 

could also be evidenced but not of cholesterol-oleate or of free cholesterol (Davies et al. 

2000). The true relationships between NPC1 and cholesterol are thus still unclear (Ioannou 

2005), and the similar question is also open for NPC1L1 (Davies and Ioannou 2006). At this 

stage, it can be proposed that NPC1L1 would be, actively or indirectly, involved in the 

vesicular traffic of cholesterol, possibly by using ionic electrochemical gradients as a driving 

force. 

 

 

ABCA1: a full-size ABC transporter involved in lipid translocation and transfer 

 

 The superfamily of ABC proteins is composed of numerous membrane active 

transporters which work at the expense of ATP hydrolysis to realize the transmembrane 

translocation of a great variety of substrates, such as ions, sugars, aminoacids, vitamins, 
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peptides, proteins, lipids and even drugs (Gottesman and Ambudkar 2001). They are 

expressed from bacteria to man, and as a rule they are formed by two transmembrane domains 

and two nucleotide binding domains, and they can be either monomeric or di- or tetrameric by 

homo- or hetero-association of such domains (Higgins 1992). In higher mammalians, ABCA1 

was first considered as a phosphatidylserine translocase involved in macrophage phagocytosis 

(Hamon et al. 2000). Later on, ABCA1 took a novel status by being involved in Tangier 

disease when mutated (Remaley et al. 1999), and this suggested that ABCA1 played a role in 

cholesterol transfer to HDL (Young and Fielding 1999), ensuring the first steps of the 

physiologically important “cholesterol reverse transport” (Oliver et al. 2001). Subsequently, 

as the mechanism of HDL formation was progressively analyzed, ABCA1 appeared as 

responsible for the cellular efflux of phospholipids and cholesterol to lipid-free apoA-I or 

lipid-poor lipoproteins thanks to a specific interaction with apoA-I (Wang et al. 2000b). 

However, some controversies remain as regards the detailed molecular processes involved, in 

particular concerning the actual transported substrate, phospholipid or cholesterol (Vaughan 

and Oram 2003; Wang et al. 2001), the sequentiality for their handling, in “two steps” or “one 

step” (Fielding et al. 2000; Smith et al. 2004), the relationship between lipid transfer and 

apoA-I binding (Chambenoit et al. 2001), and whether the transfer occurs at the cell surface or 

inside during a “retroendocytosis” process (Cavelier et al. 2006). 

 Since the membrane microdomains, rafts and caveolae, were believed to mediate 

cholesterol export from cells in order to maintain its homeostasis (Fielding and Fielding 

2000), relationships between ABCA1 and such lipid microdomains have been investigated. It 

then appeared the generally admited view according to which ABCA1 is not localized in the 

“classical”, Triton X100-resistant membrane domains (Drobnik et al. 2002; Mendez et al. 

2001). However, a significant fraction of ABCA1 was found in the “larger”, Lubrol WX-

resistant membrane domains from human macrophages, but not from fibroblasts (Drobnik et 
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al. 2002; Bared et al. 2004). In addition, cholesterol efflux from the cells to apoA-I derived 

from rafts whereas cholesterol efflux to HDL did not (Drobnik et al. 2002; Mendez et al. 

2001). Furthermore, relationships with rafts were not straightforward since the lipid acceptor 

apoA-I was found to interact with lipid rafts in macrophages (Gaus et al. 2004) but not in 

ABCA1-overexpressing BHK cells (Landry et al. 2006). The composition of the lipids 

secreted by ABCA1 could also give indications on their origin in the cell membrane: the two 

types of lipid-poor, nascent HDL particles secreted by macrophages expressing upregulated 

ABCA1 came respectively from liquid-ordered and disordered membrane domains, and the 

microparticles released by the cells likely came from raft-like domains (Duong et al. 2006; 

Liu et al. 2003). This cellular release of lipidic microparticles (devoid of apoA-I) is suggestive 

of a marked membrane destabilization induced by ABCA1 presence and/or activity; indeed, 

ABCA1-transfected BHK cells were recently shown to exhibit disrupted cholesterol- and 

sphingomyelin-rich rafts with redistribution of caveolin, while the cells transfected by an 

inactive ABCA1 mutant were unperturbed (Landry et al. 2006). In line with these data was 

the observation of an increased sensitivity to high MβCD concentrations of cells treated by 

8Br-cAMP inducing ABCA1 expression, as compared to the non-treated control cells (Smith 

et al. 2004). Another manisfestation of such a membrane desorganization is the report of an 

increased sensitivity to cholesterol oxidase of the membrane cholesterol in ABCA1-

overexpresing BHK cells; interestingly, this cholesterol pool can either be transfered to 

extracellular apoA-I (but not HDL) or to intracellular esterifying enzyme ACAT (Vaughan 

and Oram 2003). ABCA1-mediated lipids redistribution in the cell membrane has been also 

evidenced by measuring the exofacial exposure of fluorescent phospholipid analogues, 

showing a preferential outward movement of phosphatidylserine and 

phosphatidylethanolamine (Alder-Baerens et al. 2005). This translocase activity is likely to be 

related to the modulation of ABCA1 ATPase activity recently determined on proteoliposomes 
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reconstituted with purified ABCA1, and showing a preferential stimulation by choline-

containing lipids (Takahashi et al. 2006). Also, some cellular mophological alterations, 

typically echinocyte-like protrusions, observed on ABCA1-transfected HEK293 cells, were 

highly suggestive of an asymmetry of the cell membrane likely induced by a flip-floppase 

activity (Wang et al. 2000b). Actually, the exact role of these kinds of membrane disturbances 

and their relationships with cholesterol-rich rafts and cholesterol traffic remain to be further 

elucidated (Jessup et al. 2006). 

 Notably, ABCA1 also displays various cellular effects concerning general membrane 

trafficking; indeed, Tangier fibroblasts (deficient in ABCA1) display enhanced endocytosis 

(Zha et al. 2001) and phagocytosis (Bared et al. 2004), while ABCA1 overexpression 

decreased both receptor-mediated and fluid-phase endocytosis (Alder-Baerens et al. 2005). 

However, Tangier fibroblasts exhibit altered membrane trafficking, including caveolae, 

between Golgi and plasma membrane (Orso et al. 2000). More precisely, Tangier fibroblasts 

accumulated both cholesterol and sphingomyelin in the late endocytosis compartment, and 

ABCA1 transfection induced a correction of this trafficking defect along with the location of 

tagged ABCA1 in endosome vesicles (Neufeld et al. 2004). Interestingly, vesicular transport 

from Golgi to plasma membrane increased during ABCA1-mediated cholesterol efflux from 

both macrophages and fibroblasts (Zha et al. 2003). This is consistent with the observation of 

preferential cholesterol efflux from “internal pools” (i.e. late endosomes and lysosomes) fed 

by LDL endocytosis than from “superficial pools” (i.e. recycling endosomes and trans-Golgi) 

fed by soluble donnors such as serum or cyclodextrin (Chen et al. 2001). Although ABCA1 

has been repeatedly reported to be expressed mainly at the cell surface (Landry et al. 2006; 

Wang et al. 2000b), these data highlight that the (small) intracellular fraction of ABCA1 is 

likely to have a clear functional importance (Chen et al. 2005; Neufeld et al. 2001; Neufeld et 

al. 2004), in particular revealing an unexpected possible functional synergy with NPC1 (Chen 
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et al. 2001; Neufeld et al. 2004). This would be in line with the regulation of the internal 

localization of ABCA1 by various protein partners, such as syntrophins (Munehira et al. 2004; 

Okuhira et al. 2005) and syntaxins (Bared et al. 2004). Finally, cholesterol-induced regulation 

of ABCA1 intracellular trafficking and its relationships with retroendocytosis still remain to 

be clarified. 

 

 

ABCG1: an homodimeric ABC transporter transfering cholesterol to acceptors 

 

 Within the frame of cholesterol homeostasis in the body, the HDL-mediated reverse 

cholesterol transport from peripheral cells to hepatocytes has received much attention, in 

particular considering the efflux of cholesterol from macrophages, since they are involved in 

the first steps of atheromatosis when they incorporate uncontrolled amounts of cholesterol 

leading to foam cells. Indeed, on the basis of their expression regulation providing adapted 

responses to loading/depletion of cellular cholesterol, three ABC transporters appear to be 

involved in such an export of cholesterol to ApoAI-containing lipoproteins: A1 (see above), 

G1 and G4 (Klucken et al. 2000). Cell transfection experiments confirmed that ABCG1 and 

G4 (a very close homologue to G1) induce cholesterol transfer to HDL (Wang et al. 2004). 

The use of gene-disrupted and transgenic mice for ABCG1 brought further evidence of its 

involvement in preventing cholesterol accumulation in tissues (Kennedy et al. 2005). 

Furthermore, it appears now that ABCG1 displays a complementary role to that of ABCA1, 

since ABCA1 can transfer cholesterol to lipid-free/poor apoA1 while ABCG1 can transfer 

cholesterol to “nascent” HDL particles (i.e. discoidal preβ-HDL, formed in medium 

conditioned by ABCA1-expressing cells), to finally form mature HDL (Baldan et al. 2006; 

Gelissen et al. 2006). 
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 Under the perspective of possible functionally relevant interactions of ABCG1 with 

membrane cholesterol, very few is presently known. First, it has been observed that human 

ABCG1 overexpressed in BHK cells induced an increased amount of cholesterol in the 

plasma membrane accessible to the soluble enzyme cholesterol oxidase; this cholesterol pool 

was either removed by HDL or devoted to esterification in internal compartments in the 

absence of external cholesterol acceptors (Vaughan and Oram 2005). Such an influence of 

ABCG1 on cellular distribution and trafficking of cholesterol could be related to an alteration 

of cholesterol-rich membrane microdomains. In addition, in transfected HEK293 cells, 

ABCG1 has been shown to efflux cholesterol to external acceptors, along with sphingomyelin 

preferentially to phosphatidylcholine (Kobayashi et al. 2006). Second, concerning its 

intracellular localization and trafficking, some controversial data have been reported: ABCG1 

appears either mainly perinuclear (Gelissen et al. 2006; Lorkowski et al. 2001), or 

constitutively at the plasma membrane (Kobayashi et al. 2006), or redistributed to the cell 

surface by LXR activation (Wang et al. 2006b). This leads to two alternative possibilities 

allowing ABCG1 to redistribute cholesterol in the cell: either it handles cholesterol at the 

plasma membrane level, or it processes cholesterol in some internal membranes before it 

becomes exposed at the cell surface thanks to membrane traffic (Baldan et al. 2006). Anyway, 

it seems likely that this could lead to the formation of cholesterol-enriched microdomains in 

the cell membrane, which should then favor cholesterol transfer to ApoAI-containing 

lipoproteins or even other cholesterol acceptors. 

 

 

ABCG5/G8: an heterodimeric ABC transporter expelling sterols 
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 The recent cloning of two genes responsible for the dyslipidemic disease 

sitosterolemia has highlighted the ABC family as providing new partners in the control of 

cholesterol homeostasis in the body (Berge et al. 2000). Indeed, studies on mice bearing a 

deletion for either of the gene coding for ABCG5 or ABCG8 (Yu et al. 2002a), or 

overexpressing both of these genes (Wu et al. 2004; Yu et al. 2002b), have shown that these 

two “half-transporters” are involved in biliary secretion of cholesterol and other sterols, in 

particular phytosterols like sitosterol. Furthermore, these half-transporters (i.e. each harboring 

only one nucleotide binding domain) were demonstrated to be necessarily coexpressed as an 

heterodimer in order to exhibit their full fonctionality (Graf et al. 2003; Wang et al. 2006c). 

They are present in hepatocytes at the apical canalicular membrane, where they participate to 

bile formation (along with BSEP = ABCB11 and MDR3 = ABCB4, respectively secreting 

bile salts and phosphatidylcholine), and also in the intestine where they are believed to limit 

sterol absorption (mainly in jejunum and ileon) (Duan et al. 2004; Hazard and Patel 2007). 

 The molecular mechanisms of ABCG5/G8 are still very elusive, in particular 

regarding its relationships with membrane environment and its modulation by the cellular 

parameters. Some points can nevertheless be considered as potentially relevant as regards 

functional links with cholesterol regulating its activity. First, intracellular trafficking of 

ABCG5/G8 is carefully controled so that each monomer is stabilized by the other one, and 

only heterodimerization will allow its expression at the cell surface (at the apical pole when 

the cell is polarized) (Graf et al. 2002), which requires an efficient protein sorting (Okiyoneda 

et al. 2006). Second, from recent in-vitro data on inside-out vesicles receiving cholesterol 

from donor liposomes, ABCG5/G8 seems to operate an efficient cholesterol transfer to the 

luminal leaflet of the vesicle membrane thanks to a floppase mechanism since the vesicle 

lumen were devoid of any cholesterol acceptor, suggesting that spontaneous cholesterol flip-

flop rate would be limiting in the membranes containing ABCG5/G8 (Wang et al. 2006a). If 
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this could be confirmed under more physiological conditions, it would imply that ABCG5/G8 

could play an important role in the intramembrane distribution of cholesterol. Third, from in-

vivo experiments on intraveinously infused ABCG5/G8-KO mice with high concentrations of 

hydrophobic bile salts, the observation of a depletion of cholesterol present in the canalicular 

membrane, leading to bile duct lesion and cholestasis, led to infer that ABCG5/G8 can have a 

protective effect against the detergent action of the bile acids (Kosters et al. 2006). 

Furthermore, the absence of any stimulation of biliary cholesterol secretion under these 

conditions led the authors to consider that the limiting step should be the intramembrane 

translocation of cholesterol, and thus to suggest that this transporter acts as a floppase 

(Kosters et al. 2006). In that case, the observation of the extended selectivity of this 

transporter to handle various natural sterols, in order to exclude them from the body in spite of 

their abundance in the diet (Yu et al. 2004), would raise the question of their intramembrane 

distribution (between the two leaflets as well as regarding the cholesterol-rich microdomains 

likely to be present). As a mater of fact, it has been observed on model membranes that the 

phytosterols, sitosterol and stigmasterol, either behave approximately as cholesterol in 

promoting ordered, detergent-resistant microdomains (Xu et al. 2001), or are less able to 

favorably interact with phospholipid bilayers and stabilize microdomains (Halling and Slotte 

2004). However, no direct investigation of the relationships between ABCG5/G8 and 

membrane microdomains have been presently reported, and this would thus be desirable. 

 

 

P-gp: a (possible) model ABC transporter for relationships with cholesterol 

 

 P-glycoprotein (P-gp = ABCB1) is well-described for almost three decades for being 

responsible for the multidrug resistance (MDR) phenotype of some tumor cells (Gerlach et al. 
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1986). Its gene cloning about twenty years ago has shown that it belongs to the superfamily of 

ABC active membrane transporters (Bosch and Croop 1996). P-gp works as expelling by an 

ATP-dependent process various cytotoxic drugs out of the tumor cells which express it in the 

plasma membrane (Gottesman and Pastan 1993), leading to anticancer chemotherapy failures 

(Nooter and Herweijer 1991). In the nineties, it became progressively clear that P-gp, which is 

also expressed in some healthy tissues such as intestine mucosa, blood-brain barrier, biliary 

canalicule and kidney tubule, can handle a very large number of amphiphilic molecules of 

pharmaceutical interest, and is consequently involved in their pharmacokinetic characteristics 

(such as digestive absorption, CNS disposition, biliary and urinary excretion) (Schinkel et al. 

1997). P-gp is thus characterized by the rather unique property of multispecific transported 

substrate recognition, concerning a very much broad spectrum of molecular structures, 

provided they are amphiphilic, neutral or cationic, and presenting a size ranging between 

about 250 and 1250 Da (Ambudkar et al. 1999). The underlying molecular mechanisms only 

begin to be unraveled (Garrigues et al. 2002b; Shilling et al. 2006); in particular, a body of 

evidences have shown that the various, more or less hydrophobic substrates recognized P-gp 

at the level of its transmembrane domains after partitioning in the surrounding lipid phase 

(Ferte 2000; Higgins and Gottesman 1992; Sharom 1997). 

 Various steroids belong to the number of substrates transported by P-gp, as they 

notably exibit reduced cellular accumulation in MDR cells and inhibition of P-gp-mediated 

drug transport, and among them cholesterol behaves similarly (Barnes et al. 1996; Wang et al. 

2000a). In addition, cholesterol modulates ATPase activity of P-gp contained in native inside-

out membrane vesicles prepared from MDR (selected or transfected) cells (Barakat et al. 

2005; Garrigues et al. 2002a; Gayet et al. 2005; Rothnie et al. 2001; Wang et al. 2000a). It has 

then been demonstrated in-vitro on such P-gp-containing inside-out vesicles that exogenous 

radiolabelled cholesterol associates in an ATP-dependent manner, and in addition that 
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endogenous cholesterol becomes less accessible to the exogenously added soluble enzyme 

cholesterol oxidase also in an ATP-dependent manner (Garrigues et al. 2002a). Taken as a 

whole, these data provide the evidence that P-gp actively translocates membrane cholesterol 

from the cytosolic leaflet to the exoplasmic one. Such an intramembrane redistribution of 

cholesterol, leading to an increased exposure at the cell surface and/or a stabilization of 

membrane microdomains, is consistent with the observation of alterations of cholesterol 

interaction with the external medium, including resistance to permeabilization by digitonin 

(Ramu et al. 1991), and variable efficiency of MβCD extraction (Le Goff et al. 2006; 

Reungpatthanaphong et al. 2004). However, cellular efflux of cholesterol to MβCD appears 

rather cell type-dependent since it was increased in stably transfected LLC-MDR1 but not in 

conditionally transfected HeLa-MDR/Tet cells (Le Goff et al. 2006). Also, cellular cholesterol 

depletion by MβCD was less efficient in MDR K562 versus parental sensitive cells 

(Reungpatthanaphong et al. 2004), and in that case an increased recycling of cholesterol from 

internal stores can be invoked as well as an altered cholesterol distribution/organization 

within the plasma membrane. Indeed, the whole cellular trafficking of cholesterol has been 

observed to be stimulated in some MDR cells, with increased biosynthesis (Metherall et al. 

1996) and esterification (Debry et al. 1997; Field et al. 1995), although this has been 

subsequently contested (Issandou and Grand-Perret 2000), and appears once more as 

depending on the cell type considered (Luker et al. 1999). Anyway, such an increased 

membrane trafficking can provide a fair explanation to the apparently unexpected observation 

of an increased influx of cholesterol from mixed micelles to intestinal cells overexpressing P-

gp (Tessner and Stenson 2000). Finally, in the double KO, mdr1a-/mdr1b-disrupted mice, the 

observation of a decreased cholesterol accumulation with an increased cholesterol 

esterification in the hepatocytes, but not in the other tissues, when cholesterol was 

administered orally, but not intraveinously (Luker et al. 2001), illustrates that all the 
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consequences, both direct and indirect, of P-gp expression on the cellular traffic and 

metabolism of cholesterol are not yet deciphered. 

 The involvement of P-gp in cell cholesterol homeostasis is nevertheless indicated by 

the regulation of its gene expression by the cholesterol loading level of the cell: human 

macrophages treated by HDL for cholesterol depletion, or by LDL for cholesterol repletion, 

respectively up-regulated and down-regulated P-gp expression (Klucken et al. 2000). As a 

mater of fact, MDR cells submitted to cholesterol starvation during culture felt a much 

smaller cholesterol level decrease than the sensitive counterparts (Mazzoni and Trave 1993). 

Furthermore, it has been observed that in the MDR cells, in contrast to sensitive tumor cells, 

cholesterol level is mainly regulated via its efflux to HDL (Liscovitch and Lavie 2000). This 

could be viewed as consistent with the observation of an up-regulation of Cav1 expression in 

some MDR cells (Lavie et al. 1998; Pang et al. 2004; Yang et al. 1998), although this could 

not be considered as a general rule (Lavie et al. 1998). 

 Reciprocally, P-gp function has been amply shown to be influenced by the nature, the 

composition and the structural organization of its surrounding membrane. Actually, P-gp 

often localized (at least partially) in cholesterol-rich, detergent-resistant membrane 

microdomains (Barakat et al. 2005; Luker et al. 2000; Troost et al. 2004), possibly depending 

on the detergent used (Hinrichs et al. 2004; Radeva et al. 2005), at variance with a report 

using a detergent-free method for P-gp isolation (Reungpatthanaphong et al. 2004). 

Furthermore, P-gp colocalized with some membrane proteins included in rafts, and these 

protein-protein interactions were shown to functionally regulate P-gp (Demeule et al. 2000; 

Ghetie et al. 2004; Luciani et al. 2002). However, P-gp function was also modulated by 

treatments altering rafts (Barakat et al. 2005; Luker et al. 2000; Troost et al. 2004), although 

these experimental conditions rather targeted the cholesterol presence in the cell membrane. 

The interpretation of such experimental results are thus not always unambiguous concerning 
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the respective roles of free cholesterol versus cholesterol composing the rafts in the 

membrane. In addition, P-gp has also been described in internal membranes (Molinari et al. 

1994), where its functional implication has been discussed in relation to intracellular 

membrane trafficking (Kim et al. 1997; Lee et al. 2001; Rajagopal and Simon 2003; Shapiro 

et al. 1998); furthermore, intracellular trafficking leading to apical polarized expression of P-

gp appeared to be dependent on cholesterol (Slimane et al. 2003). As a whole, it appears that 

P-gp establishes privilegied relationships with membrane cholesterol, even if its inclusion in 

the rafts is likely partial and dynamic in essence, and clearly depends on the cell type 

considered as well as the exact nature of the microdomain involved (e.g. presence of Cav1, 

detergent-type resistance and MβCD sensitivity) (Orlowski et al. 2006). Thus, even if P-gp 

could be considered as a (both theoretical and experimental) guideline for other ABC 

transporters involved in lipid traffic, many points still remain unclear and should be addressed 

in order to gain the undisputed status of “model ABC transporter”. However, it could be 

envisioned that the different ABC transporters, considered here to be involved in cellular 

cholesterol transport, all present an active floppase function of rather broad selectivity for 

various lipids, which may be converted to an (active) “extrudase” function if the transporter 

specifically interacts with a lipid acceptor (such as a lipoprotein). 

 

 

Synthesis and perspectives 

 

 Cholesterol homeostasis is of primary importance for body health and cell physiology. 

It involves various membrane proteins which mediate cholesterol transfer from a donnor in an 

aqueous medium to an acceptor in another aqueous compartment: cell membrane is thus a 

limiting step in such cholesterol “transport”. In this frame, the molecular mechanisms of these 
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cholesterol “transporters”, whenever they behave as “translocases” or “transferases”, is thus 

desirable to be analyzed and elucidated, since this determines the resultant biological 

processes which ultimately are considered as relevant for public health (e.g. 

hypercholesterolemia leading to atherosclerotic diseases). Indeed, understanding cellular 

physiology of cholesterol metabolism and traffic needs the description of the lower 

integration levels, i.e. the membrane and within it the proteins, which are the actual 

pharmacological targets. As a matter of fact, lipid composition and structural organization of 

the cell membrane are well-known to be essential for the biological activity of the membrane 

proteins, especially membrane transporters. The cholesterol-rich microdomains, lipid rafts, are 

then prominent candidates for regulating cholesterol transporters. They indeed appear to play 

noticeable roles in the various proteins we discussed above. However, it is not always clear 

whether this is realized directly by providing either a specific close environment or an 

alteration of the local biophysical properties of the membrane (curvature, asymmetry, 

thickness…), or indirectly by modulating the transporter activity within the membrane, for 

example by altering membrane trafficking or also by recruiting regulatory protein partners: 

this will need further work in every case. 

 As a whole, it is noteworthy that the main cholesterol transporters considered here 

show variable intracellular distribution or presence in the membrane microdomains, often 

depending on the cell type and on the experimental procedure. Obviously, some 

methodological pitfalls are always possibly underlying the works cited here, such as: (i) cell 

and membrane fractionation, generally based on the use of detergents under specific 

conditions, (ii) cell cholesterol manipulation using cyclodextrin, not always straightforward 

for preserving the integrity of the cell physiology, and (iii) protein colocalizations using 

fluorescence microscopy, always subjected to the limitations due to the optical microsopy 

resolution. However, the whole data presented above fairly suggest that the cholesterol 
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“transporters” display a highly dynamic behavior with respect to their membrane 

environment, taking full benefit of the intracellular traffic. This should be considered as an 

evidence of all the regulation processes these membrane proteins can undergo, and as an 

illustration of their likely functional versatility when considering the cellular consequences of 

their molecular working. 

 The cholesterol “transporters” can be classified in two categories, according to their 

passive (i.e. acting as facilitators) or active (i.e. enegy-dependent) activity. The second case, 

mostly concerning the members of the ABC family, raises the interesting question of the 

relationships between the cholesterol flip-flop in the membrane and the “raft determinism”. 

Since the lipid rafts in plasma membrane are currently described as presenting an asymmetry 

between the two membrane leaflets, as regards their lipid composition, the actual question is 

whether these microdomains are at thermodynamic equilibrium. Considering their highly 

dynamic behavior and their involvement in the whole membrane trafficking, these membrane 

microdomains are likely out of equilibrium (as is the biological membrane as a whole!). The 

following question is about the nature of the molecule(s) taken as the primary substrate of an 

active intramembrane translocation and whose asymmetric distribution provides the driving 

force for the whole raft formation and then raft stability at the steady state. Although it is 

difficult to claim that it is the only lipid component to be concerned, cholesterol is indeed 

outwardly translocated (“flopped”) by some ABC transporters, and this may then be at least 

part of the global mechanism of raft determinism (also involving, among others, 

sphingomyelin). In addition, this translocation is not necessarily limited within the rafts 

themselves, since cholesterol may also be actively flopped at any place of the membrane, 

allowing to passively diffuse laterally in the exoplasmic leaflet up to incorporate a raft 

domain. As a matter of fact, the representative and long-known ABC transporter P-gp is able 

to establish an altered cholesterol distribution between the two membrane leaflets when 
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assayed in-vitro (Garrigues et al, 2002a). This straight experimental observation clearly 

demonstrates that the active intramembrane flux of cholesterol is faster than its passive back 

flux in that case, but this could also be achieved by other ABC transporters under different 

conditions. 

 Furthermore, for a more general point of view, and given the rather rapid rate at which 

cholesterol can spontaneously transfer between membrane pools, we can wonder whether the 

function of a cholesterol “transporter” is to regulate exchange with the extracellular medium 

or to maintain the disequilibrium of sterol between cholesterol-rich and cholesterol-poor 

domains. It seems fair to assume that an heterogenous cholesterol abundance between the 

various membrane pools is necessary to determine cholesterol exchange rates with the 

extracellular medium as part of the general process of lipid (and membrane proteins) sorting 

among the intracellular compartments. Thus, the various cholesterol transporters, at least the 

active ones, would be as well involved in regulating the different intracellular cholesterol 

pools as in ensuring the actual fluxes of cholesterol with extracellular donnors and acceptors. 

In any case, these active transporters could be considered as participating in a global process 

of feeding a continuous cholesterol turn-over within the cells or in the organism, which is 

inherent to the homeostasis of this important biological component. 

 Anyway, all these possible aspects of functioning of these cholesterol transporters 

make them likely to be sensitive to the presence of cholesterol in their membrane 

environment. In the case of SR-BI, the cellular consequences of a local facilitating effect on 

the passive exchange of cholesterol between the membrane phase and a soluble complexing 

agent is obviously dependent on various conditions imposed by the metabolic status of the 

cell, especially regarding its lipid loading level: this could determine the direction of the 

mediated cholesterol flux. Also, when cholesterol has to “choose” between different pathways 

for cellular export, rafts may play a role (Fielding and Fielding 2003; Jessup et al. 2006), in 
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particular in relation with the cell polarization. In the case of NPC1L1, the strong homology 

with NPC1 indicates that it could be involved in vesicular trafficking, which is known to 

depend on cellular rafts (Rajendran and Simons 2005). In the case of members of the ABC 

family, which most likely mediate an active process in the membrane, the question remains 

about the relationship between a local interleaflet translocation of cholesterol and the resulting 

effect in the cell, taking into account the lipid trafficking under the influence of the rafts 

(Orlowski et al. 2006). In all cases, the effect of the rafts should also depend on the substrate 

selectivity of the various cholesterol transporters, since they all are known or suspected to 

handle a more or less broad spectrum of lipids. Finally, the rafts can also well be a factor 

favoring the “functional harmonization” of the different lipid transporters involved in 

cholesterol cellular traffic and presenting possible functional redondancy and/or 

complementation, allowing for subtle coregulations and optimization: this will undoubtly 

warrant futur investigations in the field. Anyway, cholesterol-rich membrane microdomains 

appear to provide a novel way, besides the more described genic regulations involving various 

nuclear factors, for cholesterol transport regulation based on chemico-physical and 

biophysical properties of the membrane. 
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