
HAL Id: inserm-00149211
https://inserm.hal.science/inserm-00149211

Submitted on 17 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differentiation in vivo of cardiac committed human
embryonic stem cells in postmyocardial infarcted rats.

André Tomescot, Julia Leschik, Valérie Bellamy, Gilbert Dubois, Emmanuel
Messas, Patrick Bruneval, Michel Desnos, Albert A. Hagège, Michal Amit,

Joseph Itskovitz, et al.

To cite this version:
André Tomescot, Julia Leschik, Valérie Bellamy, Gilbert Dubois, Emmanuel Messas, et al.. Differen-
tiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats.:
Human ES cells in postmyocardial infarction. Stem Cells / Stem Cells (Miamisburg), 2007, 25 (9),
pp.2200-5. �10.1634/stemcells.2007-0133�. �inserm-00149211�

https://inserm.hal.science/inserm-00149211
https://hal.archives-ouvertes.fr


 1

SC-07-0133 R1 

 

Differentiation in vivo of cardiac committed Human embryonic stem cells in post-

myocardial infarcted rats.  

 

André Tomescot§°, Julia Leschik§*, Valérie Bellamy+, Gilbert Dubois°, Emmanuel 

Messas&, Patrick Bruneval@, Michel Desnos&, Albert A. Hagège&, Michal Amit$, Joseph 

Itskovitz$, Philippe Menaschéµ, Michel Pucéat*,¤

 

*INSERM UMR 861, I-stem, AFM Evry, France,  
° INSERM, U 633 ; Assistance Publique-Hôpitaux de Paris, Ecole de Chirurgie, Paris, France  
+INSERM U 633, Paris, France  
& Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department 
of Cardiology ; University Paris-Descartes, Faculty of Medicine ; INSERM U 633, Paris, 
France.  
@ Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department 
of Pathology ; University Paris-Descartes, Faculty of Medicine ; INSERM U 430, Paris, 
France. 
µ Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department 
of Cardiovascular Surgery ; INSERM, U 633, Laboratoire de Recherches Biochirurgicales; 
University Paris-Descartes, Faculty of Medicine, Paris, France. 
$ Technion Institute, Haifa, Israel 
 
 

§ both authors contributed equally to this work 

 

 

Running Title:  Human ES cells in postmyocardial infarction 
 

 

 

¤ to whom correspondence should be addressed :  
INSERM /Evry University UMR861, I-Stem, AFM  
5, rue Desbrières 
 Evry, 91030, France 
mpuceat@istem.genethon.fr 
 

 

 

H
A

L author m
anuscript    inserm

-00149211, version 1

HAL author manuscript



 2

 

 

 

Abstract 

Human embryonic stem (HES) cells can give rise to cardiomyocytes in vitro. However 

whether undifferentiated HES cells also feature a myocardial regenerative capacity after in 

vivo engraftment has not been established yet. 

We compared two HES cell lines (HUES-1 & I6) that were specified towards a cardiac 

lineage by exposure to bone morphogenetic protein (BMP2) and SU5402, a FGF receptor 

inhibitor. Real time PCR revealed that the cardiogenic inductive factor turned on expression 

of mesodermal and cardiac genes (Tbx6, Isl1, FoxH1,Nkx2.5, Mef2c, and α-actin).  

Thirty immunosuppressed rats underwent coronary artery ligation and, 2 weeks later, were 

randomized and received in-scar injections of either culture medium (controls) or BMP2 

(±SU5402)-treated HES cells. After 2 months, human cells were detected by anti-human 

lamin immunostaining and their cardiomyocytic differentiation was evidenced by their 

expression of cardiac markers by RT-PCR and immunofluorescence using an anti-β myosin 

antibody. No teratoma was observed in hearts or any other organ of the body.  

The ability of cardiac-specified HES cells to differentiate along the cardiomyogenic pathway 

following transplantation into infarcted myocardium raises the hope that these cells might 

become effective candidates for myocardial regeneration. 
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Introduction 

Heart failure is becoming a predominant disease and a leading cause of death in most of 

developed countries. Regardless of the origin of myocardial failure (i.e, ischemic or genetic), 

the clinical symptoms result mainly from the death of cardiomyocytes replaced by a fibrotic 

and non contractile tissue. Pharmacological approaches to cure or relieve heart failure have 

been facing limitations. Because of a limited regeneration capability of the heart [1] and a 

shortage in donors for heart transplantation, an external source of cells has been envisioned as 

a therapeutic solution to bring a gain in function to diseased myocardium. For the last few 

years, hematopoietic stem cells had raised many hopes as a potential autologous cell source to 

repair diseased myocardium. However, the enthusiasm generated by the early non-controlled 

phase I studies has been dampened by the more recent recognition that out of four randomised 

controlled trials entailing intracoronary infusions of bone marrow-derived cells shortly after 

myocardial infarction, three failed to meet their primary end point, i.e., an improvement in left 

ventricular ejection fraction [2-5]. Combined with basic studies disproving the cardiogenic 

potential of these cells [6] [7], the outcome of these trials demonstrates that these cells do not 

really regenerate the diseased myocardium and it is unlikely that their paracrine effects may 

be sufficient for restoring function of extensively scarred myocardium [8]. The same 

limitations apply to skeletal myoblasts [9].Thus, these findings call for another stem cell 

source to achieve myocardial regeneration. Among various other cell types, embryonic stem 

(ES) cells [10-12] or ES cell-derived cardiomyocytes  [13,14] have turned out to be the most 

promising for replacing scar fibrosis by new contractile elements. However, the number of 

cells required to regenerate a post-infarcted human myocardium (i.e., several hundreds of 

million) is too high to be reasonably achieved by in vitro engineering of ES cell-derived 

cardiomyocytes. For the last few years, we and others have shown that proliferative mouse ES 

cells engrafted in a diseased myocardium further differentiate into functional cardiomyocytes 
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following in-vitro commitment using the cardiogenic morphogen BMP2 [10-12]. Cardiac-

specified cells then complete their differentiation in response to the local cues present in the 

scar and do not generate any kind of tumors. Thus, although Human ES cells do not share 

with mouse ES cells the same molecular mechanisms of self-renewal or capabilities of 

spontaneous differentiation [15], we designed this study to assess whether Human ES cells 

could be specified toward a cardiac lineage in vitro and subsequently differentiate into 

cardiomyocytes in situ following their transplantation in infarcted myocardium.  

Herein, we bring the proof of concept that Human ES cells can also be directed toward 

a cardiogenic fate using the morphogen BMP2. Furthermore, the cells do differentiate into 

cardiomyocytes following engraftment into the myocardial scar without any sign of 

hyperproliferation. These data open the path for the use of early cardiac progenitors, which 

retain the capability to proliferate and repopulate the postinfarction scar. 
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Materials and Methods 

 

Real-Time Quantitative PCR by SYBR Green Detection 

 RNA was extracted from HES cells or slices of rat myocardium using a Quiagen kit. One μg 

of RNA was reverse-transcribed using the Mu-MLV reverse transcriptase (Invitrogen, Cergy, 

France) and oligo(16)dT. 

Real-time quantitative PCR was performed using a Light Cycler (Roche Diagnostic) or a 

Chromo4 thermal cycler (Biorad). Amplification was carried out as recommended by the 

manufacturers. Twelve or Twenty two µl reaction mixture contained 10 or 20 µl of Roche or 

Abgene SYBR Green I mix respectively (including Taq DNA polymerase, reaction buffer, 

deoxynucleoside trisphosphate mix, and SYBR Green I dye, 3 mM MgCl2), 0.25 µM 

concentration of appropriate primer and 2 µl of cDNA. The amplification programme 

included the initial denaturation step at 95°C for 15 or 8 min, and 40 cycles of denaturation at 

95°C for 10s, annealing at 65 °C for 8s (Light cycler) or 20s (Chromo4), and extension at 

72°C for 8 or 30s. The temperature transition rate was 20 (Light Cycler) or 4 (Biorad) °C/s. 

Fluorescence was measured at the end of each extension step. After amplification, a melting 

curve was acquired by heating the product at 20 or 4°C/s to 95°C, cooling it at 20 or 4°C/s to 

70°C, keeping it at 70°C for 20 s, and then slowly heating it at 20 or 4°C/s to 95°C. 

Fluorescence was measured through the slow heating phase. Melting curves were used to 

determine the specificity of PCR products, which were confirmed using conventional gel 

electrophoresis. Data were analysed according to Pfafll et al [16]. Primers specific for human 

genes are described in table 1.  

 

Culture and cardiac commitment of Human Embryonic stem cells 
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HUES-1 and I6 cell lines were cultured on Mouse Embryonic Fibroblasts (MEF) prepared 

from E14 mouse embryos using KO-DMEM medium supplemented with mercaptoethanol, 

glutamine, non essential amino acids, 15% KOSR and 10 or 5 ng/ml FGF2 respectively. 

Medium was changed every day. Cell colonies were dissociated into single cells or cell 

clusters every 4-5 days using trypsin (HUES-1) or collagenase (I6), respectively. A similar 

enzymatic digestion was used prior to cell transplantation in infarcted rats.  

HES cells were treated for 48 hrs with 10 ng/ml BMP2 in the presence or absence of 1 μM 

SU5402, a FGF receptor inhibitor, in low KOSR (5%) containing KO-DMEM. Embryoïd 

bodies were generated after trypsinisation (HUES-1) or collagenase (I6) dissociation of HES 

cell colonies and cell aggregation in low attachment dishes (Nunc) in DMEM, 10% foetal calf 

serum. 

 

Myocardial infarction model 

Myocardial infarction was induced in female Wistar (mean weight of 250 g ) by ligation of 

the left coronary artery. Rats were operated on under general anaesthesia with isoflurane ( 

Baxter), 3% at induction and 2% for maintenance. After tracheal intubation, mechanical  

ventilation ( Alphalab, Minerve ) was set at a rate of 70/min and with an 0.2 ml average 

insufflate volume. Analgesia was performed with a 10mg/kg subcutaneous injection of 

ketoprofen (Merial). 

The heart was exposed through a left thoracotomy and the left coronary artery was 

permanently snared between the pulmonary artery trunk and the left atrial appendage. 

 

Rats randomization and myocardial cell injection  

On the 15th day following infarction, the rats were reoperated on by median sternotomy and 

randomized to receive injections of BMP2-treated HUES-1 cells (3x106 HUES-1 cells, n= 11 
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rats) in suspension of single cells, BMP2-treated I6 ES cells (3 106 I6 cells, n= 11 rats) in 

suspension of small cell clusters or control medium (n= 9 rats). Additional animals (n= 5 rats) 

received in-scar injections of 3 106 HUES-1 cells that had been exposed to both BMP2 and 

SU5402. We selected HUES-1 cell line for the latter experimental situation since this is the 

one which is not already committed to the mesoderm. One rat of each group (HUES-1 cell- 

and I6 cell- transplanted) died within 48 hrs after cell injection. 

Immunosuppressive therapy, consisting in one daily 10mg/kg subcutaneous shot of 

cyclosporine A, was started on the same day and continued until sacrifice. 

 

Histopathology 

Myocardial sections were stained with eosin and hematoxylin using a standard protocol. 

Two months after myocardial injection, rats were euthanized after general anaesthesia. 

Transverse-cut rat hearts were immediately fixed in OTC (Tissutec) and frozen at -180°C 

nitrogen. Eight μm sections were cut on an ultramicrotome (LM 1850,Leica). 

Potential tumor growth was assessed with 8 μm standardized sections stained with 

hematoxylin and eosin.  

Immunofluorescence of myocardial cryosections were performed after paraformaldhehyde 

fixation and permeabilisation using Triton X-100 with an anti-human ventricular β myosin 

heavy chain (MHC) (Chemicon) , anti-human lamin A/C  (Novacastra) anti-atrial natriuretic 

peptide (ANP, Abgent) and anti-Connexin 43 (Cx43) (SIGMA)  antibodies. The proteins were 

revealed using alexa-conjugated antibodies. Sections were observed in confocal microscopy 

(ZEISS LSM-510 meta).  

In addition, a whole-body autopsy of each transplanted rat, including brain, lungs, liver, 

spleen, pancreas, kidneys, periaortic lymph nodes, thymus, spine and ovaries, was 

systematically performed for the detection of a tumor.  
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Results 

Phenotype of undifferentiated I6 and HUES-1 cell lines 

We used both HUES-1 and I6 HES cell lines to test their cardiogenic potential in vitro and in 

vivo. Indeed, a real-time PCR amplification of a few mesodermal and cardiac genes in both 

cell lines showed that the I6 cell line featured a higher basal expression of both  mesodermal  

(Tbx6, SRF, Mesp1, brachyury) and early cardiac (Isl1, Mef2c,Tbx20) genes. GATA4 was 

weakly expressed in I6 but not in HUES-1 cells. Nkx2.5 was barely detected in either I6 or 

HUES-1 cell lines. Oct-4 level was not significantly different between both cell lines (Fig. 1). 

 

Cardiac commitment of HES cells  

Both I6 and HUES-1 Human ES cells were treated for 48hrs with 10 ng/ml human 

recombinant BMP2. Gene induction was tested using real time Q-PCR. Figure 2 shows that 

both mesodermal (i.e., SRF, Tbx6, FoxH1, Isl1 ) and cardiac (Mef2c, Nkx2.5, α-actin) genes 

were induced by the morphogen in HUES-1 cells. This effect was further enhanced by 3-10 

folds when BMP2 was added in the presence of the FGF-R inhibitor SU5402. No significant 

difference was observed in the extent of the BMP2 cardiogenic response between both cell 

lines (Fig. 2A) although the total number of copies of each gene expressed following BMP2 

induction was much higher (i.e. 10-15 fold) in I6 than in HUES-1 cell line (data not shown).  

To test whether BMP2-induced HES cell commitment was translated into a process of 

cardiac differentiation and to envision the differentiation scenario that might take place in 

vivo, control or BMP2-challenged HUES-1 cells were allowed to aggregate to form embryoid 

bodies (EBs). Gene expression was then monitored in day 2 and day 5 EBs. BMP2 effect was 

observed at day 2 (i.e. two fold induction in gene expression) and became prominent at day 5 

(Fig. 2B). At that stage of development, expression of both mesodermal and cardiac genes 

was dramatically increased by 3 to 10 folds (Fig. 2). In contrast, Oct-4 was downregulated 
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and almost absent in EBs generated from BMP2-treated ES cells. Similar results were 

obtained using I6 cell line. 

 

Engraftment of cardiac committed cells in post-infarcted rat heart 

Two months after coronary artery ligation, Human α-actin mRNAs were identified in 

transplanted hearts but not in those injected with the control medium (Fig. 3). In contrast, we 

could not detect any mRNA encoding Oct-4, Pax6 (an early ectodermal marker) or α-foeto 

protein, an early endodermal marker (data not shown). 

Immunostaining with an anti-ANP and anti-human lamin antibodies revealed the presence of 

lamin-positive human ES cell derived-cardiomyocytes (Fig. 4A) 

To further define the phenotype of ES cell-derived cardiomyocytes, sections were 

immunostained with an anti- human β-MHC antibody. These experiments revealed the 

presence of differentiated cardiomyocytes (Fig. 4B) in 40 % and 71% of cryosections 

examined from HUES-1- and I6-engrafted hearts, respectively and in 85% of sections 

examined from rat grafted with HUES-1 cells treated with both BMP2 and SU5402. The cell 

engraftment was however limited. BMP2 treated HUES-1, I6 and BMP2/SU5402 HUES-1 

treated ES cell-derived cardiomyocytes colonized 2.4±0.3, 3.1±0.4 and 3,6±0.3% of the scar 

(n=10) (Fig. 4C), respectively. Careful examination of these sections further indicated that 

these cardiomyocytes were still at a foetal stage demonstrated by a shorter sarcomeric length 

(1.6±0.1μm) compared to 2 ±0.1μm in adult rat (Fig. 4D) 

Eosin-hematoxylin stained sections did not show any sign of inflammation or cell 

hyperproliferation two months posttransplantation (Fig. 5). Likewise, whole-body autopsies 

failed to disclose any tumor in peripheral organs.  
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Discussion 

Our study reveals that HES cells are capable to differentiate into cardiomyocytes without 

formation of teratomas after commitment toward a cardiac lineage using the cardiogenic 

factor BMP2. While BMP2 was shown to improve late cardiac differentiation of already 

differentiating cells [17], our study reports the strong instructive action of the morphogen on 

undifferentiated HES cells. 

BMP2 is a potent mesodermal and cardiogenic instructor when used at low concentration. Its 

cardiogenic potential is a well conserved property throughout the evolution. Dpp, the 

drosophila homolog of BMP2, favours formation of the mesoderm including the heart [18]. 

Similar effects have been observed in zebrafish [19], Xenopus [20,21] and chicken [22]. Our 

data obtained in two separate cell lines uncovered that BMP2 function is conserved in human 

species. While I6 cells were more prone to give rise to a mesodermal lineage (Fig.1), maximal 

BMP2 response was not significantly different from the one observed with HUES-1 cells 

although maximal extent of gene expression was higher in I6 than in HUES-1 cells. Used 

alone, in a defined (KOSR) medium, BMP2 effect was weak while its instructive action was 

dramatically enhanced by addition of the FGF receptor inhibitor, SU5402. Indeed, Human ES 

cells are grown on feeder cells which secrete many factors including FGF2 which is known to 

antagonize the BMP2 signaling pathway. SU5402 could act through at least two mechanisms 

to unmask the BMP2 transcriptional effect. First, FGF2 phosphorylates smad2/3, thereby 

preventing the BMP2 signaling co–factor from translocating into the nucleus and thus to exert 

its transcriptional action [23]. Second, FGF2 is also known to act as a paracrine factor on both 

MEF and HES cells to regulate expression of Cerberus, a nodal and BMP antagonist enriched 

in HES cells [24]. Finally, it might be that SU5402 blocks self-renewal of cells and favours 

non-specific differentiation which is further directed to the mesoderm by BMP2. By blocking 

H
A

L author m
anuscript    inserm

-00149211, version 1



 11

all or either one of these pathways, the FGF inhibitor is required to unravel the BMP2 

transcriptional response of HES cells. 

In keeping with previous observations made in hearts transplanted with mouse [10,11,25], and 

human [26] ES cells, no hyperproliferation (teratoma) was observed in any of the rats injected 

with cardiac-committed HES cells. As intramyocardial injections in a beating heart are also 

known to cause leakage of a substantial proportion of cells [27], it is also noteworthy that we 

failed to document any extra-cardiac tumor. In fact, it was known for a long time that grafts of 

embryonic tissue also loose the capacity to form tumors very early after differentiation [28] 

when they acquire  control of their proliferation by extracellular signal regulated kinases. It is 

thus not surprising that a similar scenario takes place after cardiac commitment of HES cells. 

As such, our findings are not in contradiction with the previous observation [11] that injection 

of HES cells into a normal immunocompetent myocardium results in teratoma formation 

since the latter results primarily suggest that such an environment is unlikely to provide 

enough cardiogenic factors required for differentiation of ES cells. Of note, the rather 

reassuring safety data yielded by our experiments were obtained despite the lack of 

pretransplantation sorting targeted at eliminating non specified cells. This suggests that the 

environment of the diseased myocardium (i.e., scar) enriched in growth factors is sufficient to 

drive primed ES cells toward a cardiac fate [25]. In a clinical perspective, however, such a 

selection step remains a major goal. 

So far, two studies have assessed the effects of intramyocardial transplantation of HES 

cells. Both have entailed the use of embryoid body-derived cardiomyocytes into either normal 

myocardium [26] or acutely infarcted myocardium [29]. To make the protocol more clinically 

relevant, we selected a delayed timing of in-scar transplantation that tends to mimick the 

clinical scenario of heart failure and injected cardiac-specified but not yet fully differentiated 

monolayer-cultured cardiac progenitors. Altogether, the engraftment patterns seen after 2 
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months support the advantage of this cardiac commitment process before transplantation into 

the target scar where local signals are then expected to drive the fate of the graft further down 

the cardiomyocytic differentiation pathway.  

We should however point out that the phenotype of HES cell-derived cardiomyocytes 

in situ was rather close to a foetal one. Indeed the cells still expressed β-MHC and ANP, two 

known markers of early stage of cardiac differentiation. The short length of the sarcomere is 

still characteristic of a foetal myocyte. Several reasons could account for this immature 

phenotype. HES cells may require a longer time (more than two months) to fully differentiate. 

Alternatively, the paracrine environment of the infarction scar may not provide the factors 

(some FGFs, Neuregulin, retinoic acid, BMP10…) [30] or signals taking place in 

embryogenesis to ensure a full differentiation process. 

Another interesting observation is that I6 cells gave rise to larger engraftment areas 

than HUES-1 cells.  Although both cell lines respond with the same efficiency to BMP2, I6 

cells feature a higher basal expression of mesodermal cardiac genes (Fig 1). This indicates 

that the cell line is already committed to the mesoderm, which is likely to account for the 

better cardiogenic potential in vivo. Of note, HUES-1 cells pretreated with BMP2 together 

with SU5402 also featured a better engraftment than HUES-1 challenged by BMP2 alone. 

This further emphasizes that the stage of specification is crucial to ensure a proper 

differentiation of ES cells in situ. The finding that the rates of scar repopulation by the grafted 

cells was overall low probably reflects a combination of initially insufficient cell dosing, 

extracardiac cell leakage at the time of injections and possible death of retained cells. Clearly, 

optimisation of the functional benefits of ES cells transplantation will require that each of 

these issues be thoughtfully addressed. 

Finally, and in contrast to what has been reported in our previous studies  using mouse 

ES cells [10,31],  we could not detect Cx43 mRNA or protein  in HES cell-derived 
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cardiomyocytes. HES-cell derived differentiated cardiomyocytes [13] did not either express 

Cx43 when transplanted in injured left ventricle while they did express it when co-cultured 

with neonatal rat cardiomyocytes [32]. The reason for this discrepancy with mouse ES cells or 

the ex-vivo situation is still unclear and might involve line-specific differences in the 

cardiogenic potential, a still early stage of cell development, a level of expression below the 

threshold of detection by immunostaining, a mistargeting of the protein or inhibitory signals 

coming from the fibrotic scar of infarcted rat myocardium to which HES cells might be highly 

sensitive. Finally, Human ESC were transplanted into rat hearts and that some of the cues 

required for the full differentiation of the cardiac-specified cells into Cx43-expressing 

cardiomyocytes may have been missing. This issue is under investigation in the laboratory. 

Expression of Cx43 remains, however, critical to establish unequivocally as a true 

cardiac regeneration implies that the donor-derived cardiomyocytes can establish gap 

junction-supported electromechanical connexions with those of the host. The formation of 

such a syncytium allowing graft-host synchronized beats which is critical for enhancement of 

contractility has not yet been achieved with adult cells, whether myogenic [33]or bone 

marrow-derived [34]. The demonstration that HES cells could fill this unmet need would 

likely be a major step for rationalizing their use in situations where patient outcomes are 

critically dependent on the replenishment of a new pool of contractile cells. 

Altogether, our findings bring a proof of concept of the feasibility of cardiac 

commitment of Human ES cells. Although many challenges remain, our data are promising as 

to the safe use of Human ES cells in clinics.  
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Figure 1: Comparison of mesodermal and cardiac gene expression in HUES-1 and I6 

cells. RNA was extracted and reverse transcribed from undifferentiated HUES-1 (passages 

22-25) and I6 cell lines (passages 27-32) cultured for at least 5 passages after thaw-out on 

MEF prior to stimulation with BMP2. Differentiated colonies were cut out the plate before 

RNA extraction. Gene expression was estimated by real-time PCR and expressed as a ratio 

between expression in I6 and expression in HUES-1. Data are normalised to β-tubulin 

expression and expressed as means ±SEM (n=3). * statistically significant (p≤0.01) 

 

 

 

Figure 2: (A) HUES-1 and I6  cells were treated for 48 hrs with 10 ng/ml BMP2 in the 

presence or absence or FGF inhibitor SU5402 and RNA extracted and reverse transcribed. 

Gene expression was monitored by real-time quantitative PCR. Results are expressed as fold 

stimulation in gene expression when compared to untreated ES cells. (B) HUES-1 cells 

treated or not with BMP2 and SU5402 were allowed to aggregate to form embryoïd bodies 

(EB). EBs were kept in suspension for 5 days before RNA extraction and real time PCR. Data 

are normalised to β-tubulin expression and expressed as means ±SEM (n=3-5). * statistically 

significant (p≤0.01) 

 

Figure 3:  BMP2-treated HES cells were engrafted into postmyocardial infarcted rats and 

their fate was examined two months later by real time PCR of α-actin mRNA following 

reverse transcription of mRNA extracted from myocardial sections. The figure shows both the 

profile of the melting curves of amplicons and the amplicons on gel. Human RNA was used 

as a positive control. * statistically significant (p≤0.01) 
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Figure 4:  Immunostaining  of cryosections from HES cell-engrafted myocardium using an 

anti−human lamin antibody (A) (note that the anti-lamin antibody stained HES-derived cells 

within the scar area but not the surrounding endogenous rat cells) and an anti-human β 

myosin antibody (B). The antibody did not recognize the adult rat endogenous α-MHC (left 

panel B) while it bound human β-MHC. Images were acquired in confocal microscopy.(C) 

quantification (in %) of the human β-MHC positive regions in the scars of myocardium 

engrafted with BMP2- or BMP2 with SU5402-treated HUES-1 or BMP2-treated I6 cell lines: 

* statistically significant (p≤0.025). The area of  β-MHC positive area within the scar was 

calculated using the threshold function of Metamorph software (D) a transversal section 

stained by the anti-β myosin antibody revealed some sarcomeric structures. The size was 

calculated using the scaling system of the ZEISS software driving the confocal microscope 

 

Figure 5: Eosin-Hematoxylin stained section from HES cell-engrafted myocardium. The scar 

area does not show any sign of cell infiltration of cell proliferation 
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TABLE 1:  PCR primer sequences  
Genes Forward Reverse 
β-tubulin CCGGACAGTGTGGCAACCAGATCGG TGGCCAAAAGGACCTGAGCGAACGG 
Nkx2.5 CATTTACCCGGGAGCCTACG GCTTTCCGTCGCCGCCGTGCGCGTG 
Mef2c AGATACCCACAACACACCACGCGCC ATCCTTCAGAGAGTCGCATGC 
SRF CTCCGCCCCGCTCAGACCCCACCACAGA AGGTAGTTGGTGATGGGGAAGGA 
α-actin CTATGTCGCCCTGGATTTTGAGAA TGAGGGAAGGTGGTTTGGAAGAC 
Oct-4 ACGACCATCTGCCGCTTTGAG GCCTCTCACTCGGTTCTGAT 
Tbx6 AGGCCCGCTACTTGTTTCTTCTGG TGGCTGCATAGTTGGGTGGCTCTC 
Isl1 CATCGAGTGTTTCCGCTGTGTAG GTGGTCTTCTCCGGCTGCTTGTGG 
FoxH1 GCCCCTGCCCACGCTGTCTA GGTACCTCTTCTTCCTCCTCTT 
Brachyury CGGAACAATTCTCCAACCTATT GTACTGGCTGTCCACGATGTCT- 
Mesp1 CTCGTCTCGTCCCCAGACT AGCGTGCGCATGCGCAGTT 
Tbx20 CTGAGCCACTGATCCCCACCAC CTCAGGATCCACCCCCGAAAAG 
Gata4 GGTTCCCAGGCCTCTTGCAATGCGG AGTGGCATTGCTGGAGTTACCGCTG 
Pax6 GCCAGCAACACACCTAGTCA TGTGAGGGCTGTGTCTGTTC 
α-FP ACTGCAATTGAGAAACCCACTGGAGATG CGATGCTGGAGTGGGCTTTTTGTGT 
Cx43 TACCATGCGACCAGTGGTGCGC GAATTCTGGTTATCATCGGGGAA 
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