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Abstract 

In human partial epilepsies, as well as in experimental models of chronic and/or acute epilepsy, the 

role of inhibition and the relationship between the inhibition and excitation and epileptogenesis has 

long been questioned. Besides experimental methods carried out either in vitro (human or animal 

tissue) or in vivo (animals), pathophysiological mechanisms can be approached by direct recording of 

brain electrical activity in human epilepsy. Indeed, in some clinical pre-surgical investigation methods 

like stereoelectroencephalopraphy (SEEG), intracerebral electrodes are used in patients suffering from 

drug resistant epilepsy to directly record paroxysmal activities with excellent temporal resolution (in 

the order of one millisecond). The study of neurophysiological mechanisms underlying such depth-

EEG activities is crucial to progress in the understanding of the interictal to ictal transition. 

 In this study, we relate electrophysiological patterns typically observed during the transition from 

interictal to ictal activity in human mesial temporal lobe epilepsy (MTLE) to mechanisms (at a 

neuronal population level) involved in seizure generation through a computational model of EEG 

activity. Intracerebral EEG signals recorded from hippocampus in five patients with MTLE during 

four periods (during interictal activity, just before seizure onset, during seizure onset and during ictal 

activity) were used to identify the three main parameters of a model of hippocampus EEG activity 

(related to excitation, slow dendritic inhibition and fast somatic inhibition). The identification 

procedure used optimization algorithms to minimize a spectral distance between real and simulated 

signals. Results demonstrated that the model generates very realistic signals for automatically 

identified parameters. They also showed that the transition from interictal to ictal activity can not be 

simply explained by an increase in excitation and a decrease in inhibition but rather by time-varying 

ensemble interactions between pyramidal cells and local interneurons projecting to either their 

dendritic or perisomatic region (with slow and fast GABAA kinetics). Particularly, during preonset 

activity, an increasing dendritic GABAergic inhibition compensates a gradually increasing excitation 

up to a brutal drop at seizure onset when faster oscillations (beta and low gamma band, 15 to 40 Hz) 

are observed. These faster oscillations are then explained by the model feedback loop between 

pyramidal cells and interneurons targeting their perisomatic region. These findings obtained from 
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model identification in human TLE are in agreement with some results obtained experimentally, either 

on animal models of epilepsy or on the human epileptic tissue. 

 

Keywords: human TLE; hippocampus; intracerebral EEG; neuronal population model; parameter 

identification; ictogenesis mechanisms. 
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Introduction 

In human partial epilepsies, as well as in experimental models of chronic and/or acute epilepsy, the 

role of inhibition and the relationship between the inhibition and excitation and epileptogenesis has 

long been questioned ((Dichter, 1997), (Dalby and Mody, 2001)). Recent advances have suggested 

that different types of inhibition (depending on the location of synapses/receptors, for example) are 

present in a given neuronal tissue and that they may be differently involved in epileptic processes. 

Particularly, in experimental focal models (kainate or pilocarpine-treated rat), it has been shown that 

GABAergic inhibition is impaired, but not uniformly: dendritic inhibition is reduced whereas somatic 

inhibition is preserved (Cossart et al., 2001; Houser and Esclapez, 1996). This intact inhibition could 

be due to selective survival of perisomatic inhibitory interneurons, as shown in human epileptogenic 

tissue (sclerotic hippocampus in temporal lobe epilepsy – TLE -) (Wittner et al., 2005; Wittner et al., 

2001). 

Besides experimental methods carried out either in vitro (human or animal tissue) or in vivo (animals), 

pathophysiological mechanisms can be approached by direct recording of brain electrical activity in 

human epilepsy. Indeed, in some clinical pre-surgical investigation methods like 

stereoelectroencephalopraphy (SEEG) (Bancaud and Talairach, 1973), intracerebral electrodes are 

used in patients suffering from drug resistant epilepsy to directly record paroxysmal activities with 

excellent temporal resolution (in the order of one millisecond). The study of neurophysiological 

mechanisms underlying such depth-EEG activities is crucial to progress in the understanding of the 

interictal to ictal transition. Here, we propose to perform this study using not only descriptive signal 

analysis techniques but also computational modeling, a research methodology that has been largely 

developed for the study of various (patho)physiological mechanisms and that attracts growing interest 

in neuroscience. We address the question whether EEG dynamics observed during the transition from 

interictal to ictal activity could result from variable global interactions between populations of 

pyramidal cells and inhibitory interneurons and whether these interactions could be revealed by 

appropriate model-based processing of intracerebral EEG signals. Hence, we relate 
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electrophysiological patterns of seizure generation in human hippocampus to excitatory and inhibitory 

interactions in a neuronal population model of hippocampal EEG activity.  

This type of computational model (also referred to as "neuronal rate model" or "neuronal population 

dynamics" (Wilson and Cowan, 1972) has been demonstrated to produce realistic epileptiform 

activities (Wendling et al., 2000). Recently, it has provided a means for linking some 

pathophysiological characteristics of hippocampus at a neuronal population level to the fast 

oscillations observed at seizure onset at the EEG level (Wendling et al., 2002).  

Here, we report results about identification of the three main parameters of this model (namely 

excitation, slow dendritic inhibition and fast somatic inhibition) from recordings performed in patients 

with mesial TLE (inverse problem). Parameter identification (based on evolutionary algorithms) is 

performed in order to produce signals that match those actually recorded during interictal to ictal 

transition. From the analysis of parameters evolution during this transition, hypotheses are generated 

about excitatory and inhibitory interactions that take place between subsets of cells represented within 

the modeled hippocampal neuronal population. In particular, we found that during preonset activity (a 

few tens of seconds before seizure), an increasing dendritic inhibition (produced by interneurons 

mediating slow GABAA IPSCs) compensates a gradually increasing excitation up to a brutal drop at 

seizure onset. Faster ictal oscillations (beta and low gamma band) are then explained by the model 

feedback loop involving pyramidal cells and interneurons targeting their perisomatic region 

(mediating fast GABAA IPSCs). As described in the discussion, these findings obtained from model 

identification in human TLE are in agreement with some experimental studies conducted in animal 

models of epilepsy. 

Material and methods 

Intracerebral EEG signals recorded from hippocampus in patients with MTLE 

Five patients undergoing presurgical evaluation of drug-resistant mesial temporal lobe epilepsy 

(MTLE) were selected. All patients had a comprehensive evaluation including detailed history and 

neurological examination, neuropsychological testing, routine magnetic resonance imaging (MRI), 

surface electroencephalography (EEG) and stereoelectroencephalography (SEEG).  As illustrated in 
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figure 1, SEEG recordings were performed using intracerebral electrodes placed intracranially 

according to Talairach's stereotactic method (Bancaud and Talairach, 1973).  

These patients were selected for the present study because they satisfied the following criteria: (i) 

seizures involved the mesial temporal regions at the onset; (ii) MRI was normal or suggestive of 

hippocampal sclerosis (HS) (hippocampal atrophy and increased T2 signal); (iii) one electrode was 

placed in the hippocampus; and iv) the electrophysiological pattern during the transition to seizure was 

characterized by the emergence of a low-frequency high-amplitude spiking activity followed by a so-

called “rapid discharge” in the hippocampus. This pattern has been reported to be typical in MTLE 

(Engel et al., 1989), (Spencer et al., 1992), (Velasco et al., 2000), (Bartolomei et al., 2004). 

Analyzed signals were recorded on a 128 channel DeltamedTM system. They were sampled at 256 Hz 

and recorded on a hard disk (16 bits/sample) using no digital filter. Two hardware filters are present in 

the acquisition procedure. The first one is a high-pass filter (cut-off frequency equal to 0.16 Hz at -3 

DB) used to remove very slow variations that sometimes contaminate the baseline. The second one is 

a 1st order low-pass filter (cut-off frequency equal to 97 Hz at -3 DB) to avoid aliasing.  

Definition of periods of interest 

For the five patients, signals recorded from the hippocampus during the transition from interictal to 

ictal activity were visually analyzed. In each patient, four segments of EEG activity (10 seconds 

duration) were defined at different stages of this transition using visual criteria (figure 2 and figure 3), 

as follows. During the interictal period (“intICTAL” segment, chosen 1 minute before seizure onset at 

least), EEG signals do not exhibit high amplitude transient spikes. The preonset period (preceding 

seizure onset) is marked by the appearance of high amplitude spikes (“preONSET” segments, from 10 

to 50 seconds before seizure onset). The electrical onset of the seizure (“ONSET” segment) is 

characterized by the appearance of the rapid discharge reflecting faster oscillations, typically in the 

beta and low gamma frequency bands (15-40 Hz). Finally, as seizure develops, the rapid discharge 

slows down and changes into a more rhythmic activity (“ICTAL” segment), typically in the theta or 

alpha frequency band (4 - 10 Hz).  

Computational model of hippocampus neuronal population and simulation of EEG signals 
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A macroscopic approach (neuronal population, adapted to the macroscopic size of SEEG electrodes) 

was used to build the EEG model which has been detailed in previous reports (Wendling et al., 2002). 

Briefly, this model is based on the global cellular organization of the hippocampus. Firstly, recurrent 

excitatory connections from pyramidal cells to pyramidal cells have been demonstrated to occur in 

CA1 (Thomson and Radpour, 1991), (Whittington et al., 1997). Secondly, a series of studies based on 

a variety of techniques (Miles et al., 1996) demonstrated that there are two types of GABAA synaptic 

responses in CA1 pyramidal neurons: a fast one near the soma and a slow one at the dendrites. The 

first one - GABAA,fast – is a rapidly activated and decaying IPSC mediated by somatic synapses and the 

second one - GABAA,slow – is a slowly rising and decaying IPSC mediated by dendritic synapses. More 

recent works (Banks et al., 1998; White et al., 2000) suggested that two separate classes of 

interneurons (possibly basket cells and interneurons in stratum lacunosum-moleculare respectively 

called, for simplicity, GABAA,fast interneurons and GABAA,slow interneurons) give rise to these two 

IPSCs. Moreover, as suggested in (Banks et al., 2000), both classes interact: GABAA,slow cells inhibit 

not only pyramidal cells but also GABAA,fast interneurons. 

The model was designed to represent this functional organization of interacting subsets of principal 

cells and interneurons, as summarized in figure 4-a. It consists in three subsets of neurons, namely the 

main cells (i.e. pyramidal cells), the slow dendritic-projecting inhibitory interneurons (GABAA,slow 

receptors) and the fast somatic-projecting inhibitory interneurons (GABAA,fast receptors). Interneurons 

receive an excitatory input (AMPA receptor-mediated) from pyramidal cells. The influence from 

neighboring or more distant populations is represented by an excitatory input  (modeled by a 

positive mean gaussian white noise) that globally describes the average density of afferent action 

potentials. The model output corresponds to the post-synaptic activity of the subset of pyramidal cells 

that mainly contributes to the EEG signal (field potential). 

)t(n

In each subset, a linear transfer function is used to transform the average pre-synaptic pulse density of 

afferent action potentials (the input) into an average post-synaptic membrane potential (the output). 

This transfer function is of order 2. The associated impulse response , 

 and , respectively determines the excitatory, slow 

at
EXC e.t.a.EXC)t(h −=

bt
SDI e.t.b.SDI)t(h −= gt

FSI e.t.g.FSI)t(h −=

7 



Wendling et al., Interictal to ictal transition in TLE - J Clin Neurophysiol. 2005 Oct;22(5):343-56 

dendritic inhibitory and fast somatic inhibitory average post-synaptic membrane potentials, where 

EXC, SDI and FSI represent the synaptic gains (figure 4-c). In this work, these key parameters are 

automatically identified from real EEG signals recorded in the hippocampus. 

The inhibitory feedback loop from the subset of fast somatic-projecting inhibitory interneurons uses a 

faster impulse response  (i.e. producing faster IPSP) than . Here, the important 

parameter is the average somatic time constant 1/g which was chosen lower than the average dendritic 

time constant 1/b, consistently with data provided in (Traub et al., 1999a) (see model parameter values 

given in table 1 as well as average post-synaptic potentials displayed in figure 4-c). 

)t(hFSI )t(hSDI

In each subset, in turn, a static nonlinear function (asymetric sigmoid curve ) 

is also used to model threshold and saturation effects in the relationship between the average post-

synaptic potential of a given subset and the average pulse density of potentials fired by the neurons.  

]e/[e)v(S )vv(r −+= 012 0

Finally, interactions between main cells and local neurons are summarized in the model by seven 

connectivity constants C1 to C7 which account for the average number of synaptic contacts. 

Each impulse response , and  introduces a pair of first order ordinary 

differential equation. Consequently, the model can be represented by a set of 14 first order ordinary 

differential equations which can be reduced to an equivalent set of 10 equations (Wendling et al. 

2002). This set must be solved by numerical integration methods adapted to its stochastic nature. We 

used the Euler method with a time step equal to 1/256 ms (corresponding to the sampling period of 

real signals). 

)t(hEXC )t(hSDI )t(hFSI

Model output can be represented as 

 

where M denotes the function operated by the model to produce Xs (the simulated EEG signal) from a 

realization nr of input noise n(t) and for given vector P of model parameters. 

( )P,nMX rs =

 

Identification of model parameters EXC, SDI and FSI using evolutionary algorithms 

Problem statement 
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Model-based interpretation requires identification of model parameters which can be formalized as an 

optimization problem (Hernandez et al., 2002). Since model parameters are based on physiological 

considerations, hypotheses for the interpretation of real EEG activity could be obtained from the 

optimal set of parameters P̂ = [EXC, SDI, FSI], i.e. the one that minimizes an error function 

( ))P(F̂,F̂ Soε where  and  are estimators of a feature vector F respectively computed on the 

observed EEG (X

oF̂ )P(F̂S

O) and synthesized EEG (XS) using parameter vector P. 

In the present study, F was primary based on spectral properties of the EEG signal. More precisely, the 

power within specific frequency bands B1 (0-4 Hz, delta), B2 (4-12 Hz, theta and alpha) and B3 (12-

64 Hz, beta and gamma) was retained as three first features. As these spectral features did not 

distinguish well between interictal activity and interictal activity mixed with high amplitude spikes, we 

added a fourth feature based on a morphologic criterion indicating the presence of sporadic high 

extrema values. It is simply defined as the difference between the first and last α-order quantiles. The 

four features were computed on simulated and real signals normalized by their standard deviation (this 

provides invariance with respect to different amplitude scale factors in the model and in reality).  

In the expression of the error function, we use an estimation  instead of the exact value  

that can not be analytically computed as a function of P due to the nonlinear nature of the model. This 

estimation is computed over a finite duration ∆ and consequently is dependant on realization n

)P(F̂S )P(FS

r of 

model input noise. 

We are facing an optimization problem presenting multiple local optima in which the error function i) 

is not deterministic and ii) is not computable (and thus not differentiable). Consequently, deterministic 

optimization algorithms, such as those based on gradient descent, do not apply. 

Two types of optimization methods are well-suited to this problem: combinatory and exhaustive 

search methods on the one hand and stochastic search methods on the other hand. As the former 

present prohibitive computational costs, we used a particularly interesting family of stochastic search 

methods, known as evolutionary algorithms (EA). EA have been the subject of intensive research 

during the last decade and have shown to be useful in the solution of hard identification problems, 
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including different biomedical applications (Hernandez et al., 2002; Pena-Reyes and Sipper, 2000). 

The optimization procedure using EA is detailed in appendix.  

 

Variance of identified parameters and significance of parameter changes 

In order to evaluate the dispersion of triplets of identified values, the whole identification procedure 

was applied thirty times to the same segment, leading to a set of thirty solutions for the optimal 

parameter set P̂ = [EXC, SDI, FSI]. The distributions of parameter EXC, SDI and FSI values obtained 

for the thirty iterations were represented in a so-called “boxplot” form for statistical analysis and 

comparison. This compact graphical display provides a way to picture how parameter values are 

distributed relative to defined percentiles, to identify if a distribution is skewed and if outliers or 

unusual data values are present. They are used to graphically determine if significant statistical 

differences do exist between sets of parameter values. This graphical test consists in comparing boxes 

representing the lower and upper percentiles. If boxes do not overlap, parameter values are 

significantly different. 

Results 

Frequency content of segments of EEG activity chosen during intICTAL, preONSET, ONSET and 

ICTAL periods 

For each patient, segments of EEG activity chosen during the interictal period (“intICTAL” segment), 

during the period preceding the onset rapid discharge (“preONSET” segment), during the rapid 

discharge itself that typically occurs at seizure onset (“ONSET” segment) and during the period that 

follows this rapid discharge as seizure develops (“ICTAL” segment) were analyzed for their frequency 

content. These segments are shown in figure 2. Normalized power spectral densities (PSDs) were 

computed using the standard periodogram method over 10 second duration segments in both the real 

and simulated case. PSDs were found to be very typical with respect to the analyzed period. The 

frequency content of intICTAL and preONSET segments was found to be relatively similar. Indeed, 

high amplitude sporadic spikes that appear during the preONSET period do not affect significantly the 

global spectral energy distribution. For the five patients, the first major change in PSDs is observed at 
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seizure onset, during the rapid discharge, which is marked by the re-distribution of signal energy in a 

higher frequency band, typically from 15 to 40 Hz (EEG beta and low gamma bands). The second 

major change corresponds to the slowdown of the rapid discharge during the ictal activity, 

characterized by a transition from broadband to narrowband  activity  ranging from 3 to 10 Hz (mostly 

within the EEG theta band). Results are exemplified in figure 3 which also provides a time-frequency 

representation (spectrogram, figure 3-b) of the SEEG signal recorded during the transition from 

interictal to ictal activity in patient 2 (figure 3-a). In this case, the rapid discharge observed at seizure 

onset is relatively stationary with a maximum energy located in a frequency band ranging from 20 to 

30 Hz. One can also notice the periodical aspect (around 5 Hz) of the signal recorded during ictal 

activity (figure 3-c, bottom right). 

 

Identification of model parameters and simulation of EEG activity 

For each patient, the model parameter identification procedure was firstly applied on each segment of 

EEG activity, in order to find appropriate parameter setting for the evolutionary algorithm. Several 

tests were performed to analyse the mean error value for each generation and the convergence rate of 

the EA, as a function of the main algorithm parameters. The best results were obtained with a mutation 

probability of pm = 0.2 and a crossover probability of pc = 0.9. The error function was computed for 

each individual by comparing spectral and morphologic features computed on simulated and real 

signal segments, as described in section Methods. The size of the population has been fixed to 200 

individuals. The stopping criterion of the EA is met if no solution improvement is found during 10 

consecutive generations, or if the maximum number of iterations (fixed to 200) is reached. The best 

individual of the last population was chosen as the identified solution, leading, in each case, to a triplet 

of values for the three model parameters: EXC (excitation), SDI (slow dendritic inhibition,), FSI (fast 

somatic inhibition). 

Some identification results found during this step are presented in figure 5, which displays four 

examples of simulated signals identified from real EEG signals along with their corresponding PSDs 

and error values. It can be observed that identified parameters lead the model to generate EEG signals 

that are close (in terms of morphological and spectral content) to real EEG signals. One can notice that 
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signals produced by the model are very realistic: waveforms are qualitatively similar to real ones and 

PSDs are quantitatively comparable (as exemplified by epileptic spikes in figure 5-preONSET period). 

At this step, we also observed some common tendencies (among patients) in the evolution of model 

parameters for transitions of dynamics. In order to check whether these tendencies were significant or 

only due to the variability of identified parameters related to the randomness inherent to this 

identification procedure and to the randomness of the observed data, we conducted an analysis of the 

dispersion of estimated parameters EXC, SDI and FSI for each type of activity in each patient. 

Dispersion of identified parameters 

The identification procedure was repeated thirty times with random initialization on each segment of 

activity leading, in each case, to thirty triplets of values (EXC, SDI, FSI) for each patient (P1 to P5) 

and for each period (intICTAL, preONSET, ONSET, ICTAL). These results are displayed in figure 6, 

in the compact form of so-called “boxplots” (see section “material and methods”, §“Variance of 

identified parameters”). Taken as a whole, the evolution of parameters (with respect to considered 

period of time) was found to be partly reproducible from patient to patient. One can also notice that 

the height of the boxes that represent the dispersion of the identified EXC, SDI and FSI parameters 

was small in most cases (except for parameter FSI during the preONSET period, see explanation 

below). This means that the identification procedure generally converged to similar triplets of values. 

Indeed, detailed examination showed the error (quantified using the error function) between the 

segments of activity simulated for these triplets and the real ones was low. The variance of the 

identification error was also found to be low over each analyzed period. This is shown by the values of 

mean error and its standard deviation computed for all segments of a given activity (intICTAL: 

ε=0.0092±0.0052; preONSET: ε=0.013±0.0095; ONSET: ε=0.013±0.0082; ICTAL: ε=0.027±0.016). 

Note also that in the examples previously provided in figure 5, the error between synthesized and real 

activities corresponds to the above average errors. In each patient, the distribution of parameter FSI 

was found to be slightly broader when identified on the preONSET segment. During this period where 

parameter SDI increases, higher variability of the FSI parameter estimation might be explained by the 

fact that fast inhibitory processes are depressed by slow ones in the model and that model output 

becomes less sensitive to FSI parameter variations (see §“Computational model of hippocampus 
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neuronal population” in material and methods). Finally, one can also notice that only few outliers 

(with respect to the thirty trials) are present in these boxplots. This means that the identification 

procedure was able to converge to a reproducible and small region in the parameter space for each 

period of interest and for each patient. 

Evolution of model parameters with respect to transitions 

The evolution of model parameters with respect to transitions is given in table 2.For the five patients, 

an increase of parameter EXC was observed during the transition from the intICTAL to the 

preONSET period and from the preONSET to the ONSET period. This parameter stayed either 

constant (P1) or increased (P2 to P5) during the following transition (ONSET to ICTAL). Regarding 

parameter SDI, evolution was found to be similar in the five patients. An increase was first always 

observed from intICTAL to preONSET. Then, the transition from the preONSET to the ONSET 

period was marked by a noticeable decrease of parameter SDI. Finally, this parameter was found to 

significantly re-increase during the transition from ONSET to ICTAL but without reaching again its 

initial value observed during the intICTAL period. Finally, regarding parameter FSI, no significant 

change was measured from intICTAL to preONSET  and from preONSET to ONSET. Then, during 

the transition from ONSET to ICTAL period, we observed a noticeable decrease of parameter FSI. 

Invariance of parameter evolution with respect to transitions  

In order to determine whether reproducible changes do exist in the evolution of EXC, SDI, FSI 

parameters with respect to the type of transition, we compared results obtained in the five patients. 

These are reported in figure 7-a which gives the evolution of each parameter, for each transition and 

for each patient (significant increase:’+’, significant decrease: ‘-‘, no significant change: ‘=’). We also 

averaged the identified parameter values of a given run over the 5 patients to obtain thirty mean values 

for each parameter and for each period. Figure 7-b displays the distribution of these mean values in the 

form of boxplots. Results show that significant changes (no overlap between boxes) do exist and 

confirm the scenario described hereafter. Regarding parameter EXC (average excitatory synaptic 

gain), a significant increase was observed between the intICTAL and preONSET period and between 

the preONSET and the ONSET period. Hence, when epileptic sporadic spikes as well as fast 

oscillations at seizure onset are observed, an increase of the average excitatory postsynaptic potential 
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amplitude in the projections from pyramidal cells to interneurons as well as in the loop representing 

recurrent excitation is concomitantly observed in the model.  

As far as model parameter SDI is concerned, three major changes were observed. First, parameter SDI 

increased from intICTAL to preONSET period. We noticed that this significant increase might be due 

to the aforementioned increase of excitation and could be related to a compensatory mechanism. 

Second, parameter SDI also significantly decreased when identified over the ONSET period. Indeed, 

during fast oscillations activity at seizure onset, parameter SDI reached its lowest value in the five 

studied cases. Third, a re-increase of parameter SDI is observed during ICTAL activity. As discussed 

below, this result suggests that transient failure of GABAa,slow interneurons can occur during the 

transition to seizure. 

Finally, concerning parameter FSI, two major observations were made. Over the ONSET period, in 

contrast to slow inhibition, FSI values were found either to be stable or to increase with respect to the 

preONSET period. During the transition from ONSET to ICTAL period, parameter FSI significantly 

decreased. In the model framework, these results suggest that fast oscillations are related to the fast 

feedback loop activity of gabaergic interneurons targeting pyramidal cells in their perisomatic region 

(GABAa,fast kinetics) and that the slowing down of the onset rapid discharge is related to an 

exhaustion of this fast inhibition. 

Discussion 

Different modeling strategies have been proposed to relate EEG signals with oscillations in neuronal 

populations. Besides modeling techniques lying at the cellular and network levels (Traub et al., 

1999b), another approach lying at a higher level of organization, i.e. the population level, starts from 

the fact that neurons form populations. The resulting EEG is a reflection of ensemble dynamics rising 

from interconnections between a small number of subpopulations of pyramidal cells on the one hand, 

and interneurons on the other hand. This approach was initially proposed by Freeman and co-workers 

(Freeman, 1978) who made substantial progress in the understanding of perceptual processing in the 

olfactory system. Similar ideas developed in the same time by Lopes da Silva et al. (Lopes da Silva et 

al., 1974) led to the development of a lumped-parameter population model used to explain the alpha 
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rhythm of the EEG and more recently to study the mechanisms underlying transitions between spike 

and wave (SW) discharges in non-convulsive epilepsy (Suffczynski et al., 2004).  

On the basis of experimental results about cellular organization in the hippocampus, we followed a 

similar approach to build a physiological-relevant neuronal population model. Main features include 

an excitatory loop as well as two parallel inhibitory circuits that represent the two separate populations 

of GABAergic interneurons that contact anatomically segregated postsynaptic receptors 

(dendritic/somatic region, GABAA,slow/ GABAA,fast). As in any model, certain issues are simplified. 

The major simplification of our model is related to its macroscopic level. The reason for this choice is 

twofold. First, the neuronal population level is adapted to the nature of our observations: simulated 

signals can be directly compared with real intracerebral EEG signals recorded with macroelectrodes in 

human temporal lobe epilepsies.  Second, we wanted to determine to what extent ensemble 

interactions between main cells and interneurons within hippocampal neuronal populations can 

explain dynamics and transitions of dynamics observed in real EEG signals. 

Results showed that the model can produce various types of signal dynamics that were qualitatively 

and quantitatively similar to those observed in real depth-EEG signals recorded in human 

hippocampus over interictal and ictal periods. In five patients, the identification procedure led to 

reproducible modifications about model parameter values of excitation, slow dendritic inhibition and 

fast somatic inhibition with respect of the analyzed type of EEG activity (interictal, preonset, onset 

rapid discharge and ictal). In the following, these results are discussed with respect to current 

hypotheses about possible mechanisms involved in epileptogenesis or ictogenesis.  

Increased excitation from interictal to preonset and ictal activity 

Causes of hyperexcitability of the epileptic tissue have been largely discussed during the past decades 

(Jefferys, 2003). In the hippocampus, enhanced excitability may be caused by intrinsic and/or extrinsic 

factors. In the present study based one a single population, parameters changes may only be related to 

intrinsic mechanisms although we are aware that exogenous factors such as the enhancement of the 

direct entorhinal cortex input to CA1 can play a role in excitability changes in the hippocampus, as 

reported in (Wu and Leung, 2003). Results obtained from automatic identification of model 

parameters suggest an increase in the average excitatory synaptic gain in feedback loops that link 
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pyramidal cells to local cells within the considered neuronal population during the transition from 

incterictal activity to preonset activity (interictal + sporadic spikes) and from preonset activity to ictal 

activity (beta and gamma oscillations at seizure onset and theta-like ictal activity). Although several 

studies performed in experimental models of focal epilepsy (Bernard et al., 2001), (Gorter et al., 2002) 

or performed in slices from human brain (Schwartzkroin, 1994) have already demonstrated that 

epileptic discharge patterns are correlated with prolonged and/or enhanced EPSPs, very few studies 

have attempted to relate them to gradual changes observed at the EEG level during the transition to 

seizure, as done here through the model of the human hippocampus. Indeed, we infer from the model 

that a sustained excitation enhancement constitutes a necessary (but not sufficient) condition to 

explain the appearance of interictal sporadic spikes and that the excitation level must stay high to get 

fast oscillations and theta-like ictal activity on the EEG. 

Increase and decrease of slow dendritic inhibition from interictal to seizure activity 

Another striking result of this study is related to the evolution of slow inhibition mediated by 

GABAergic interneurons targeting the dendrites of pyramidal cells (GABAa,slow kinetics, as 

represented in the model). Indeed, model-based interpretation of slow dendritic inhibition evolution 

suggests that it significantly increases over the preonset period compared to interictal and abruptly 

decreases at seizure onset when faster oscillations are reflected on the EEG.  At first sight, the 

reinforcement of inhibition may appear as paradoxical since increased inhibition could be supposed to 

prevent the occurrence of seizures. We interpreted this phenomenon as a compensatory mechanism 

that responds to increased excitation over the same preonset period. This model prediction is 

interesting since it relates to experimental results obtained with kainic acid (KA) known to generate 

seizures in the CA3 region (Khalilov et al., 2002): using in vitro intact hippocampus, authors 

demonstrated that kainate is responsible for ictal activity but at the same time augments the excitatory 

input to interneurons and thus lead to an enhancement of inhibition. With the model identification, we 

can go further and hypothesize that the increase of inhibition level is selective, i.e. it mainly relates to 

slow dendritic inhibition. Indeed, in the model, the two types of interneurons (GABAA slow and fast 

kinetics) receive positive input from pyramidal cells. However, since the subset of GABAA,fast 

interneurons is inhibited by the subset  GABAA,slow interneurons (Banks et al., 2000), the increase of 

16 



Wendling et al., Interictal to ictal transition in TLE - J Clin Neurophysiol. 2005 Oct;22(5):343-56 

excitation level at both inputs will mainly act on this latter subset that represents interneurons 

projecting to the dendritic region of pyramidal cells. The second significant change regarding dendritic 

inhibition is a noticeable decrease at seizure onset when fast oscillations appear (ONSET period). This 

mechanism could be also related to the increase of excitation that takes place before seizure during the 

preonset period: it can be hypothesized that a point is reached where inhibitory interneurons cannot 

compensate anymore for the increased excitation and where provided inhibition collapses due to a 

“fatigue process”. This hypothesis relates to the concept of “fragile inhibition” proposed by Wu and 

Leung (Wu and Leung, 2001) from a current source density analysis of the dentate gyrus (DG) in the 

kainic acid model of temporal lobe epilepsy. Authors showed that the relatively strong inhibition in the 

DG of KA-treated rats can breakdown readily in the presence of a low dose of GABAA receptor 

antagonist and concluded that the compensatory inhibition in the brain in animals and humans with 

temporal lobe seizures is vulnerable, although underlying mechanisms have not been clearly 

identified. 

Role of fast somatic inhibition in the generation of fast oscillations at seizure onset 

At seizure onset, faster oscillations (beta and low gamma bands) were observed on the EEG signal 

recorded from the hippocampus, as demonstrated by the computation of PSDs. Our identification 

results show that they are associated to a constant or increasing value of model parameter FSI, in 

contrast to the dramatic decrease of parameter SDI. These results suggest that observed fast 

oscillations can be mainly related to the activity of inhibitory interneurons targeting pyramidal cells in 

their perisomatic region (with GABAa,fast kinetics). In a previous study, we already demonstrated that 

a fast feedback inhibitory loop is necessary for the model to generate EEG signals with gamma 

oscillations (Wendling et al., 2002). In the present study, results are obtained from direct automatic 

identification procedure applied on real intracerebral EEG signal and support our previous results. 

This hypothesis of EEG fast oscillations related to fast inhibitory interneurons is also supported by 

several other studies mainly dealing with normal neuronal tissue. Penttonen et al. (Penttonen et al., 

1998) suggested that rapid discharges reflect rhythmic post-synaptic potentials in hyperpolarized 

pyramidal cells brought about by rhythmically discharging somatic-projecting interneurons. Using 

computational models of interconnected neurons and interneurons as well as experimental data 
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obtained from hippocampal slices from rats, White et al. (White et al., 2000) also ended with the 

conclusion that GABAA,slow and GABAA,fast interneurons exist as two different populations and that 

they are useful for generating theta and gamma rhythms (CA1 region). More recently, similar findings 

were obtained from current source density analysis in the rat intact hippocampus during awake, 

attentive behavior (Hajos et al., 2004). Authors conclude that their results support the hypothesis of a 

synaptic feedback model of gamma oscillations primarily involving pyramidal cells and perisomatic-

projecting inhibitory interneurons. 

Development of seizure activity 

After the onset of seizure, a rhythmic activity (quasi-sinusoidal or spiking, generally in the theta band) 

is typically observed in recorded EEG signals. This activity corresponds to the progressive 

development of ictal activity that generally involves other mesial structures. In the present study 

dealing with a single neuronal population, hypotheses about interactions between populations 

distributed over distant brain structures are not taken into account. However, regarding ictal activity in 

the hippocampus, we ended in the five patients with a situation where i) the excitation level was high, 

ii) the slow inhibition level was equivalent or lower compared to interictal and iii) the fast inhibition 

level was very low compared to interictal activity. From this observation, two remarks can be made. 

First, the transition from rapid discharge to rhythmic theta-like activity is explained, in the model, by 

the exhaustion of fast inhibitory processes. Second, seizure activity seems to correspond to a situation 

where inhibition level is globally reduced compared to excitation. 

Conclusion 

This computational modeling study offered the unique opportunity to relate electrophysiological 

patterns typically recorded with clinical electrodes during the transition from interictal to ictal activity 

in the human hippocampus to ictogenesis mechanisms and to generate hypotheses about these 

mechanisms. Results demonstrated that the transition from interictal to ictal activity can not be merely 

explained by an increase in excitation and a decrease in inhibition, but rather by a variety of 

complicated time-varying ensemble interactions between pyramidal cells and interneurons with slow 

and fast GABAA kinetics. In particular, the model predicts an increase of excitation during the 
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preonset period (10 to 50 seconds before seizure onset), an abrupt drop of dendritic inhibition at 

seizure onset when a rapid discharge (fast oscillations in the gamma band) and a crucial role of 

perisomatically projecting interneurons in observed EEG gamma and theta ictal activity. To us, these 

predictions could be tested in future experiments. In slices, electrophysiological recordings combined 

with current source density analysis could be used to study the spatial origin of epileptic bursts (apical 

dendrites and soma-basal region). In epileptic patients, during long-term video-EEG recording, 

stimulation protocols based on a paired-pulse paradigm could be used to follow some physiological 

parameters such as excitability. At present, the level of detail in the proposed model (neuronal 

population that best corresponds to the nature of our observations, i.e. EEG signals) does not allow us 

to specify hypotheses about cellular and molecular mechanisms involved in the above described 

phenomena. However, recent works in the field of computational modeling suggest that dynamic scale 

changes could be performed in such situations in order to relate macroscopic phenomena to 

microscopic ones (Vittorini et al., 2004). Finally, as far as the clinical impact of this work is 

concerned, we think that the presented model-based approach is able to reveal physiological changes 

that take place inside recorded brain structures during the transition from interictal to seizure activity. 

Future works will be oriented towards the development of time-optimized identification procedures to 

process long duration signals (over a sliding window). Indeed, such procedures could be used to detect 

excitation and inhibition changes typical of those occurring before seizure onset, and therefore, might 

be complementary to other methods already developed in the field of seizure prediction (see (Lehnertz 

and Litt, 2005) for review). 

 

Appendix: Evolutionary algorithms 

Evolutionary algorithms (EA) are stochastic search techniques, inspired on the theories of evolution 

and natural selection, which can be employed to find an optimal configuration for a given system 

within specific constraints (Holland, 1975). In these algorithms, each “individual” of a “population” is 

characterized by a set of parameters (or chromosome). An initial population is created, usually from a 

set of random chromosomes, and this population will “evolve”, improving its global performance, by 
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means of an iterative process. During this process, each individual is evaluated by means of a “fitness” 

function, and a new generation is produced by applying mutation and crossover operators on selected 

individuals that present high “fitness” values, with probabilities pm and pc respectively. Convergence 

and robustness properties of EA have been largely studied in the literature (Beasley et al., 1993; 

Goldberg, 1989; Michalewicz, 1994). These properties depend upon: i) adequate individual coding, ii) 

proper definition of the fitness function and iii) selection of appropriate genetic operators for crossover 

and mutation. 

i) Individual representation and initial population 

Each individual represents an instance of the model and is characterized by the triplet P=[EXC, SDI, 

FSI] of the model. In order to reduce the search space, values for parameters EXC, SDI and FSI were 

bounded to the physiologically plausible intervals [1 10], [1 50] and [1 20], respectively. These 

intervals, which have been defined after an exhaustive exploration of the parameter space (Wendling 

et al.  2002), are employed by the EA during the construction of the initial population and the 

application of genetic operators. The initial population is constituted of randomly generated 

individuals. The three parameter values of a given individual are independently generated from a 

uniform distribution defined under the corresponding feasibility interval. 

ii) Individual evaluation 

As previously stated, model output not only depends on the set of parameter values P but also on the 

realization nr of the input random noise. For given parameter vector P, different realizations of this 

noise lead to different model outputs and thus to different realizations of  (and consequently of 

ε). In our case, at least two different strategies can been defined for individual evaluation: i) one and 

only one realization n

)P(F̂S

r is used for all individuals and for the whole identification process, and ii) a new 

realization is created for each generation. We retained this second strategy.  

iii) Selection method 

Once the error function has been evaluated for each individual, selection is carried out by means of the 

“Roulette Wheel” method, adapted for function minimization, in which the probability of selecting a 

given individual depends on the value of its error function, divided by the sum of all the error values 
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of the population (Beasley et al., 1993). Only standard genetic operators, defined for real-valued 

chromosomes, have been used in this work: “uniform crossover”, which creates two new individuals 

(offspring) from two existing individuals (parents), by randomly copying each allele from one parent 

or the other, depending on a uniform random variable and “Gaussian mutation”, which creates a new 

individual by randomly changing the value of one allele (selected randomly), based on a Gaussian 

distribution around the current value. This mutation operator respects the bounds defined for each 

allele by truncating the mutation value, if it is necessary. A detailed description of these genetic 

operators can be found elsewhere (Michalewicz, 1994).  
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Legends 

Table 1: Model parameters, interpretation and values used to produce EEG signals with the model. 

Standard values (except g, C5, C6 and C7) were established in (Jansen & Rit, 1995). Main parameters 

(EXC, SDI and FSI) are automatically identified from real intracerebral EEG signals. 

 

Table 2: Average values and standard deviation of identified model parameters EXC, SDI, FSI for 

each one of the four considered periods of time (interictal, preonset, onset and ictal) and for each 

patient (P1 to P5). 

 

Figure 1: Depth electrodes implanted for SEEG in temporal lobe epilepsy. (a) coronal view of a pre-

operative plan in which electrode #1 records electrophysiological activity within the hippocampal head 

(internal contacts) and the middle part of the middle temporal gyrus (external contacts) and in which 

electrode #2 records the activity within the entorhinal cortex (internal contacts) and the anterior part of 

the inferior temporal gyrus (external contacts). Generally, 5 to 8 electrodes are used to spatially 

sample the temporal region. The implantation accuracy is per-operatively controlled by telemetric X-

ray imaging. A post-operative computerized tomography (CT) scan without contrast is then used to 

verify the absence of bleeding and the precise location of each recording lead. Intracerebral electrodes 

were then removed and an MRI performed, permitting visualization of the trajectory of each electrode. 

Finally, CT-scan/MRI data fusion can be performed to anatomically locate each contact along the 

electrode trajectory. (b) Electrodes include 10 to 15 contacts, length: 2 mm, diameter: 0.8 mm, 1.5 mm 

apart. 

 

Figure 2: intracerebral EEG signals recorded from hippocampus during the transition from interictal 

activity to ictal activity in five patients suffering from mesial temporal lobe epilepsy. Solid line 

rectangles correspond to segments of EEG signal (10 second duration) on which model parameters 

were identified. intICTAL: interictal activity, preONSET: mixing of interictal activity and high-

amplitude spikes that arise before seizure onset, ONSET: rapid discharge occurring at the electrical 

onset of the seizure and in which faster oscillations are observed, ICTAL: activity observed after the 

rapid discharge period as seizure develops. intICTAL segments were chosen 1 minute (at least) before 

seizure onset (note that high-amplitude epileptic spikes are not present in these segments). 

 

Figure 3: (a) intracerebral EEG signals recorded from hippocampus during the transition from 

interictal activity to ictal activity in patient 2 and (b) time-frequency distribution of its energy 

(spectrogram, red color indicates higher energy). This sequence of electrophysiological patterns is 

characteristic of the hippocampus activity observed in temporal lobe epilepsy of mesial origin. (c) 
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Normalized power spectral densities computed on segments of EEG activity during the interictal 

period (intICTAL), before the beginning of seizure (preONSET), during the rapid discharge at seizure 

onset (ONSET) and finally after the rapid discharge (ICTAL) during seizure spread show that 

frequency contents of intICTAL and preONSET segments are quite similar. The ONSET period is 

marked by the re-distribution of signal energy in higher frequency band (15 to 30 Hz, in this case) 

whereas the ICTAL period is characterized by the appearance of a narrow band activity (around 5 Hz, 

EEG theta band).  

 

Figure 4: Neuronal population model based on the cellular organization of the hippocampus.  

a) Schematic representation. A whole population of neurons is considered inside which a subset of 

principal cells (pyramidal cells) project to and receive feedback from other local cells. Input to 

interneurons is excitatory (AMPA receptor-mediated). Feedback to pyramidal cells is either excitatory 

(recurrent excitation) or inhibitory (dendritic-projecting interneurons with slow synaptic kinetics - 

GABAA,slow - and somatic-projecting interneurons - grey rectangle - with faster synaptic kinetics - 

GABAA,fast -). As described in (Banks et al. 2000), dendritic interneurons project to somatic ones. b) 

Corresponding block diagram representation. In each subset, the average pulse density of afferent 

action potentials is changed into an average inhibitory or excitatory post-synaptic membrane potential 

using a linear dynamic transfer function of impulse response , and   while this 

potential is converted into an average pulse density of potentials fired by the neurons using a static 

nonlinear function (asymmetric sigmoid curve, S(v)). The subset of somatic-projecting interneurons 

(grey rectangle) receives input from both subsets of pyramidal and dendritic interneurons. One of the 

model outputs represents the summated average post-synaptic potentials on pyramidal cells. It reflects 

an EEG signal. The three main parameters of the model respectively correspond to the average 

excitatory synaptic gain (EXC), to the average slow inhibitory synaptic gain (SDI) and to the average 

fast inhibitory synaptic gain (FSI). These three parameters are automatically identified. Other 

parameters are detailed in table 1. 

)t(hEXC )t(hSDI )t(hFSI

c) Time-course of average post-synaptic membrane potentials: excitatory, slow inhibitory and fast 

inhibitory respectively obtained from , and  for standard values of EXC (3.25 

mV), SDI (22 mV) and FSI (10 mV). 

)(thEXC )t(hSDI )t(hFSI

 

Figure 5: Examples of simulated segments of EEG activity after automatic identification of model 

parameters from displayed segments of real EEG activity. Corresponding power spectral densities 

(solid line: real signal, dotted line: simulated signal). EXC: excitation, SDI: slow dendritic inhibition, 

FSI: fast somatic inhibition (see table 1 for details), ε: error between simulated and real segments (see 

section “Methods” for detailed description of error function). 
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Figure 6: Parameter identification results for the 20 pre-segmented EEG signals (5 patients –P1 to P5- 

during 4 different EEG activities). Boxplots are calculated from 30 independent realizations of the 

identification process for each segment of real activity. Results show the stability of the identified 

solutions and depict a global tendency in the evolution of parameter values according to the EEG 

activity. 

 

Figure 7: a) Comparison of results obtained in the five patients about the evolution of EXC, SDI, FSI 

parameters with respect to the type of transition (significant increase:’+’, significant decrease: ‘-‘, no 

significant change: ‘=’). Similar changes were found in the 5 studied cases (grey boxes). b) Identified 

parameter values of a given run of the identification procedure were averaged over the 5 patients. 

Distributions of averaged values in the form of boxplots show that significant changes (no overlap 

between boxes) do exist in the evolution of model parameters with respect to the type of activity 

(interictal, preonset, onset and ictal). 
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Table 1 

 
Parameter 

 
Interpretation 

 
Value 

 
EXC Average excitatory synaptic gain Determined from 

identification procedure 
SDI Average inhibitory synaptic gain 

(slow dendritic inhibition loop) 
Determined from 

identification procedure 
FSI Average inhibitory synaptic gain 

(fast somatic inhibition loop) 
Determined from 

identification procedure 
1/a Average time constant of excitatory post-

synaptic potentials at the dendrites of 
pyramidal cells 

a = 100 s-1

1/b Average time constant of inhibitory post-
synaptic potentials at the dendrites of 

pyramidal cells 

b = 50 s-1

1/g Average time constant of inhibitory post-
synaptic potentials at the soma of 

pyramidal cells 

g = 350 s-1

C1, C2 Average number of synaptic contacts in the 
feedback excitatory loop 

C1 = C, C2  = 0.8 C 
(with C = 135) 

C3, C4 Average number of synaptic contacts in the 
slow feedback inhibitory loop 

C3 = C4  = 0.25 C 
 

C5, C6 Average number of synaptic contacts in the 
fast feedback inhibitory loop 

C5 = C6  = 0.1 C 
 

C7 Average number of synaptic contacts in the 
connection between slow and fast inhibitory 

interneurons 

C7 = 0.8 C 

v0, e0, r Parameters of the asymmetric sigmoid 
function S (transforming an average PSP 

into an average density of action potentials)

v0 = 6 mV 
e0 = 2.5 s-1

r = 0.56 mV-1

n(t) Excitatory input noise  
(positive mean gaussian white noise) 

mean = 90 pulses.s-1

sd = 30 pulses.s-1
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Table 2 

 
 

 EXC SDI FSI 
 interICTAL preONSET ONSET ICTAL interICTAL preONSET ONSET ICTAL interICTAL preONSET ONSET ICTAL 

P1 3.8±0.4 5.3±0.7 8.6±0.9 8.3±0.9 13.9±2.2 28.4±7.0 3.3±0.8 9.6±0.6 7.7±4.4  15.9±4.0 15.3±2.1 3.1±0.3 
P2 3.8±0.4 4.7±0.6 8.2±1.1 9,96±0.08 13.3±2.0 21.9±4.5 2.6±0.9 17.0±0.7 6.3±4.2 12.8±5.4 15.6±2.2 9.0±1.1 
P3 4.4±0.4 4.9±0.5 8.8±0.7 10.0±0.4 18.0±2.0 28.1±3.7 2.6±0.7 14.7±2.3 12.1±4.1 4.8±6.1 17.0±2.1 7.1±5.7 
P4 4.6±0.2 5.1±0.6 7.6±1.1 9.4±0.7 17.2±1.2 26.4±4.8 2.4±2.5 9.4±0.7 12.8±2.5 14.1±3.8 16.9±2.1 2.5±0.7 
P5 3.9±0.2 5.2±0.4 6.3±1.5 9.8±0.8 15.1±1.6 25.4±2.4 1.8±4.3 11.0±3.0 9.1±3.2 14.0±4.3 14.3±2.5 1.6±4.1 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 
 

33 



Wendling et al., Interictal to ictal transition in TLE - J Clin Neurophysiol. 2005 Oct;22(5):343-56 

Figure 6 
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Figure 7 
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