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Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic se-
quences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice
CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the ac-
quired sequence and the estimation of their 3D surface velocity fields. A Markov random field model is defined to find, according
to topological descriptors, the best correspondences between a 3D mesh describing the left endocardium at one time and the 3D
acquired volume at the following time. The global optimization of the correspondences is realized with a multiresolution process.
Results obtained on simulated and real data show the capabilities to extract clinically relevant global and local motion parameters
and highlight new perspectives in cardiac computed tomography imaging.

Copyright © 2006 Mireille Garreau et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

Cardiovascular diseases cause the death of 17 million peo-
ple every year, representing the major cause of mortality in
industrialized countries. Various cardiac functional parame-
ters are used to guide diagnosis, treatment, and followup of
these diseases. The most used indicators (left ventricle vol-
ume (LVV), left ventricular mass (LVM), ejection fraction
(EF)) provide information about the heart global function,
but the detection and the treatment of some pathologies,
such as atherosclerosis, would need the precise quantification
of cardiac motion and deformation. Technological improve-
ments in cardiac imaging provide rich opportunities for such
a progress.

The minimally invasive assessment of heart motion has
therefore been studied from modalities providing four-
dimensional (4D) data sets. Magnetic resonance imaging
(MRI), with cine MRI [1] and especially tagged MRI [2–
4] and phase contrast MRI [5], has been extensively used,
giving access to mid-wall deformations. However, its lim-
ited spatial resolution and long acquisition time prevent MRI

to image both cardiac motion and coronary arteries. Ultra-
sound images [6, 7] providing, with high availability, car-
diac sequences of high temporal resolution, are still limited
by their low signal-to-noise ratio in spite of the recent ad-
vances of real-time 3D echocardiography. ECG-gated sin-
gle photon emission computed tomography (SPECT) and
positron emission tomography (PET) in spite of lower spa-
tial and temporal resolutions have also been used in order
to combine perfusion and contractility informations [8, 9].
The emergence of electron-beam computed tomography and
of the dynamic spatial reconstructor (DSR) has provided op-
portunities for cardiac motion estimation [10–12], but their
availability is still very limited. See [13] for an exhaustive re-
view of cardiac image functional analysis methods.

The recent significant advances of multislice computed
tomography (MSCT), with the introduction of ultra-fast ro-
tating gantries (0.5 s/tr), multirows detectors, and retrospec-
tive ECG-gated reconstructions, provide high contrast and
spatiotemporal resolutions and allow a huge progress to-
wards the imaging of moving organs. These advances al-
low the observation of all cardiac structures simultaneously,
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for successive instants of the cardiac cycle, under one sin-
gle breathhold. Some studies have been conducted in MSCT
for the detection of coronary diseases [14, 15], but very few
works have been realized for the quantitative 3D cardiac mo-
tion estimation [16].

The issue of nonrigid motion estimation from 3D im-
ages is one of the most important challenges of computer vi-
sion. Methods which have been proposed for this purpose
can be classified into three kinds of approaches. In geomet-
ric model-based approaches, parametric models [3, 17, 18]
involve the parametric formulation of the object and/or of
the movement. This kind of methods is interesting to extract
global motion and to represent it with few parameters. Non-
parametric models [10, 19, 20], using mainly mass-spring
and finite element methods, extract local motion using dif-
ferential constraints. Optical flow methods [2, 11, 21, 22] are
mostly based on intensity conservation and motion smooth-
ing constraints. That constraint of intensity conservation
with time is difficult to advance with MSCT data because of
the contrast agent diffusion combined with the retrospective
reconstruction of the sequence. Furthermore, these methods
providing dense motion fields are difficult to handle with big
data volumes in which the study deals with only few objects.
Feature matching methods [1, 23, 24] are based on the search
of correspondences between entities (considered at follow-
ing times) according to descriptive parameters. These meth-
ods enable focusing the study on the objects of interest and
extracting local motion. However, most of them are highly
dependent from the segmentation quality because they need
an accurate segmentation for each instant of the studied se-
quence.

We propose a new method to jointly extract ventricular
shapes and their motion from cardiac MSCT images in one
unique process. This problem of dual 3D shape and motion
estimation is handled by a statistical approach provided by a
Markov random field (MRF) [25], associated to a multireso-
lution process. The MRF theory has been extensively used in
computer vision [26, 27]. Its application to motion analysis
has mostly been done with optical flow estimation [28] and
deformable models [29, 30].

In this paper, the 3D sparse nonrigid motion field to esti-
mate at each time instant is formulated, in a Bayesian frame-
work, as a Markov random field model under spatiotempo-
ral regularity hypotheses. This motion field is provided by a
matching method based on features of different types which
are surface 3D mesh nodes at a first time instant and image
voxels at the following time instant. These extracted motion
fields can then be used for global and local motion quantifi-
cation and interpretation. Results obtained on simulated and
real data give satisfying results.

In the remainder of this paper, we describe in Section 2
the hierarchical surface-volume matching method we have
developed including the preprocessing step, the definition of
the Markov random field model and its application in a mul-
tiscale process, and the optimization stage. In Section 3 we
present the results obtained on simulated and real data be-
fore concluding in Section 4.

2. A 4D HIERARCHICAL MOTION
ESTIMATION METHOD

From a time sequence of 3D MSCT cardiac images, our ap-
proach allows the spatiotemporal detection of the left heart
cavities and the quantification of their deformations. This is
achieved by a multiscale matching method which provides,
along the whole sequence, the correspondences between a 3D
surface mesh extracted at one time instant and the 3D vol-
ume available at the next time instant. The overall method
includes the following steps:

(a) a 3D segmentation step and a surface reconstruction
process are first applied to only one 3D image of the
time sequence (at time t0) to provide the first surface
of the sequence;

(b) a hierarchical surface-volume matching process is ap-
plied to estimate a 3D motion field between the surface
at time t0 and the next volume at time t1;

(c) from the surface at time t0 and the estimated motion
field, a new 3D surface can be estimated at time t1;

(d) steps (b) and (c) are repeated until all images of the
sequence are processed.

In order to obtain the mesh corresponding to the first con-
sidered time of the sequence, step (a) is decomposed in this
way: a segmentation tool, based on a 3D region growing pro-
cess bounded by a gradient information, is applied [31]. The
segmented surface is then reconstructed using the marching
cubes algorithm. Finally, in order to prepare the matching
process, the resulting surface mesh is regularized in such a
manner that each node coordinates correspond to one vol-
ume voxel coordinates.

Surface estimation (step (c)) relies on the deformation of
the surface corresponding to time t0 with the motion esti-
mated between times t0 and t1. A regularization step is then
performed in order to fill mesh holes and to suppress redun-
dant nodes.

The 3D motion field estimation (step (b)) is performed
by a matching process applied between the surface represent-
ing the endocardium at time t0 and the original volume cor-
responding to the next time t1. A hierarchical process is used
to gain both in terms of result quality and of computational
efficiency. The matching process will firstly be described at
one resolution, then the multiresolution scheme will be de-
tailed.

2.1. A surface-volume matching process

In order to estimate the motion between one surface corre-
sponding to time t0 and a volume corresponding to the fol-
lowing time t1, a surface-volume matching method has been
developed.

A feature matching problem implies choosing the entities
to match and to define local energies which can be combined
to provide a distance measure between entities. As in almost
all motion estimation issues, this measure is not sufficient
to deal with a well-posed problem. It is therefore necessary
to add contextual constraints. The best correspondences of
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selected entities can finally be obtained from the minimiza-
tion of global energy.

One original contribution of this method is to establish
correspondences between spatial entities which are not of the
same nature: the matching process is conducted between 3D
mesh nodes on the one hand and image voxels on the other
hand.

The 3D motion field to compute between two successive
instants is considered as a realization f = { fi/i = 1, . . . ,NS}

of a 3D random field F (NS being the number of considered
sites in the field). The set of sites S of the field F is given by
all the 3D mesh nodes at time t0. The labels assigned to these
sites, expressed by the fi estimations, are given by the voxels
found (at time t1) in best correspondence with the 3D nodes.

According to Bayes’ theory, the posterior probability of
the realization f according to the observation d (the mesh
nodes at time t0 and the voxels at time t1) is given by

p
(

f | d
)

=
p( f )p

(

d | f
)

p(d)
, (1)

with p( f ) the prior probability, p(d | f ) the conditional
probability of the observation process d, and p(d) the obser-
vation probability which is considered independent of f . Ac-
cording to the maximum a posteriori (MAP) estimator, the
most probable realization f is provided by the maximization
of the a posteriori probability p( f | d), with p( f | d) ∝
p( f )p(d | f ).

The mechanical properties of the heart induce a spa-
tiotemporal regularity of the motion field. To capture the
spatial regularity of this motion, p( f ), used to model an a
priori of the considered random field, is defined considering
F as a Markov random field.

This Markov random field (MRF) is defined in relation
to a neighborhood system µ. According to this definition, the
neighborhood associated to one node s, noted µs, is given by
all nodes which share a common edge with the node s.

The MRF conditional probability models the local prop-
erties of the field according to this neighborhood. It is given
by

p
(

fs | fS−{s}
)

= p
(

fs | fµs
)

. (2)

From the neighborhood µ, a set of cliques C is defined as
including all pairs of neighboring nodes:

C =
{

{s, t} ∈ S2, t ∈ µs
}

. (3)

According to the Hammersley-Clifford theorem [32], the
Markov random field F in relation to the neighborhood sys-
tem µ is also a Gibbs random field in relation to µ. The prior
probability distribution function is then given by

p( f ) =
1

Z
exp

{

−UR( f )
}

, (4)

with Z a normalization constant and UR( f ) a global energy
function defining the interactions between the sites. UR( f )
represents the internal energy of the random field and has a
regularization effect. It is defined as

UR( f ) =
∑

c∈C

VR

(

c, f c
)

, (5)

VR(c, f c) being the local interaction potential defined for
each clique c and its associated labels f c = { fs, s ∈ c}. More
precisely, we define VR by

VR

(

c, f c
)

= αR

∥

∥

−→
fs −

−→
ft
∥

∥

dist(s, t)
∀c = {s, t} ∈ C, (6)

where αR is a weighting factor, constant for every clique,
−→
fs

(resp.,
−→
ft ) is the motion vector estimated at site s (resp., t),

and dist(s, t) is the Euclidean distance between nodes s and t.
The conditional probability density function p(d | f ) is

given by the definition of a global data fidelity term which
models the error between the realization f and the observa-
tion d. It is defined by

p
(

d | f
)

= exp
{

−UI( f ,d)
}

, (7)

where UI( f ,d) models the global estimation error. It is de-
fined by

UI( f ,d) =
∑

s∈S

VI

(

s, fs
)

, (8)

VI(s, fs) being a local correspondence measure to evaluate
the matching between one node s at time t0 (s ∈ S) and its
corresponding voxel fs at time t1. It provides a data confor-
mity term and, in such a way, a distance between the obser-
vation d (surface at time t0 and 3D image at time t1) and the
estimated motion field given by f . For the analysis of corre-
spondence between one node s and one voxel v, this term is
defined by the following equation:

VI(s, v) = αd · Edist(s, v) + αc · Econtour(v) + αt · Etopol(s, v),
(9)

where

Edist(s, v) = dist(s, v),

Econtour(v) = C(v) =

⎧

⎨

⎩

1 if v belongs to a contour,

0 otherwise,

(10)

Etopol(s, v)

=
1
∣

∣µs
∣

∣

∑

i∈µs

C
(

(

vx, vy , vz
)t

+
(

sx, sy , sz
)t
−
(

ix, iy , iz
)t
)

,

(11)

with s is the considered node (of coordinates (sx, sy , sz)t); v
is the considered voxel (of coordinates (vx, vy , vz)t); dist(·) is
the Euclidean distance function; C(·) is the contour detec-
tion function (implemented by a Canny filtering); µs is the
neighborhood of the node s; i is a neighborhing node of s (of
coordinates (ix, iy , iz)t); and αc, αt , αd are weighting factors.

From (1), (4), and (7), we have

p( f | d) ∝ exp
{

−U( f ,d)
}

, (12)

with

U( f ,d) =
∑

s∈S

VI

(

s, fs
)

+
∑

c∈C

VR

(

c, fc
)

(13)

a global energy which is to minimize to obtain the most prob-
able correspondences.
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Figure 1: Cardiac motion components (L: longitudinal contraction, R: radial contraction, T : twisting).

2.2. Hierarchical scheme and optimization stage

The previously described motion extraction process is ap-
plied according to a hierarchical scheme which allows focus-
ing the correspondence research area and reducing comput-
ing needs. This multiresolution scheme is considered to pre-
serve local Markov property according to the high spatial res-
olution provided by MSCT data.

The surface mesh at time t0 and the volume at next time
t1 are defined with decreasing scales as follows: each data set
from upper resolution Ri (i = 1, . . . ,nl, nl being the number
of used resolution levels) is restricted in space at a lower level
scale Ri−1 by the application of a mean filtering (or Gaussian
filtering for the volume) and of a subsampling process in or-
der to provide a regular mesh corresponding to volume voxel
coordinates at the same level.

The matching process is first applied at the lowest reso-
lution (with an initialization to a null motion) to guide the
motion estimation with the coarsest details. The result of that
first estimation is used as an initialization, after an interpo-
lation step, for the correspondences computation at the next
finer resolution. This motion extraction process is applied it-
eratively, with an adaptation of energy weighting coefficients,
until the estimation is obtained at the desired resolution.

The global optimization of the correspondences is per-
formed with a stochastic relaxation Metropolis algorithm
combined with a simulated annealing process at the first
lower-resolution level and with an iterated conditional mode
(ICM) algorithm at the upper-resolution levels.

3. RESULTS

In a first part, the method has been applied on simulated
data resulting from realistic deformations of a real ventric-
ular shape. This first stage has provided the means to con-
trol and define the different parameters included in our ap-
proach. In a second part, the method has been applied on real

human cardiac data acquired with MSCT. Finally, the means
to extract global and local parameters in association to infor-
mative visual representation modes have been developed.

3.1. Tests on simulated data

Numerical simulations have been used to test the motion ex-
traction process between two successive instants. In the ab-
sence of translation motion induced by patient respiration
(the MSCT acquisition is realized under one single breath-
hold) the heart is submitted to three main kinds of motion:
radial and longitudinal contraction/expansion and twisting
(cf. Figure 1). To simulate data, these three kinds of motion
are applied to a previously 3D extracted mesh (correspond-
ing to the first instant of the sequence). These deformations
result in the mesh corresponding to the second instant. Then,
this deformed mesh is inserted into a volume preprocessed by
a Canny filter followed by an endocardial suppression step.
The hierarchical matching process is finally applied between
the surface before deformation and this volume at three in-
creasing scales.

Using this simulation process, the real correspondences
are known. It enables measuring the error of matching of the
proposed method and to study the evolution of the matching
process along iterations and at each stage of the hierarchical
process. The impact of the different parameters involved in
the computation of the energies or in the optimization pro-
cess, as well as meaningful information provided by scale re-
finement, can also be evaluated.

Different tests have been conducted and combined to
find the optimal value for each parameter involved in the
matching process. These values have shown a good unic-
ity (tests running with these values on data generated with
varied motion parameters have provided optimal results)
and a good stability (moderate variations of these values do
not affect the quality of the result).
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Figure 2: Simulated (a, b) and estimated (c, d) motion amplitudes with a left oblique anterior view at two resolutions (levels 643 (a, c)
and 1283 (b, d)) (colours: in blue (resp., red), motion directed outside (resp., inside) the cavity corresponding to positive (resp., negative)
displacements), measures in millimeters.

(a) (b)

Figure 3: (a) One axial slice of one data volume of the sequence, (b) corresponding axial slice (at a lower resolution) after the Canny filtering
process.

Figure 2 illustrates an example of results obtained at the
two lowest-resolution levels (R1 with volume size 643 and R2

(1283)). In color are represented the applied (a, b) and esti-
mated (c, d) motion amplitudes. In red are represented the
displacements directed inside the cavity, and in blue the dis-
placements directed outside the cavity. With an initial mean
matching error of 6.7 mm at R1 level, the process converges
to a final mean error of 0.8 mm at R3 level. We have observed
that this hierarchical process enables gaining in precision and
error deviation.

These results have been confirmed by tests running with
different simulated motion parameters.

3.2. Results on real data

The algorithm has been applied on real human heart data
with a temporal database acquired by a Siemens SOMATOM
Sensation 16 with ten volume images representing a whole

cardiac cycle. Each volume contains about 300 slices of 512×
512 pixels, giving a resolution for each voxel of 0.35× 0.35×
0.5 mm (cf. Figure 3(a) illustrating one CT axial slice).

The segmentation preprocess has been applied to the first
volume of the sequence resulting in the extraction of the
heart left cavities and of the beginning of the aorta. To obtain
the surface mesh corresponding to time t0, the segmented
volume has been processed by the marching cubes algorithm
(cf. Figure 4).

Using the optimal set of parameters found with the nu-
merical simulations, the motion extraction process has been
applied between this mesh (corresponding to time t0) and the
volume corresponding to time t1 after a Canny operator ap-
plication (cf. Figure 3(b) for an example of the Canny filter
output). The algorithm has been iteratively applied to this
dynamic sequence considering three resolution levels (from
643 to 2563), providing a set of estimated surfaces and mo-
tion fields for each instant of the sequence.
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Figure 4: 3D surface of the extracted shape, corresponding to time
t0, represented at a lower resolution to highlight main structures.

Figure 5 illustrates results obtained at the two lowest lev-
els at end-diastolic (a, b) and end-systolic (c, d) instants. The
contraction movements (represented with red color or by
negative displacements), characteristic of systole, are as well
identified as the expansion movements (represented with
blue color or by positive displacements) and are coherent
with cardiac phases. We can see that the lowest level repre-
sentation is meaningful and that the displacements obtained
at upper levels provide the means to extract local clinical pa-
rameters at various scales.

Figure 6 shows the estimated motion amplitude during
the whole cardiac cycle and using the highest resolution. We
can observe that movements extracted on the whole sequence
are coherent with cardiac phases. We can particularly remark
the progressive expansion of the ventricle, from its basis to
the apex, during the ventricle diastole (Figures 6(b)–6(f)),
the important expansion occurring during the end-diastolic
phase (Figure 6(f)), and the spatial evolution of contraction
during the ventricle systole (Figures 6(g), 6(h)).

This kind of representations enables to highlight func-
tional abnormalities. For instance, Figure 6 highlights the
pathological situation where the antero-apical area (bottom
left part of the visualized shape) suffers from akinesia.

3.3. Extraction of clinical parameters

Firstly, the extraction of global parameters of the ventricular
function has been researched. After the interactive selection
of three points determining the valvular plane, the 3D de-
tected structure is limited to the left endocardium. Then, the
ventricular volume can be computed for each instant, pro-
viding the curve of 3D volume variations along the entire
temporal sequence analyzed. These measures give access to
clinical functional features such as systolic volume or ejec-
tion fraction (EF). However, because the proposed method
substracts trabeculas from the cavity volume, the measured
volumes are lower than the volumes measured by a rough
approximation of the endocardium. Obtained ejection frac-
tion is therefore overestimated compared to those obtained
by more classical methods (for one case, e.g., 55% was mea-
sured with echocardiography against 66% with our method).

Secondly, the extraction and representation of local pa-
rameters have been conducted. The anatomical system of ref-
erence, defined according to the great axis of the left ventri-
cle, is computed from the patient specific 3D estimated sur-
faces. In this reference system, the detected movement is then
decomposed in longitudinal, radial, and rotational motion
components (cf. Figure 1). Cranial/caudal motion as well as
inward and outward motion or wall twisting can therefore be
measured. These motion components can then be analyzed
along the temporal sequence, for a set of points selected on
different anatomical parts of the ventricle (cf. Figures 7, 8).
For this database, the extraction of radial movements show
for example that the base of the heart verifies the largest mo-
tion amplitude (in contraction (negative values) and in ex-
pansion (positive values)) compared to the mid-cavity and to
the apex. By the same way, movements of torsion can be lo-
cally enhanced and compared between different parts of the
muscle. This kind of representation is of great interest for the
clinical part because it allows to quantify how each type of
movement (radial, longitudinal, torsion) is affected by spe-
cific pathologies.

A synthetic representation of local parameters has been
also developed, based on the bull-eye representation, com-
monly used in echocardiography and MRI [33]. This kind
of visualization is based on the anatomical segmentation of
the 3D left ventricle in longitudinal and radial sectors and on
their integration in a bull-eye scheme. The anatomical seg-
mentation of the 3D surface is here conducted from the in-
teractive selection of three points corresponding to the aortic
and tricuspid valves and of the apex. For illustration, Figure 9
shows this anatomical segmentation and the motion ampli-
tude estimated on the overall temporal sequence represented
on the bull-eye scheme. This visual representation gives ac-
cess to the dynamic behavior of each anatomical segment (on
the whole sequence or between successive times). It allows to
enhance and quantify pathological situations such as akine-
sia or asynchronism. The results observed on these real data
show, for example, a reduced motion in apical septal seg-
ments (numbered 7, 8, 13, 14, and 17) which corresponds
to the real pathological situation.

4. CONCLUSION

A new solution of motion extraction combined with surface
estimation has been introduced and applied to the left ventri-
cle in 4D cardiac MSCT imaging. It is based on a hierarchical
surface-volume feature matching method formulated with a
Markov random field and provides, with one unique pro-
cess, the left cavity surfaces and associated 3D motion vec-
tor fields. The algorithm has been tested with simulated and
real MSCT dynamic data, highlighting the great potential of
MSCT imaging for quantitative clinical measure assessment
in cardiac applications. Moreover these performances might
be increased with new MSCT systems, combining more de-
tectors (64 rows, or even 128 rows systems) and faster ro-
tations. Indeed, with shorter acquisitions, the acquired data
will be less submitted to artefacts, enabling to reconstruct
more data volume by retrospective ECG-gating, providing
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Figure 5: Estimated motion amplitude at end-diastolic (a, b) and end-systolic (c, d) instants, at two resolutions (levels 643 (a, c) and 1283 (b,
d)) (colours: in blue (resp., red), motion directed outside (resp., inside) the cavity corresponding to positive (resp., negative) displacements).
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Figure 6: Estimated motion amplitude during the whole cardiac cycle. Time instants illustrated from (b)–(f) correspond to the ventricle
diastole, while time instants from (g)–(a) correspond to the ventricle systole (colours: in blue (resp., red), motion directed outside (resp.,
inside) the cavity corresponding to positive (resp., negative) displacements).
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Figure 7: Longitudinal motion of three points interactively selected (base, mid-cavity, apex).
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Figure 8: Radial and tangent motions of the three points represented in Figure 7.
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Figure 9: (a) Anatomical segmentation; (b) bull-eye representation of the estimated motion amplitude.
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sequences of higher temporal resolution. Also, these new sys-
tems will be less sensitive to irregular heart rates. Further
works will carry on extensive evaluation with normal and
pathological real data, including especially a comparison
with motion estimated with other imaging modalities.
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