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ABSTRACT

Objectives: Digoxin is a well-known probe for the activity of P-glycoprotein. The objective of

this work was to apply different methods for covariate selection in non-linear mixed effect models to

study the relationship between the pharmacokinetic parameters of digoxin and the genotype for two

major exons located on the MDR-1 gene coding for P-glycoprotein.

Methods: Thirty-two healthy volunteers were recruited in three pharmacokinetic drug interac-

tion studies. The data after a single oral administration ofdigoxin alone were pooled. All subjects

were genotyped for the MDR1 C3435T and G2677T/A genotypes. Theconcentration-time profile of

digoxin was established using 12 to 16 blood samples taken 15minutes to 72 hours after administra-

tion.

We modelled the pharmacokinetics of digoxin using non-linear mixed effect models. Parameter

estimation was performed using the stochastic approximation EM method (SAEM). We used three

methods to select the covariate model: selection from a fullmodel using Wald tests, forward inclusion

using the log-likelihood ratio test and model selection using the Bayesian Information Criteria.

Results: The three covariate inclusion methods led to the same final model. Carriers of two T

alleles for the C3435T polymorphism in exon 26 of MDR1 had a lower apparent volume of distribu-

tion than carriers of a C allele. The only other covariate effect was a shorter absorption time-lag in

women.

Conclusion: The apparent volume of distribution of digoxin is lower in TTsubjects, probably

reflecting differences in bioavailability. Non-linear mixed effect models can be useful to detect the

influence of covariates on pharmacokinetic parameters.
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Introduction

Pharmacogenetics is a recent field of research investigating the variability in drug effect due to ge-

netic factors. Genetic variation occurs at many levels: drug absorption, distribution and metabolism,

receptors for drug action, and drug elimination. Single-Nucleotide Polymorphisms (SNPs) have been

identified which induce modifications of the pharmacokinetics (drug course through the body) or

pharmacodynamics (drug efficacy and safety). SNPs have namely been shown to modify bioavail-

ability [1, 4], decrease excretion [25] sometimes inducingsevere toxicity [10] and have been linked to

drug efficacy [6, 13]. Thus, pharmacogenetics are the next step to provide individualised treatments.

The studies including pharmacogenetic data have become more numerous over the last few years.

In an overwhelming majority of these studies, non-compartmental analysis (NCA) is used to com-

pare pharmacokinetic measurements such as AUC or maximum concentration between groups. This

technique requires a large number of sampling points for every subject. On the other hand, mod-

elling approaches can take advantage of sparse individual designs and can be used in patients with

routine clinical data [26], but these more sophisticated approaches are seldom used. One issue with

these approaches is the method used for covariate selectionand hypothesis testing, since detecting a

gene effect can be thought of as a model selection problem. A wide variety of approaches have been

proposed. The mainstream method consists in stepwise selection [23, 17], possibly following prior

screening of relevant candidate covariates. The criterionfor model selection is usually the likelihood

ratio test, which is widely used to compare nested mixed effect models. Tests assessing the statistical

significance of the final parameters in the final model, such asthe Wald test, can also be used as a

selection criterion [26]. Other criteria can be used in model selection, such as the Akaike (AIC) or

the Bayesian Information Criterion (BIC) [22]. Regardless of themethod used, the clinical relevance
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is sometimes also assessed by examining the magnitude of theeffects found.

In a previous paper, Verstuyft et al. estimated the AUC of digoxin, a probe for the activity of

P-glycoprotein, in healthy volunteers using non-compartmental analysis and showed an increase in

subjects carrying the TT genotype for the C3435T polymorphism of MDR-1 [38]. The objective of

the present paper was to reanalyse the data in [38] by a modelling approach, using three covariate

model selection methods: likelihood ratio tests, backwards selection from a full model using Wald

tests, which take into account potential correlations between covariates, and model selection using

the BIC, which considers all the potential models. A related problem in covariate selection is that

the false positive rate (type I error) of the tests has been shown to increase when the estimation

methods rely on linear approximations to the likelihood [7,40]. In this work, we therefore use a

recent estimation method, the stochastic EM algorithmSAEM [20]. Although the three methods

can be applied with other estimation algorithms,SAEM allows estimation of the likelihood without

approximation, via stochastic simulation, and has been shown to have better statistical properties than

linearised methods [33].

Materials and methods

Data

Pharmacokinetic data was collected from 32 healthy volunteers included in three pharmacokinetic

interaction studies dealing with oral digoxin [38]. Seven subjects participated in a macrogol-digoxin

interaction study [30], 12 in a grapefruit juice-digoxin interaction study [2], and 13 in a dipyridamole-

digoxin interaction study [39]. The three studies were performed in accordance with the Declaration

of Helsinki and its amendments. Protocols were approved by the Ethics Committee of the Pitié-
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Salpêtrière Hospital (CCPPRB), Paris, France, and written informed consent was obtained from all

subjects. The 3 studies took place in the same clinical unit under the supervision of the same research

team.

All subjects received a 0.5 mg oral dose of digoxin with a glass of water after an overnight fast.

Pharmacokinetic samples were obtained at times 15, 30, 45 minutes, 1, 1.5, 2, 4, 6, 8, 12, 24 and

48 hours after the dose for two of the studies [2, 39]. For the last study [30], samples were taken at

15, 30, 45 minutes, 1, 1.5, 2, 2.5, 3, 4, 6, 9, 12, 16, 24, 48 and 72 hours.

The three studies included 23 men and 9 women, with a mean age of 25.8±5.2 years (range

19-35). Patients were genotyped for two MDR1 polymorphisms,C3435T polymorphism in exon 26

and G2677T/A polymorphism in exon 21. In study [39], patients were genotyped prior to inclusion

to balance the genotypes for the C3435T polymorphism while inthe 2 other studies, genotyping was

performed after inclusion. As a result, the genotypes of the32 patients for this polymorphism included

10 TT (mutant homozygotes, 31%), 8 CT (heterozygotes, 25%) and 14 CC (wild-type homozygotes,

44%). G2677T/A genotyping revealed 12 GG (38%), 11 GT (34%),7 TT (22%), 1 GA (3%) and 1

AA (3%) subjects, with a linkage disequilibrium between thetwo polymorphisms (Somer’s D’=0.72).

Digoxin was measured using a modified enzyme multiplied digoxin immunoassay (EMIT 2000,

Dade Behring, Calif., USA), with a quantification limit of 0.1 ng/ml. MDR1 C3435T and G2677T/A

genotypes were determined by TaqMan allelic discrimination. More details concerning the analytical

methods can be found in [38, 37].

Statistical methods

Pharmacokinetic model The pharmacokinetics of digoxin were described using a two-compartment

model [15] with first-order absorption and elimination, andan absorption time-lag, using the analyti-
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cal form of the model. We assumed a proportional variance model for the residual error. This model

included six parameters: ka, kel, Vc/F, Tlag and the two transfer rate constants k1,2 and k2,1. In-

terindividual variability was estimated for the first four parameters, with no covariance between them

(diagonal variance matrixΩ).

Denoting f the function describing this model, the statistical model for concentrationyi j in indi-

vidual i at timeti j is:

yi j = f (θi , ti j )+ εi j (1)

θi denotes the vector of parameters for individuali and its components are assumed to follow a log-

normal distribution:

θi = θ0 eηi (2)

whereηi ∼ N (0,Ω) is the vector of individual random effects.

The residual errorsεi j are assumed to be independent, with distributionN (0,σ2
i j ), where the

variance of the error is modelled using a proportional errormodel:σ2
i j = σ2 f (θi , ti j )

2.

The model for covariate effect describes the relationship between the individual pharmacokinetic

parameters and a given covariate. The effect of polymorphism in exon 26 on a componentθ(k) of the

vector of parametersθ was modelled as:

θ(k)
i = θ(k)

0 (1+β(k)
CT)

CT (1+β(k)
TT)TT eηi (3)

Thus, the expected value ofθ(k)
i is θ(k)

0 for subjects with genotype CC,θ(k)
0 (1+ β(k)

CT) for subjects

with genotype CT andθ(k)
0 (1+ β(k)

TT) for subjects with genotype TT. This model was used for the

4 parameters with variability (ka, kel, Vc/F, Tlag). In the following, we will drop the superscript(k)

for simplicity. For each parameter in the model, there are 5 possible models for the gene-parameter

relationship: the full model with three classes as in equation 3 (denoted H1 in the following), three
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intermediate models with two classes that we denote H0a:{ βCT = 0}, H0b:{ βTT = 0} and H0c:{ βCT−

βTT = 0} and the model with no gene effect H0:{ βCT = βTT = 0}. In the following, we first illustrate

the three covariate selection approaches using the polymorphism in exon 26, then we apply these

methods considering all the available covariates.

Backward covariate selection using the Wald test One approach to select the covariate model

is to estimate the parameters of a full model and perform a significance test using the Wald statistics

to select which parameters should be kept in the model [26]. The advantage of this method is that

model selection is performed in one step, and that interactions between covariates are taken into

account in the estimation of the parameters. Given the modeldescribed in equation 3, we test if the

three parametersβCT, βTT and (βCT − βTT) are significantly different from zero by comparing the

corresponding Wald statistics to the critical value of aχ2 with one degree of freedom.

A screening step is often performed to eliminate candidate covariates which have a very small

probability of influencing the parameters, to improve the estimation of the remaining parameters in

the model. We choose an arbitrary value of 0.25 as the significance threshold, and we eliminate the

covariates for which the p-values of the 3 tests corresponding to the 3 null hypotheses H0a, H0b and

H0c are higher than 0.25. This yields a simplified model where some parameters are modelled accord-

ing to model H1 and some parameters are the same regardless of the genotype.This step eliminates

relationships that are totally irrelevant from the model and increases the precision of estimation of the

other, possibly meaningful, parameters.

In the next stage, we estimate again the parameters and theirstandard errors using the simpli-

fied model. For each parameter modelled using H1, the p-values of the three Wald tests are used

to select the appropriate relationship, after correction for multiple tests by applying the Simes pro-
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cedure [35, 3]. This method allows to control the family-wise error rate for the three simultaneous

tests performed. For a given parameter, the final model for the gene-parameter relationship depends

on which hypotheses are rejected. For example, if H0a and H0c are simultaneously rejected for a

parameter, equation 3 simplifies to:

θi = θ0 (1+βCT)
CT eηi (4)

This procedure leads to the final model.

Forward covariate selection using the log-likelihood ratio test Convergence problems and non-

identifiability may occurr when trying to estimate the parameters of a full model with many covariates.

The alternative is to build the model using forward selection. Different forms of this approach are used

in most studies using nonlinear mixed effect models [23, 17].

For forward selection, we start from a model without covariates (basic model) and compute em-

pirical Bayes estimates (EBE) of the individual parameters. One-way analysis of variance (ANOVA)

is used to test for a difference between the three genotypes for each parameter [23]. As previously,

we begin by a screening step: candidate relationships are selected as those where the p-value of the

ANOVA is less than 0.25. We then model the candidate relationships as in equation 3 one at a time,

starting with the most significant according to the LRT. We stop when none of the remaining rela-

tionships provide a significant improvement in the model according to a LRT. We then test for all

parameter-gene relationships the three submodels H0a, H0b and H0c using the LRT again, correcting

the p-values using the Simes procedure. The best model for the corresponding relationship is selected

as in the previous strategy, based on the p-values for the three corresponding tests.
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Covariate selection using the Bayesian Information Criterion We compared the two previous

selection methods with model selection using the Bayes Information criterion (BIC) given by:

BIC = −2LL+Plog(ntot) (5)

where P is the number of parameters (fixed and variance) in themodel andntot is the total number of

observations.

The best model is defined as the model with the lowest BIC. For model selection using the BIC,

we also consider models close to the lowest BIC. From the definition of Bayes factor as a ratio of

posterior to prior odds used in Bayesian model selection, Raftery shows that the strength of evidence

of one model versus the other is limited when models are within 3 points of BIC while a larger

difference provides positive evidence [29, 18].

A practical problem is the number of models to test. For each parameter in the model, there are 5

possible models when considering the genotype for exon 26 alone. To test all possible combinations

for the 4 parameters with variability would require generating and fitting 625 models. Although tech-

nically feasible here, this would soon become impractical with more covariates or more parameters,

therefore we propose a simplified approach. In a first step, for each parameter, we keep the model with

the lowest BIC, as well as models within 3 points of BIC to the lowest. The model without covariate

(H0) is also added to this list of possible models. In a second step, we build combined models where

the possible models for one parameter are combined with eachof the models for the other parameters.

We estimate the corresponding BIC, and the best model s selected as the model having the lowest BIC

overall. Again, we also examine models with BIC close to the lowest value.

Estimation method The parameters are estimated using maximum likelihood approaches. Be-

cause the regression function is nonlinear with respect to the random effects, the likelihood function
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has no closed form. The most commonly used estimation methods rely on approximations of the

likelihood function through first-order Taylor expansions, and have been implemented for instance in

thenlme package in R/Splus [27], and in the NONMEM software [34]. To avoid this approximation,

Bayesian approaches have been proposed which integrate the likelihood using Monte-Carlo Markov

chains (MCMC) [36]. An alternative approach is to consider random effects as missing data and to

use the EM algorithm [9]. An algorithm called SAEM has been recently developed using the EM

approach: stochastic approximation combined with MCMC methods to simulate the random effect in

the E-step provides a convergent algorithm and consistent estimates of the population parameters [8].

This method has better statistical properties since no linearisation is involved in the computation of

the likelihood and hence the statistical tests based on the results have better properties [20]. It has

also been recently applied in two applications, the study the pharmacokinetics of saquinavir in HIV

patients [21] and the modelling of the viral load decrease tocompare two treatments in a clinical

trial [32].

TheSAEM algorithm is implemented in theMATLAB language in the softwareMONOLIX, avail-

able on the author’s website (http://www.math.u-psud.fr/∼lavielle/monolix/logiciels.html). We used ver-

sion 1.1 ofMONOLIX, in a Linux environment (Red Hat 9.0, GNU Fortran compiler), with MATLAB

version 7. The analysis of the results was handled using the Rstatistical and graphical environ-

ment [28].MONOLIX provides an estimate of the parameters (fixed effects and variance of the random

effects) as well as an estimate of the estimation error via the Fisher information matrix [20].

The likelihood is computed by an importance sampling procedure [31]. Since a good estimate of

the log-likelihood was required to perform likelihood ratio tests, we used the average of five successive

estimations of the likelihood to obtain a more stable estimate.
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Model building The three strategies described above were applied to the digoxin data considering

the exon 26 polymorphism. We then performed the same analysis for exon 21. For the G2677T/A

polymorphism in exon 21, 5 different genotypes were found inthe population (GG, GT, GA, TT and

TA). We performed first an analysis taking them all into account, and second an analysis where we

regrouped the mutant alleles, yielding 3 groups (group 1: GG, group 2: GT or GA, group 3: TT

or TA). The influence of the polymorphism in exon 21 was analysed first independently from the

results of the analysis including exon 26, then including the model developed for exon 26 alone. We

also considered the homozygous wild-type diplotype (combined genotype) CC-GG, combining the

GG genotype at position 2677 in exon 21 and the CC genotype at position 3435 in exon 26, versus

all other diplotypes. The functional haplotype has previously been shown to influence the AUC of

digoxin [16]. Other haplotype analyses were not performed since the number of subjects was too

small. Finally, full covariate analysis was performed; thefollowing covariates were available in the

study in addition to gene effect: gender, age, weight, body mass index and smoking status. Renal

function was not evaluated in these subjects.

We examined the following plots to evaluate the goodness of fit of the final model provided by

each approach: scatterplots of predictions (population and individual) versus individual observations;

population weighted residuals versus predictions and versus independent variable (time); absolute

individual weighted residuals versus individual predictions. In addition, model validation was per-

formed using prediction distribution errors [5], which arecomputed as the quantiles of the obser-

vations in the predicted distribution. The predicted distribution for each observation was obtained

through 1000 simulations of the data set given the final model. The prediction distribution errors

were decorrelated as proposed in [5] to take into account thecorrelation induced by the multiple ob-

servations within one subject. If the model is adequate, thedistribution of the prediction distribution
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errors is expected to follow a uniform distribution over theinterval [0-1], and we used a Kolmogorov-

Smirnov test to test this assumption.

Results

Backward covariate selection using the Wald test A full model including the effect of exon 26

genotype on all parameters was fit. The volume of distribution was the only parameter for which at

least one of the p-value of the Wald tests for the gene effect was lower than 0.25. The results are

shown in figure 1: for each parameter, we show the estimate ofβCT, βTT and the differenceβCT−βTT

as well as the corresponding confidence interval. The horizontal line represents the expected value of

0 in the absence of effect. As seen from this figure, onlyβTT andβCT−βTT for parameter Vc/F were

found to be significantly different from zero using Wald tests.

The model was then re-run with only Vc/F, yielding the following estimates for the gene effects:

βCT = 0.065 (NS),βTT =−0.164 (p<0.01),βCT−βTT = 0.229 (p<0.02). A final model was therefore

run, including only a different Vc/F for TT subjects.

Forward covariate selection using the log-likelihood ratio test Figure 2 displays the empiri-

cal Bayes estimates of the four parameters with intraindividual variability (ka, kel, Vc/F and Tlag),

separated according to the genotype for exon 26. As with the Wald test, only Vc/F was found to

have a significant relationship with the MDR-1 polymorphism on exon 26 (p<0.017 according to the

ANOVA), the three other tests yielding p-values larger than0.4. Including the full gene effect in the

model for Vc/F led to an improvement in the model (p=0.007 according to a LRT, df=2).

In the next and final stage, we then tested the three submodelsversus H1 using LRT yielding

the following p-values: p=0.003 for H0a={βCT = 0}, p=0.29 for H0b={βTT = 0}, and p=0.049 for
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H0c={βCT −βTT = 0}. Using the Simes procedure, the final model selected was the model where TT

subjects have different Vc/F from the two other groups. For the effect of exon 26 polymorphism, the

model selected by this strategy was therefore the same as forthe selection based on Wald tests.

Covariate selection using the Bayesian Information Criterion The selection for each parameter

separately yielded the following results: for Vc/F, the best model was a model with different popula-

tion mean for TT subjects; for the other parameters, the bestmodel was a model without covariates

and there was no model within 3 points of BIC of the lowest model. The results are illustrated in

figure 3, which shows the BIC of the five models tested for each parameter. For each parameter, the

model with the lowest BIC is shown as a full circle.

The models were then combined, and again, the best model overall was here the model with

different population mean for Vc/F in TT subjects.

Final model For the analysis of exon 26 alone, the three methods led to thesame final model, a

model where the carriers of the TT genotype have a different population mean for Vc/F.

The same analyses were done considering the genotype for exon 21. We found no significant

parameter-genotype relationship when considering the fivegenotype group for exon 21 but some

genotypes were present in few subjects, suggesting a lack ofpower. When regrouping the subjects

in three groups according to the number of mutant alleles, the estimate of the volume of distribution

was slightly lower in group 3 (TT or TA) versus the other groups (p<0.04). However, when the

model for exon 26 was taken into account, this relationship disappeared, showing that the difference

is accounted for by exon 26 because of the strong linkage between the two exons (Somers D’=0.72).

The three approaches presented above therefore gave the same results for the selection of genetic

covariates in the model.
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In addition, 11 subjects carried the CC-GG diplotype, and a slight difference was found between

the estimates of the volume of distribution for these patients when using a Wald test (p=0.045). How-

ever, the two other methods (BIC and EBE) did not pick this difference up.

In the final step, we then added the other covariates to the model. Because of the strong linkage

disequilibrium between the two exons, the full covariate model included only exon 26. Using the

Wald test approach, the final model included different population mean for Vc/F in TT subjects,

as previously, as well as smaller absorption time-lag in women. Using the LRT approach, a small

increase in Tlag (2.5%) was also found for smoking patients, but the size of the effect was not clinically

significant and thus the final model was the same as with the Wald approach. The BIC approach was

not implemented for the full covariate selection because oftime constraints.

The parameter estimates and estimates of the standard errors are given in table I. The parameters

were all well estimated, with standard errors lower than 20%except for the two covariate effects, for

which it was less than 40%. The residual (intraindividual) error was also small (17%). In this model,

subjects with the TT genotype have a volume of distribution lower by 17% relative to carriers of at

least a C allele, and women have a 54% shorter absorption timerelative to men. The within-subject

variability was largest for the absorption rate constant ka.

A plot of the concentrations of digoxin as a function of time for the three genotypes for exon 26

is shown in figure 4. Overlayed is the corresponding population predictions for the group. Diagnostic

graphs for this model are shown in figure 5. The two upper graphs show respectively the population

(left) and individual (right) predictions versus observedconcentrations. The two bottom graphs show

the individual predictions for the first two subjects in the dataset. The graphs show a satisfactory fit,

and the absorption phase is well described. A slight underestimation can be seen around 24 hours, as

the model does not capture a small rebound at that time. We tested two alternative models, one with a
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double absorption phase and one assuming enterohepatic recycling, but both encountered numerical

difficulties and unphysiological estimates, and the bias inthe model was not improved. Therefore,

the two-compartment model was kept. We performed model validation for the final model; using

prediction discrepancies, we did not reject the hypothesisthat the data observed could have been

obtained under the model (NS, p=0.49) and considered the model to be adequately qualified.

Discussion

With the recent availability of cheaper genotyping methods, it is now possible to collect genetic

information related to drug transporters, metabolic complexes or receptor structure on a routine basis

in clinical trials or before a patient is given a new treatment. In pharmacokinetics (PK) and pharma-

codynamics (PD), the time course of drug concentrations or effects is described using models with

a small number of parameters, and pharmacogenetic data is being increasingly used to characterise

their variability. There are now reports of pharmacogenetics studies for a large variety of drug classes,

confirming the widespread interest and potential applications of pharmacogenetics.

The statistical analysis in these studies however is usually limited to using non-compartmental

approaches to study the influence of genotype on AUC, apparentclearance or maximum or trough

concentration. Only a few papers report the use of more sophisticated methods such as mixed effect

models or Bayesian analysis, despite the fact that these approaches can be more informative. They

can take advantage of sparse designs, which could be useful to design studies for screening genetic

factors or during therapeutic monitoring. Here we present the first pharmacokinetic population model

for digoxin including pharmacogenetics.

In this study, we used three different methods to explore therelationships between the pharma-
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cokinetic parameters and the genetic covariates: forward stepwise selection, Wald test-based selec-

tion, and criteria-based selection. Although in the present application, they led to the same final

model, the three methods all have different characteristics and strengths.

The tests for the three approaches are asymptotic, that is, they assume that the number of subjects

as well as the number of points per subject is large enough. All three methods require good estimates

of the likelihood, and the Wald test requires in addition good estimates of the standard errors. The

only approximation in the computation of the estimated standard errors of estimation involved in

SAEM lies in the asymptotic approximation applied to the finite dataset [20], so that we expect better

statistical properties of the tests based on estimates obtained bySAEM relative to more traditional

methods based on first-order linearisation such as are implemented inNONMEM [34] or in the library

nlme for R [28]. Indeed, the standard errors of estimation of the parameters estimated using theSAEM

software have been shown to be accurately predicted [33].

Genetic covariates (genotypes or haplotypes) are usually modelled as categorical covariates, ex-

cept for some genes such as CYP2D6 where a numeric variable representing the number of mutant

alleles has been used as the genetic covariate [19]. Categorical covariates bring specific challenges.

We need to estimate one parameter for each possible genotypeand the number of possible covariate

models increases exponentially with the number of genotypes. Also, the dataset is often unbalanced,

with sometimes a very small number of patients for the rarer genotypes, which can generate problems

for parameter estimation.

Given these specific challenges, being able to select the covariate model in one step with the Wald

test is appealing, and has been proposed by Panhard [26]. Allthe potential relationships are included

in the model and a simultaneous estimation of the significance of all the parameters is provided. This

approach could be most interesting in sparse data settings where the empirical Bayes estimates (EBE)
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do not contain as much information as they do in our example where the pharmacokinetic sampling

was rich. The three methods described above can be applied regardless of the estimation method, and

have been used for instance inNONMEM [17] andnlme [26]. Using the new algorithmSAEM, we can

obtain good estimates of the parameters and their estimation error, allowing us to select the covariate

model by backwards deletion from a full model. Compared to thetwo other methods, the Wald

test requires an additional assumption, in that the confidence interval for the estimated parameters is

assumed to be symmetrical, which makes it less robust than the LRT.

The likelihood ratio test, by contrast, does not require anyadditional hypothesis beyond that of

the asymptotic. Stepwise inclusion is therefore the main method used for covariate model selection in

PK/PD models. However, it suffers from a number of known problems: inflation of type I error due to

multiple testing during the building process, selection bias, collinear variables and no guarantee that

the final model selected using these methods is the correct model [41]. Inflation of the type I error

is also inherent to the first-order linearisation of the log-likelihood used byNONMEM [7], while the

stochastic approximation of the log-likelihood performedby SAEM retains a type I error closer to the

nominal value, as shown in simulation studies [14]. Variants of stepwise methods include building

generalised additive models using the empirical Bayes estimates of a model without covariate [24],

however they do not address the issues mentionned above. An interesting combination of the LRT

approach and the Wald approach could be outlined as follows:first, build a full model with all poten-

tial covariates included, and keep as candidate covariatesthose for which the Wald test is significant;

finally, build the covariate model using LRT-based forward or backward selection from these candi-

date covariates. This would reduce the number of models to test in the selection while allowing for

combination of covariates to enter the model.

Finally, the advantage of criterion-based strategies liesin their systematic exploration of all possi-
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ble models. The use of model selection criteria such as AIC orBIC is more frequent in the Bayesian

litterature [29] and has solid theoretical background in information theory. In practice however, AIC

often proves anti-conservative and has been shown to be non-consistent [42], and here we use the

BIC. Criterion-based strategies have two main drawbacks. The first drawback is that the number

of possible models increases exponentially with the numberof covariates, although we can simplify

the number of possible models by considering prior physiological knowledge to eliminate unlikely

parameter-genotype relationships. The second drawback isthat there is no formal test of the relative

performance of two models. Kass and Raftery propose to use thedifference in BIC as a measure of

the strength of evidence of one model versus another [18], but one can be left with several competing

models of similar strength using that approach.

In summary, despite known problems we recall here, stepwiseselection strategies are less com-

putationally cumbersome than criteria-based selection, while more robust to poor estimations of the

standard errors than selection based on the Wald test. However, it can be useful to explore candi-

date relationships using this last method, especially in the presence of a large number of covariates,

because as shown here it can provide reliable estimates in one step and because effects due to a

combination of several covariates may be missed by stepwiseapproaches.

The strategies outlined in this work can be used for all typesof covariates (demographic data,

clinical characteristics, biological measurements...),as well as for building the structural model.

Our main finding, the difference in volume of distribution found for TT subjects, explains the

higher AUC observed for these subjects in the previous non-compartmental analysis performed using

this data [38]. It can be interpreted as a higher bioavailability in TT subjects relative to CC or CT

subjects. This result should be confirmed in patients receiving digoxin, and probably does not warrant
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dose adjustment for digoxin, especially considering the high variability in absorption. A possible ex-

ception would be to adjust dosage in certain populations such as elderly patients or patients receiving

other comedications. The proportion of digoxin-treated patients experiencing therapeutic drug moni-

toring has been shown to increase with the number of PgP inhibitors received [11], which could make

it useful to determine the genotype governing PgP activity [12].

In conclusion, we modelled the pharmacokinetics of digoxinincluding pharmacogenetic data,

using nonlinear mixed effect models. Our main finding was that carriers of the TT genotype for the

C3435T polymorphism in exon 26 of the MDR-1 gene have lower apparent volume of distribution.

Several methods can be used to test for genetic effects. In addition to the usual stepwise selection

method, we recommend using the Wald test to screen candidatecovariates.
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Appendix

TheSAEM algorithm is implemented theMATLAB language in the softwareMONOLIX, available on

the author’s website (http://www.math.u-psud.fr/∼lavielle/monolix/logiciels.html). We usedMONOLIX

version 1.1.

The dataset was prepared inR as a two-dimensional array, with columns representing subject

ID, time and observed concentrations. A column representing the dose was also added (with the

same value at all times and for all subjects). To code for the categorical covariates representing the

genotypes of MDR1, we used dummy variables. For example, to code for the exon 26 polymorphism,

we defined 3 dummy variables, one with value 1 for the subjectswith CC genotype and 0 for the

other two genotypes, one with value 1 for the subjects with CT genotype and 0 otherwise, and one

with value 1 for the subjects with TT genotype and 0 otherwise. Each dummy variable was entered

as an additional column in the dataset. Exemples of datasetsused withMONOLIX are included in the

Zip file containing the program.

The following code was used to define the pharmacokinetic model (lines beginning with the sym-

bol % are comments), using the explicit analytical equation:

function [f,g]=dig_funct(phi,x,id);

%%%%%%%%%%%%%%%%%%%%%%%

d=x(:,1,:);

t=x(:,2,:);

%%%%%%%%%%%%%%%%%%%%%%%

ka=exp(phi(id,1,:));

ke=exp(phi(id,2,:));

V=exp(phi(id,3,:));

Tlag=exp(phi(id,4,:));

k12=exp(phi(id,5,:));

k21=exp(phi(id,6,:));
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%%%%%%%%%%%%%%%%%%%%%%%

bet=(ke+k12+k21-sqrt((k12+k21+ke).^2-4*k21.*ke))./2;

alp=(k21.*ke)./bet;

f=d.*ka./V.*(((k21-ka)./((alp-ka).*(bet-ka))).*exp(-ka.*(t-Tlag))+...

((k21-alp)./((ka-alp).*(bet-alp))).*exp(-alp.*(t-Tlag))+...

((k21-bet)./((ka-bet).*(alp-bet))).*exp(-bet.*(t-Tlag)));

g=f;

The programMONOLIX is run from withinMATLAB. A window opens in which the user specifies

the dataset, the model function and the number of covariatesto include in the analysis. In our analysis,

the variance-covariance matrix was set to diagonal and the variance for parameters k1,2 and k2,1 was

set to 0. The covariate model was also specified via the graphical interface as a linear combination of

the dummy covariates defined above.

Version 1.1 of the software requires some tuning of the numerical procedure to ensure convergence

of the Markov chain during the stochastic approximation step (see the user manual on the website).

We used the following sequence of four stepsizes in the algorithm:














































a1 = 0 duringK1=500 iterations

a2 = 0.5 duringK2=100 iterations

a3 = 0.8 duringK3=100 iterations

a4 = 1 duringK4=2000 iterations

(6)

The output fromMONOLIX consists in a series of graphs as well as a table of parameter estimates

with their associated standard errors. Hypothesis testingopens a new window in which the two models

compared are specified and the corresponding criteria (AIC, BIC, log-likelihood) are shown after the

fit of each model is performed. Empirical Bayes Estimates (EBE)of the individual parameters are

obtained as the mean of the posterior distribution and the standard errors on these parameters (the

standard deviations of the posterior distribution) are also reported.

28

H
A

L author m
anuscript    inserm

-00146888, version 1



LEGENDS FOR FIGURES

Figure 1: Estimates of the genetic fixed effect for the different parameters in the model.

Figure 2: Empirical Bayes estimates of ka, kel, Vc/F and Tlag with the model without covariate.

Figure 3: BIC for the five models tested for each parameter: basic model (no gene effect), submodels

with βCT = βTT, βCC = βTT or βCC = βCT, full model withβCC andβTT.

Figure 4: Concentration versus time data for digoxin, for the three genotype classes for exon 26 poly-

morphism (in log-scale). Overlayed is the line corresponding to the predictions using the population

parameters in each group, for men.

Figure 5: Goodness of fit plots for the final model. Top: population predicted concentrations versus

observed concentrations (left); individual predicted concentrations versus observed concentrations

(right). Bottom: predicted concentrations (line) overlayed on observed concentrations (dots) for the

first man (left) and the first woman (right) in the dataset.

29

H
A

L author m
anuscript    inserm

-00146888, version 1



Tables

Table I : Estimates of the population pharmacokinetic parameters for the final model.

Parameter Population mean (SE as %) Variability as % (SE onω2 as %)

ka (hr−1) 3.15 (20) 85 (32)

kel (L.hr−1) 0.09 (6) 17 (63)

Vc/F (L) 172.70 (5) 15 (30)

βV,TT (-) -0.17 (31) -

Tlag (hr) 0.21 (8) 28 (42)

βTlag,women(-) -0.43 (27) -

k1,2 (hr−1) 0.32 (7) -

k2,1 (hr−1) 0.10 (7) -

σ (%) 0.18 (4) -

† p=0.001 according to Wald test

†† p=0.0002 according to Wald test
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Figure 3 :
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Figure 4 :
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Figure 5 :
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