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ABSTRACT

Obijectives: Digoxin is a well-known probe for the activity of P-glycopein. The objective of
this work was to apply different methods for covariate sidacin non-linear mixed effect models to
study the relationship between the pharmacokinetic paemnef digoxin and the genotype for two
major exons located on the MDR-1 gene coding for P-glycoprote

Methods: Thirty-two healthy volunteers were recruited in three phacokinetic drug interac-
tion studies. The data after a single oral administratiodigbxin alone were pooled. All subjects
were genotyped for the MDR1 C3435T and G2677T/A genotypes.cbdheentration-time profile of
digoxin was established using 12 to 16 blood samples takenidbtes to 72 hours after administra-
tion.

We modelled the pharmacokinetics of digoxin using nondimmixed effect models. Parameter
estimation was performed using the stochastic approximdiM method (SAEM). We used three
methods to select the covariate model: selection from afallel using Wald tests, forward inclusion
using the log-likelihood ratio test and model selectiomgghe Bayesian Information Criteria.

Results: The three covariate inclusion methods led to the same findeincCarriers of two T
alleles for the C3435T polymorphism in exon 26 of MDR1 had a loagparent volume of distribu-
tion than carriers of a C allele. The only other covariate@fivas a shorter absorption time-lag in
women.

Conclusion: The apparent volume of distribution of digoxin is lower in Elibjects, probably
reflecting differences in bioavailability. Non-linear redk effect models can be useful to detect the

influence of covariates on pharmacokinetic parameters.
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Introduction

Pharmacogenetics is a recent field of research investggdttevariability in drug effect due to ge-
netic factors. Genetic variation occurs at many levelsgdiosorption, distribution and metabolism,
receptors for drug action, and drug elimination. Singlezlatide Polymorphisms (SNPs) have been
identified which induce modifications of the pharmacokicetidrug course through the body) or
pharmacodynamics (drug efficacy and safety). SNPs havelpdmen shown to modify bioavail-
ability [1, 4], decrease excretion [25] sometimes induaagere toxicity [10] and have been linked to
drug efficacy [6, 13]. Thus, pharmacogenetics are the negttstprovide individualised treatments.

The studies including pharmacogenetic data have becomemonerous over the last few years.
In an overwhelming majority of these studies, non-compartial analysis (NCA) is used to com-
pare pharmacokinetic measurements such as AUC or maximoogtration between groups. This
technique requires a large number of sampling points foryesebject. On the other hand, mod-
elling approaches can take advantage of sparse individasigiols and can be used in patients with
routine clinical data [26], but these more sophisticatepraaches are seldom used. One issue with
these approaches is the method used for covariate selecttbhypothesis testing, since detecting a
gene effect can be thought of as a model selection problemida variety of approaches have been
proposed. The mainstream method consists in stepwisetisal¢23, 17], possibly following prior
screening of relevant candidate covariates. The critddomodel selection is usually the likelihood
ratio test, which is widely used to compare nested mixecteffeodels. Tests assessing the statistical
significance of the final parameters in the final model, sucth@dVald test, can also be used as a
selection criterion [26]. Other criteria can be used in m@#dection, such as the Akaike (AIC) or

the Bayesian Information Criterion (BIC) [22]. Regardless ofrtiethod used, the clinical relevance
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is sometimes also assessed by examining the magnitude efféiaes found.

In a previous paper, Verstuyft et al. estimated the AUC obxlig, a probe for the activity of
P-glycoprotein, in healthy volunteers using non-comparital analysis and showed an increase in
subjects carrying the TT genotype for the C3435T polymorphi$ MDR-1 [38]. The objective of
the present paper was to reanalyse the data in [38] by a nmoglalbproach, using three covariate
model selection methods: likelihood ratio tests, backwaelection from a full model using Wald
tests, which take into account potential correlations ketwcovariates, and model selection using
the BIC, which considers all the potential models. A relatesbfgm in covariate selection is that
the false positive rate (type | error) of the tests has beemsho increase when the estimation
methods rely on linear approximations to the likelihood4®]. In this work, we therefore use a
recent estimation method, the stochastic EM algorité&EM [20]. Although the three methods
can be applied with other estimation algorithr88EM allows estimation of the likelihood without
approximation, via stochastic simulation, and has beewsMo have better statistical properties than

linearised methods [33].

Materials and methods

Data

Pharmacokinetic data was collected from 32 healthy vokmsténcluded in three pharmacokinetic
interaction studies dealing with oral digoxin [38]. Seveibjects participated in a macrogol-digoxin
interaction study [30], 12 in a grapefruit juice-digoxinenaction study [2], and 13 in a dipyridamole-
digoxin interaction study [39]. The three studies were genied in accordance with the Declaration

of Helsinki and its amendments. Protocols were approvechbyBthics Committee of the Pitié-
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Salpétriere Hospital (CCPPRB), Paris, France, and writtennméd consent was obtained from all
subjects. The 3 studies took place in the same clinical umieuthe supervision of the same research
team.

All subjects received a 0.5 mg oral dose of digoxin with a glaswater after an overnight fast.
Pharmacokinetic samples were obtained at times 15, 30, AGtes, 1, 1.5, 2, 4, 6, 8, 12, 24 and
48 hours after the dose for two of the studies [2, 39]. For #ds¢ $tudy [30], samples were taken at
15, 30, 45 minutes, 1, 1.5, 2, 2.5, 3,4, 6, 9, 12, 16, 24, 48 @rfwbidrs.

The three studies included 23 men and 9 women, with a mean fag®.&-5.2 years (range
19-35). Patients were genotyped for two MDR1 polymorphisG®}35T polymorphism in exon 26
and G2677T/A polymorphism in exon 21. In study [39], patsawere genotyped prior to inclusion
to balance the genotypes for the C3435T polymorphism whiteer? other studies, genotyping was
performed after inclusion. As a result, the genotypes oB8thpatients for this polymorphism included
10 TT (mutant homozygotes, 31%), 8 CT (heterozygotes, 25%14rCC (wild-type homozygotes,
44%). G2677T/A genotyping revealed 12 GG (38%), 11 GT (34PA)T (22%), 1 GA (3%) and 1
AA (3%) subjects, with a linkage disequilibrium between twe polymorphisms (Somer’s D’=0.72).

Digoxin was measured using a modified enzyme multiplied xdigonmunoassay (EMIT 2000,
Dade Behring, Calif., USA), with a quantification limit of 0.§/ml. MDR1 C3435T and G2677T/A
genotypes were determined by TagMan allelic discrimimatMore details concerning the analytical

methods can be found in [38, 37].

Statistical methods

Pharmacokinetic model The pharmacokinetics of digoxin were described using adampartment

model [15] with first-order absorption and elimination, ardabsorption time-lag, using the analyti-

6
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cal form of the model. We assumed a proportional varianceeifod the residual error. This model
included six parameters:aKkel, Vc/F, Tiag and the two transfer rate constants;kand k1. In-
terindividual variability was estimated for the first fouaameters, with no covariance between them
(diagonal variance matri).

Denotingf the function describing this model, the statistical modeldoncentratiory; j in indi-
viduali at timet; j is:

Vij=f(6i,tij)+&ij (1)

8; denotes the vector of parameters for individuahd its components are assumed to follow a log-
normal distribution:

6 = B & 2)

wheren; ~ A (0,Q) is the vector of individual random effects.

The residual errors;j are assumed to be independent, with distributiof0, oizj), where the
variance of the error is modelled using a proportional emnodel:oizj = a2 (8,1 ,-)2.

The model for covariate effect describes the relationskig/ben the individual pharmacokinetic
parameters and a given covariate. The effect of polymonpltisexon 26 on a compone@t€) of the

vector of parameter@ was modelled as:

6/ =6y (1+Bcp T (148" € (3)

Thus, the expected value Bfk) is 98() for subjects with genotype CCB(()k) (1+ B(C'(%) for subjects

with genotype CT an(ﬁ(()k) (1+ B(TkT)) for subjects with genotype TT. This model was used for the
4 parameters with variability gk ke, V¢/F, Tiag)- In the following, we will drop the superscrit
for simplicity. For each parameter in the model, there are$siple models for the gene-parameter

relationship: the full model with three classes as in equa8 (denoted Hin the following), three

7
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intermediate models with two classes that we dentg{iBct = 0}, Hop:{ BtT = 0} and Hoc:{BcT —
BrT = 0} and the model with no gene effecoHBct = Br1 = 0}. In the following, we first illustrate
the three covariate selection approaches using the pophssn in exon 26, then we apply these

methods considering all the available covariates.

Backward covariate selection using the Wald test One approach to select the covariate model
is to estimate the parameters of a full model and performrafgignce test using the Wald statistics
to select which parameters should be kept in the model [26f ddvantage of this method is that
model selection is performed in one step, and that intemastbetween covariates are taken into
account in the estimation of the parameters. Given the naeidribed in equation 3, we test if the
three parameteBcr, Br1t and Bct — Br7) are significantly different from zero by comparing the
corresponding Wald statistics to the critical value gfavith one degree of freedom.

A screening step is often performed to eliminate candidatarmates which have a very small
probability of influencing the parameters, to improve thiéneation of the remaining parameters in
the model. We choose an arbitrary value of 0.25 as the signiie threshold, and we eliminate the
covariates for which the p-values of the 3 tests correspantti the 3 null hypothesesgkl Hon and
Hoc are higher than 0.25. This yields a simplified model whereesparameters are modelled accord-
ing to model H and some parameters are the same regardless of the gendlypatep eliminates
relationships that are totally irrelevant from the model arcreases the precision of estimation of the
other, possibly meaningful, parameters.

In the next stage, we estimate again the parameters andsthagtard errors using the simpli-
fied model. For each parameter modelled using tHe p-values of the three Wald tests are used

to select the appropriate relationship, after correctmmnfiultiple tests by applying the Simes pro-
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cedure [35, 3]. This method allows to control the family-aviesror rate for the three simultaneous
tests performed. For a given parameter, the final model ®ogéne-parameter relationship depends
on which hypotheses are rejected. For example,gif #d Hy are simultaneously rejected for a

parameter, equation 3 simplifies to:
6i = 60 (1+Bcr)°T &N (4)

This procedure leads to the final model.

Forward covariate selection using the log-likelihood rato test Convergence problems and non-
identifiability may occurr when trying to estimate the paedens of a full model with many covariates.
The alternative is to build the model using forward selactidifferent forms of this approach are used
in most studies using nonlinear mixed effect models [23, 17]

For forward selection, we start from a model without coviasabasic model) and compute em-
pirical Bayes estimates (EBE) of the individual parameterse-@ay analysis of variance (ANOVA)
is used to test for a difference between the three genotype=ath parameter [23]. As previously,
we begin by a screening step: candidate relationships &retsé as those where the p-value of the
ANOVA is less than 0.25. We then model the candidate relahgs as in equation 3 one at a time,
starting with the most significant according to the LRT. Wepsivhen none of the remaining rela-
tionships provide a significant improvement in the modeloading to a LRT. We then test for all
parameter-gene relationships the three submodglsHd, and Hy using the LRT again, correcting
the p-values using the Simes procedure. The best modeldaoatiiesponding relationship is selected

as in the previous strategy, based on the p-values for tke tlurresponding tests.
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Covariate selection using the Bayesian Information Criteron We compared the two previous

selection methods with model selection using the Bayestimdtion criterion (BIC) given by:

BIC = —2LL + Plog(not) (5)

where P is the number of parameters (fixed and variance) imtuel andy,; is the total number of
observations.

The best model is defined as the model with the lowest BIC. Forefrerlection using the BIC,
we also consider models close to the lowest BIC. From the defindf Bayes factor as a ratio of
posterior to prior odds used in Bayesian model selectioneRafhows that the strength of evidence
of one model versus the other is limited when models are wighpoints of BIC while a larger
difference provides positive evidence [29, 18].

A practical problem is the number of models to test. For eachmeter in the model, there are 5
possible models when considering the genotype for exond@&alTo test all possible combinations
for the 4 parameters with variability would require geniexgiind fitting 625 models. Although tech-
nically feasible here, this would soon become impractiaéhwore covariates or more parameters,
therefore we propose a simplified approach. In a first stegdoh parameter, we keep the model with
the lowest BIC, as well as models within 3 points of BIC to the Istvdhe model without covariate
(Ho) is also added to this list of possible models. In a secora ste build combined models where
the possible models for one parameter are combined withafdbk models for the other parameters.
We estimate the corresponding BIC, and the best model s sgkestbe model having the lowest BIC

overall. Again, we also examine models with BIC close to thedst value.

Estimation method The parameters are estimated using maximum likelihoodoagpes. Be-
cause the regression function is nonlinear with respedtaadandom effects, the likelihood function

10
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has no closed form. The most commonly used estimation methelg on approximations of the
likelihood function through first-order Taylor expansipasd have been implemented for instance in
thenime package in R/Splus [27], and in the NONMEM software [34]. Toid\this approximation,
Bayesian approaches have been proposed which integraikdfieood using Monte-Carlo Markov
chains (MCMC) [36]. An alternative approach is to consided@n effects as missing data and to
use the EM algorithm [9]. An algorithm called SAEM has beecergly developed using the EM
approach: stochastic approximation combined with MCMC mastto simulate the random effect in
the E-step provides a convergent algorithm and consisstima&tes of the population parameters [8].
This method has better statistical properties since natisation is involved in the computation of
the likelihood and hence the statistical tests based onethdts have better properties [20]. It has
also been recently applied in two applications, the studypitiarmacokinetics of saquinavir in HIV
patients [21] and the modelling of the viral load decreasedmpare two treatments in a clinical
trial [32].

The SAEM algorithm is implemented in thATLAB language in the softwamfdONOLIX, avail-
able on the author’s websitet{p://www.math.u-psud.fr/~lavielle/monolix/logiciels.html). We used ver-
sion 1.1 ofMONOLIX, in a Linux environment (Red Hat 9.0, GNU Fortran compilerthwATLAB
version 7. The analysis of the results was handled using tk&atistical and graphical environ-
ment [28].MONOLIX provides an estimate of the parameters (fixed effects amahvag of the random
effects) as well as an estimate of the estimation error \adtkher information matrix [20].

The likelihood is computed by an importance sampling praced31]. Since a good estimate of
the log-likelihood was required to perform likelihood atests, we used the average of five successive

estimations of the likelihood to obtain a more stable edéma

11
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Model building  The three strategies described above were applied to tb&idigata considering
the exon 26 polymorphism. We then performed the same asdiysexon 21. For the G2677T/A
polymorphism in exon 21, 5 different genotypes were founthepopulation (GG, GT, GA, TT and
TA). We performed first an analysis taking them all into acipand second an analysis where we
regrouped the mutant alleles, yielding 3 groups (group 1:, GGup 2: GT or GA, group 3: TT
or TA). The influence of the polymorphism in exon 21 was aredy8rst independently from the
results of the analysis including exon 26, then includirgiodel developed for exon 26 alone. We
also considered the homozygous wild-type diplotype (comthigenotype) CC-GG, combining the
GG genotype at position 2677 in exon 21 and the CC genotypes#tiqpo3435 in exon 26, versus
all other diplotypes. The functional haplotype has presipibeen shown to influence the AUC of
digoxin [16]. Other haplotype analyses were not performadesthe number of subjects was too
small. Finally, full covariate analysis was performed; fokbowing covariates were available in the
study in addition to gene effect: gender, age, weight, bodgsmndex and smoking status. Renal
function was not evaluated in these subjects.

We examined the following plots to evaluate the goodnesg of fihe final model provided by
each approach: scatterplots of predictions (populatiahaividual) versus individual observations;
population weighted residuals versus predictions andugeirsdependent variable (time); absolute
individual weighted residuals versus individual predio8. In addition, model validation was per-
formed using prediction distribution errors [5], which amemputed as the quantiles of the obser-
vations in the predicted distribution. The predicted dsttion for each observation was obtained
through 1000 simulations of the data set given the final modéle prediction distribution errors
were decorrelated as proposed in [5] to take into accourtdirelation induced by the multiple ob-

servations within one subject. If the model is adequatedisieibution of the prediction distribution

12



errors is expected to follow a uniform distribution over thieerval [0-1], and we used a Kolmogorov-

Smirnov test to test this assumption.

Results
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Backward covariate selection using the Wald test A full model including the effect of exon 26
genotype on all parameters was fit. The volume of distrilouwi@as the only parameter for which at
least one of the p-value of the Wald tests for the gene effast lwer than 0.25. The results are
shown in figure 1: for each parameter, we show the estimdie9f3tT and the differenc@ct — BT

as well as the corresponding confidence interval. The hotétdine represents the expected value of
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0 in the absence of effect. As seen from this figure, @ty andBct — Br7 for parameter WF were
found to be significantly different from zero using Wald st

The model was then re-run with onlyNF, yielding the following estimates for the gene effects:
Bct=0.065 (NS) Br7 = —0.164 (p<0.01),BcTt— P17 = 0.229 (p<0.02). A final model was therefore

run, including only a different MF for TT subjects.

Forward covariate selection using the log-likelihood rato test Figure 2 displays the empiri-
cal Bayes estimates of the four parameters with intraindafidariability (ky, ke, Vc/F and Tag),
separated according to the genotype for exon 26. As with takl \tést, only \W/F was found to
have a significant relationship with the MDR-1 polymorphismexon 26 (pc0.017 according to the
ANOVA), the three other tests yielding p-values larger tBah Including the full gene effect in the
model for \/F led to an improvement in the model (p=0.007 according t&®®&, ldf=2).

In the next and final stage, we then tested the three submueiedas H using LRT vyielding
the following p-values: p=0.003 for d&3={ Bct = 0}, p=0.29 for H={B7T = 0}, and p=0.049 for

13
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Hoc={Bct — BrT = 0}. Using the Simes procedure, the final model selected wasmibdel where TT
subjects have different Y& from the two other groups. For the effect of exon 26 polyphism, the

model selected by this strategy was therefore the same #sfeelection based on Wald tests.

Covariate selection using the Bayesian Information Criteron  The selection for each parameter
separately yielded the following results: fog/¥?, the best model was a model with different popula-
tion mean for TT subjects; for the other parameters, theeskel was a model without covariates
and there was no model within 3 points of BIC of the lowest moddie results are illustrated in
figure 3, which shows the BIC of the five models tested for eachrpater. For each parameter, the
model with the lowest BIC is shown as a full circle.

The models were then combined, and again, the best modedlbwers here the model with

different population mean for ¥F in TT subjects.

Final model For the analysis of exon 26 alone, the three methods led teatme final model, a
model where the carriers of the TT genotype have a differeptifation mean for MF.

The same analyses were done considering the genotype foraxoWe found no significant
parameter-genotype relationship when considering thegareotype group for exon 21 but some
genotypes were present in few subjects, suggesting a lapkveér. When regrouping the subjects
in three groups according to the number of mutant allelese#timate of the volume of distribution
was slightly lower in group 3 (TT or TA) versus the other greyp<0.04). However, when the
model for exon 26 was taken into account, this relationsispgpeared, showing that the difference
is accounted for by exon 26 because of the strong linkagedsgtwhe two exons (Somers D’=0.72).
The three approaches presented above therefore gave teersanits for the selection of genetic
covariates in the model.

14
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In addition, 11 subjects carried the CC-GG diplotype, andghsliifference was found between
the estimates of the volume of distribution for these pasigrhen using a Wald test (p=0.045). How-
ever, the two other methods (BIC and EBE) did not pick this d#fifee up.

In the final step, we then added the other covariates to them8ecause of the strong linkage
disequilibrium between the two exons, the full covariatedelancluded only exon 26. Using the
Wald test approach, the final model included different pappoih mean for WF in TT subjects,
as previously, as well as smaller absorption time-lag in eomUsing the LRT approach, a small
increase in g (2.5%) was also found for smoking patients, but the size®éffect was not clinically
significant and thus the final model was the same as with thd Wgiroach. The BIC approach was
not implemented for the full covariate selection because# constraints.

The parameter estimates and estimates of the standard areogiven in table I. The parameters
were all well estimated, with standard errors lower than 28%ept for the two covariate effects, for
which it was less than 40%. The residual (intraindividuatpewas also small (17%). In this model,
subjects with the TT genotype have a volume of distributmmadr by 17% relative to carriers of at
least a C allele, and women have a 54% shorter absorptionréilave to men. The within-subject
variability was largest for the absorption rate constant k

A plot of the concentrations of digoxin as a function of tinoe fhe three genotypes for exon 26
is shown in figure 4. Overlayed is the corresponding poputgtredictions for the group. Diagnostic
graphs for this model are shown in figure 5. The two upper gablow respectively the population
(left) and individual (right) predictions versus obsenasscentrations. The two bottom graphs show
the individual predictions for the first two subjects in tregaket. The graphs show a satisfactory fit,
and the absorption phase is well described. A slight unteragon can be seen around 24 hours, as

the model does not capture a small rebound at that time. \Wédteso alternative models, one with a

15
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double absorption phase and one assuming enterohepatatimge but both encountered numerical
difficulties and unphysiological estimates, and the biaghexmodel was not improved. Therefore,
the two-compartment model was kept. We performed modetiaddéin for the final model; using
prediction discrepancies, we did not reject the hypothtsis the data observed could have been

obtained under the model (NS, p=0.49) and considered thehmte adequately qualified.

Discussion

With the recent availability of cheaper genotyping methadis now possible to collect genetic
information related to drug transporters, metabolic caxgs$ or receptor structure on a routine basis
in clinical trials or before a patient is given a new treatinén pharmacokinetics (PK) and pharma-
codynamics (PD), the time course of drug concentrationdfects is described using models with
a small number of parameters, and pharmacogenetic datang inereasingly used to characterise
their variability. There are now reports of pharmacogasetiudies for a large variety of drug classes,
confirming the widespread interest and potential appbecatiof pharmacogenetics.

The statistical analysis in these studies however is uslialited to using nhon-compartmental
approaches to study the influence of genotype on AUC, appalesitance or maximum or trough
concentration. Only a few papers report the use of more stiphaiied methods such as mixed effect
models or Bayesian analysis, despite the fact that thes@agpes can be more informative. They
can take advantage of sparse designs, which could be usadekign studies for screening genetic
factors or during therapeutic monitoring. Here we predeafirst pharmacokinetic population model

for digoxin including pharmacogenetics.

In this study, we used three different methods to explore¢taionships between the pharma-
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cokinetic parameters and the genetic covariates: forwmusse selection, Wald test-based selec-
tion, and criteria-based selection. Although in the presgplication, they led to the same final
model, the three methods all have different charactesistil strengths.

The tests for the three approaches are asymptotic, thheisassume that the number of subjects
as well as the number of points per subject is large enoudhhr&le methods require good estimates
of the likelihood, and the Wald test requires in addition g@stimates of the standard errors. The
only approximation in the computation of the estimated d&ad errors of estimation involved in
SAEM lies in the asymptotic approximation applied to the finiteadat [20], so that we expect better
statistical properties of the tests based on estimatesnebitdoy SAEM relative to more traditional
methods based on first-order linearisation such as are mgpiteed iINONMEM [34] or in the library
nime for R [28]. Indeed, the standard errors of estimation of tui@ameters estimated using th&EM
software have been shown to be accurately predicted [33].

Genetic covariates (genotypes or haplotypes) are usuatietied as categorical covariates, ex-
cept for some genes such as CYP2D6 where a numeric variabksesping the number of mutant
alleles has been used as the genetic covariate [19]. Cateboovariates bring specific challenges.
We need to estimate one parameter for each possible geremygpoine number of possible covariate
models increases exponentially with the number of genastypéso, the dataset is often unbalanced,
with sometimes a very small number of patients for the rae@otypes, which can generate problems
for parameter estimation.

Given these specific challenges, being able to select thariad® model in one step with the Wald
test is appealing, and has been proposed by Panhard [26heAllotential relationships are included
in the model and a simultaneous estimation of the signifieafi@ll the parameters is provided. This

approach could be most interesting in sparse data settingsathe empirical Bayes estimates (EBE)

17



do not contain as much information as they do in our examplergithe pharmacokinetic sampling
was rich. The three methods described above can be appjadtitess of the estimation method, and
have been used for instanceN®NMEM [17] andnime [26]. Using the new algorithrBAEM, we can

obtain good estimates of the parameters and their estimeatior, allowing us to select the covariate

model by backwards deletion from a full model. Compared tottih@ other methods, the Wald

1duasnuew Joyine vH

test requires an additional assumption, in that the confielémterval for the estimated parameters is
assumed to be symmetrical, which makes it less robust tleabRi.

The likelihood ratio test, by contrast, does not require adgitional hypothesis beyond that of
the asymptotic. Stepwise inclusion is therefore the maithoteused for covariate model selection in

PK/PD models. However, it suffers from a number of known pepts: inflation of type | error due to
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multiple testing during the building process, selectioasbicollinear variables and no guarantee that
the final model selected using these methods is the corredeindl]. Inflation of the type I error
is also inherent to the first-order linearisation of the lixglihood used byNONMEM [7], while the
stochastic approximation of the log-likelihood perforntisdSAEM retains a type | error closer to the
nominal value, as shown in simulation studies [14]. Vasgawitstepwise methods include building
generalised additive models using the empirical Bayes astsnof a model without covariate [24],
however they do not address the issues mentionned aboventénesting combination of the LRT
approach and the Wald approach could be outlined as follbkgs; build a full model with all poten-
tial covariates included, and keep as candidate covatiabsg for which the Wald test is significant;
finally, build the covariate model using LRT-based forwardackward selection from these candi-
date covariates. This would reduce the number of modelsstarte¢he selection while allowing for
combination of covariates to enter the model.

Finally, the advantage of criterion-based strategiedridiseir systematic exploration of all possi-
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ble models. The use of model selection criteria such as AlBIGris more frequent in the Bayesian
litterature [29] and has solid theoretical background foimation theory. In practice however, AIC
often proves anti-conservative and has been shown to beamsistent [42], and here we use the
BIC. Criterion-based strategies have two main drawbacks. Thediawback is that the number
of possible models increases exponentially with the nurobeovariates, although we can simplify
the number of possible models by considering prior phygic knowledge to eliminate unlikely
parameter-genotype relationships. The second drawbdbhktishere is no formal test of the relative
performance of two models. Kass and Raftery propose to usdiffeeence in BIC as a measure of
the strength of evidence of one model versus another [18hrreican be left with several competing
models of similar strength using that approach.

In summary, despite known problems we recall here, stepsaktion strategies are less com-
putationally cumbersome than criteria-based selectidrilewnore robust to poor estimations of the
standard errors than selection based on the Wald test. Howiewan be useful to explore candi-
date relationships using this last method, especially enpifesence of a large number of covariates,
because as shown here it can provide reliable estimateserstep and because effects due to a

combination of several covariates may be missed by ste@piseaches.

The strategies outlined in this work can be used for all typlesovariates (demographic data,
clinical characteristics, biological measurementsas)well as for building the structural model.

Our main finding, the difference in volume of distributiorufal for TT subjects, explains the
higher AUC observed for these subjects in the previous monpartmental analysis performed using
this data [38]. It can be interpreted as a higher bioavditghn TT subjects relative to CC or CT

subjects. This result should be confirmed in patients r@ogigoxin, and probably does not warrant
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dose adjustment for digoxin, especially considering tlyh wariability in absorption. A possible ex-
ception would be to adjust dosage in certain populationk as@lderly patients or patients receiving
other comedications. The proportion of digoxin-treatetiguais experiencing therapeutic drug moni-
toring has been shown to increase with the number of PgPitalstreceived [11], which could make

it useful to determine the genotype governing PgP actiig].[

In conclusion, we modelled the pharmacokinetics of digaritiuding pharmacogenetic data,
using nonlinear mixed effect models. Our main finding was taariers of the TT genotype for the
C3435T polymorphism in exon 26 of the MDR-1 gene have lower aggasolume of distribution.
Several methods can be used to test for genetic effects. diiadto the usual stepwise selection

method, we recommend using the Wald test to screen candiozeiates.
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Appendix

The SAEM algorithm is implemented thRIATLAB language in the softwamONOLIX, available on
the author’s websitenh(tp://www.math.u-psud.fr/~lavielle/monolix/logiciels.html). We usedVONOLIX

version 1.1.
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The dataset was prepared Ras a two-dimensional array, with columns representingesibj
ID, time and observed concentrations. A column represgritie dose was also added (with the
same value at all times and for all subjects). To code for #tegorical covariates representing the
genotypes of MDR1, we used dummy variables. For example de far the exon 26 polymorphism,

we defined 3 dummy variables, one with value 1 for the subjetts CC genotype and O for the
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other two genotypes, one with value 1 for the subjects with €fogype and 0 otherwise, and one
with value 1 for the subjects with TT genotype and 0 otherwiach dummy variable was entered
as an additional column in the dataset. Exemples of datasetbwithMONOLIX are included in the
Zip file containing the program.

The following code was used to define the pharmacokineticaintides beginning with the sym-

bol % are comments), using the explicit analytical equation

function [f,g]=dig_funct(phi,x, id);
%80888888888808888888880

d=x(:,1,:);

t=x(:,2,:);
%8088888888888888888888
ka=exp(phi (id, 1,:));
ke=exp(phi (id, 2,:));
V=exp(phi (id,3,:));

Tl ag=exp(phi (id, 4,:));
k12=exp(phi (id,5,:));
k21=exp(phi (id,6,:));
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%88880808888880808888080

bet =(ke+k12+k21-sqrt ((k12+k21+ke)."2-4*k21.*ke))./2;

al p=(k21. *ke) ./ bet;

f=d.*ka./V.*(((k21-ka)./((al p-ka).*(bet-ka))).*exp(-ka.*(t-Tlag))+...

((k21-al p)./((ka-alp).*(bet-alp))).*exp(-alp.*(t-Tlag))+...
((k21-bet)./((ka-bet).*(al p-bet))).*exp(-bet.*(t-Tlag)));
g=f;

The programMONOLIX is run from withinMATLAB. A window opens in which the user specifies
the dataset, the model function and the number of covatiaieslude in the analysis. In our analysis,
the variance-covariance matrix was set to diagonal andahance for parameterg kand k 1 was
set to 0. The covariate model was also specified via the grapiniterface as a linear combination of
the dummy covariates defined above.

Version 1.1 of the software requires some tuning of the nisalgsrocedure to ensure convergence
of the Markov chain during the stochastic approximatiom g&=e the user manual on the website).

We used the following sequence of four stepsizes in the itgor
(
a =0 duringK1=500 iterations

a, =05 duringK,=100 iterations
(6)
a3 =0.8 duringKs=100 iterations

as =1 duringK4=2000 iterations

\

The output fromMONOLIX consists in a series of graphs as well as a table of paranstierates
with their associated standard errors. Hypothesis tespegs a new window in which the two models
compared are specified and the corresponding criteria (AIC, B-likelihood) are shown after the
fit of each model is performed. Empirical Bayes Estimates (E&Hhe individual parameters are
obtained as the mean of the posterior distribution and thedstrd errors on these parameters (the

standard deviations of the posterior distribution) are a¢ported.
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LEGENDS FOR FIGURES

Figure 1. Estimates of the genetic fixed effect for the different pagtars in the model.

Figure 2: Empirical Bayes estimates of ke, Vc/F and g with the model without covariate.

Figure 3: BIC for the five models tested for each parameter: basic modeajéne effect), submodels

with Bet = BrT, Bec = BrT 0 Bec = BerT, full model with Bcc andfBr.

Figure 4: Concentration versus time data for digoxin, for the threeogygre classes for exon 26 poly-

morphism (in log-scale). Overlayed is the line correspogdo the predictions using the population

parameters in each group, for men.

Figure 5: Goodness of fit plots for the final model. Top: population jpreti concentrations versus

observed concentrations (left); individual predicted aamtrations versus observed concentrations

(right). Bottom: predicted concentrations (line) overldym observed concentrations (dots) for the

first man (left) and the first woman (right) in the dataset.
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Tables

";i" Table | : Estimates of the population pharmacokinetic parameterthéfinal model.
g
3 Parameter Population mean (SE as %) Variability as % (S&cas %)
g Ka (hr 1) 3.15 (20) 85 (32)
3
= ke (L.hr 1) 0.09 (6) 17 (63)
g V/F (L) 172.70 (5) 15 (30)
§ Bv.1T () -0.17 (31) ]
_% Tiag (r) 0.21 (8) 28 (42)
3
Briagwomen(") 0.43 (27) :
’ kiz (hrt) 0.32 (7) -
ko1 (hr1) 0.10 (7) -
o (%) 0.18 (4) -

T p=0.001 according to Wald test

t1 p=0.0002 according to Wald test

30




wsiydiowAjod 9z uoxa 10} S108l8 paxi

wnﬁu _ sqel, sqel, sqel, u>a _ PA, PA PA, g _ 19 _wv_u 2] mv_u _® ®j ©
11 10 1L 10 19 10 11 10 19 10 11 10 1Y 10 oL 10
| ] ] ] ] ] ] ] ] ] ] ]

—o——f

0T

ST

—

——i
e
—e—i
o——i

—o—

—p—i

00
[EAISIUI SIUSPLUOD pUR dewns3

s PA o 2

Figures
Figure 1 :

HAL author manuscript inserm-00146888, version 1




o o o d®m o  E o o o o o o o o E
[ ()
s S
o © op oo o -5 8 o o oo -5 8
[ [
O] O]
o o o ® |oco o0 ® ol 8 @0 oo o | o o o @ o - 8
T T T T T T T T T T
00T°0 G600 0600 G800 0800 2’0 [4A0] 0¢0 8T0 9T'0
19X jo sarewns3 safkeg [eouidwg Be|] jo serewns3 saAeg [eouidw3
o oco| @ omo ([ o o o o |o ooo o or E
[ ()
o o
o oo o o o o ok B o o o d oo o L5 £
o g o g
[ [
O] O]
o oo o $ © ocmooo | § o 00 o |0 ocoao o - 8
T T T T T T T T T T
aT oT S 0 0ce 00¢ 08T 09T ovT (o144
)y JO serewns3 saAeg [eouidwg PA Jo sarewns3 sakeg [eouidw3

(qV]
(O]
-
>

>

L

HAL author manuscript inserm-00146888, version 1




(N4 36 *10=02 ¥ 'L1=20 ‘€ 'L1=10 ' ‘diseq:T)1a)owelred yoes o} paIsal S|PPON

sqe | PA 19y )
: : : : |
v
ol
I T
T Lo
g -8 3
Z S
. g B
€ - 2
& e z 4 & 3
€ b 8
v Z -m
S 4
S c 3

(40]
(O]
-
>

>

L

HAL author manuscript inserm-00146888, version 1




1duosnuew Joyine vH

5
3
)
=
3
o
o
|_\
I
o
(o]
s}
o0
<
()
-
@,
o
=
|_\

Figure 4 :

TT

CT

CcC

o
T T T T T T
€0-39 £0-3¢ €0-9T ¥0-35 ¥0-9¢ v0-9T
o o o
T T T T T T
€0-35 €0-3¢ €0-9T ¥0-35 v0-9¢ v0-9T
00 O o o o
o o
T T T T T T
€0-39 £0-3¢ €0-9T ¥0-35 ¥0-3¢ v0-9T

(7/6w) suonenuasuod auixobig

40

30

20

10

40

30

20

10

40

30

20

10

Time (hr)

Time (hr)

Time (hr)



Figure 5:

I
7000

I I I I
€000 ¢000 T000 0000

suoeuasuoo palalpald [enpiaipul

o
8%6 6,
% o
o
) I
o
N °
o
OMU w ° B
B ooo
o%@o% ®o 9
o O%@uoe =
o Oomw [e)
o o ol
SEC]

I
000

I I I I
€000 ¢00'0 TOO'0O 0000

suolresuaduod paldlpald uonendod

HAL author manuscript

inserm-00146888, version 1

0.001 0.002 0.003 0.004

0.000

0.001 0.002 0.003 0.004

0.000

Observed concentrations

Observed concentrations

o ) °
T T T T T
0200’0 STO0O'0 OTOO'0 S000°0 00000
(7/6w) suoirenuadsuo)
00
T T T T T
0€000 02000 071000 00000

(7/6w) suonenuasuod

40

30

20

10

40

30

20

10

Time (hr)

Time (hr)




