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Summary 

Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA 

polymerase II (RNA pol II), facilitating transcriptional elongation. Beside its participation in general 

transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc or 

MyoD. The P-TEFb complex is composed of a cyclin dependent kinase (cdk9) subunit and a regulatory 

partner (cyclin T1, cyclin T2, or cyclin K). Since cdk9 has been shown to participate in differentiation 

processes, such as muscle cell differentiation, we studied a possible role of cdk9 in adipogenesis. In this 

study we show that the expression of the cdk9 p55 isoform is highly regulated during 3T3-L1 adipocyte 

differentiation at RNA and protein levels. Furthermore, cdk9, as well as cyclin T1 and cyclin T2, show 

differences in nuclear localization at distinct stages of adipogenesis. Overexpression of cdk9 increases the 

adipogenic potential of 3T3-L1 cells, whereas inhibition of cdk9 by specific cdk inhibitors, and dominant 

negative cdk9 mutant impairs adipogenesis. We show that the positive effects of cdk9 on the 

differentiation of 3T3-L1 cells are mediated by a direct interaction with and phosphorylation of PPARγ 

which is the master regulator of this process, on the promoter of PPARγ target genes. PPARγ-cdk9 

interaction results in increased transcriptional activity of PPARγ and therefore increased adipogenesis. 

 

Introduction 

Positive transcription elongation factor b (P-TEFb) facilitates transcription elongation through 

phosphorylation of RNA pol II carboxyl-terminal domain (CTD). The active core of P-TEFb comprises 

cyclin-dependent kinase 9 (cdk9) and a C-type regulatory cyclin (cyclin T1, T2, K) (reviewed in (1)). 

Cdk9 exist in mammalian cells in two isoforms, p42 cdk9 and p55 cdk9 with a tissue-specific expression 

pattern, responding to different signals (2). Both isoforms phosphorylate Ser-2 of multiple heptapeptide 

repeats of CTD RNA pol II releasing the repression action of the DRB sensitivity-inducing factor (DSIF) 

and the negative elongation factor (NELF). P-TEFb is required not only as a basic transcription elongation 

factor, but it is also recruited by some transcription factors to activate transcriptional elongation from 

specific promoters. For example, the requirement of cyclin T1/cdk9 complex by the HIV-1 Tat protein to 

efficiently elongate the viral RNA has been extensively studied (3, 4). Other transcription factors targeting 
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P-TEFb to the promoters of its target genes include MyoD (5), c-Myc (6), STAT3 (7), NFκB (8), 

androgen receptor (AR) (9), and the aryl hydrocarbon receptor (10), implicating cyclin T/cdk9 complex in 

the regulation of cellular processes such as heat-shock response, antigen presentation and processing, 

apoptosis, muscle cell differentiation, cell growth,  or cell proliferation. Moreover, interaction of c-Myc 

with cyclin T1 and cdk9 results in efficient transcription of c-Myc target genes, and inhibition of cdk9 

with DRB, at a concentration that is not inhibiting the general transcription process, results in the block of 

c-Myc induced proliferation and apoptosis (6). Of particular interest is the participation of P-TEFb in 

differentiation processes. Interaction of cdk9 with MyoD results in increased differentiation of muscle 

cells. Interestingly, MyoD interacted with, and was phosphorylated by cyclin T2/cdk9 complex, whereas 

c-Myc and NFκB were shown to recruit the cdk9/cyclin T1 complex (5). Hence, the specificity of the 

interaction might be dictated by the cyclin T component of the P-TEFb complex (1). Cdk9 is also required 

for the monocyte differentiation program. In these cells, cyclin T1 is highly induced upon stimulation with 

PMA (11). High levels of expression of cyclin T1 and T2, as well as cdk9 in differentiated tissues suggest 

the participation of P-TEFb in the activation or maintenance of specific differentiation processes (12, 13). 

Interestingly, white adipose tissue showed very high level of expression of cyclin T1 (12). All these 

studies prompted us to investigate the role of P-TEFb in the adipocyte differentiation process.  

Adipogenesis is a particular system, which involves two major events: preadipocyte proliferation 

and adipocyte differentiation. Upon reaching confluence, proliferative preadipocytes become growth 

arrested by contact inhibition. Those cells re-enter cell cycle after hormonal induction, arrest proliferation 

again and undergo terminal adipocyte differentiation. This last stage is characterized by the coordinated 

expression of specific genes that will finally determine the specific adipocyte phenotype of the cells. The 

major regulator of terminal adipocyte differentiation is the peroxisome proliferator-activated receptor 

gamma (PPARγ  (reviewed in (14, 15)), which is induced during the initial phases of these terminal stages 

of adipogenesis by C/EBPβ and δ, as well as by E2F1 (16) PPARγ, upon activation by either fatty acid 

derivatives or antidiabetic thiazolidinediones, drives the expression of several adipocyte-specific genes, 

such as the fatty acid binding protein (aP2) thus transforming the cell into the characteristic lipid rich 

adipocyte (17). Subsequent studies have demonstrated that ectopic expression of PPARγ further induces 
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adipocyte differentiation (18). This pivotal role of PPARγ in adipocyte differentiation is also highlighted 

by the phenotype observed in humans with mutations in the PPARγ gene and by PPARγ deficient mice 

which are essentially devoid of white adipose tissue (19). 

In this study we show that cyclin T1, T2, and cdk9 are expressed in adipocytes. Furthermore, cdk9 activity 

is increased during adipocyte differentiation. We show that inhibition of cdk9 activity impairs 

adipogenesis, whereas ectopically expressed cdk9 is highly adipogenic in 3T3-L1 cells. The adipogenic 

effects of cdk9 are mediated by the induction of PPARγ transcriptional activity through direct 

phosphorylation. Finally, we show that PPARγ is complexed with P-TEFb on promoters of PPARγ target 

genes. 

 

Results 

P-TEFb is expressed and active in differentiated adipocytes 

While evaluating the participation of the P-TEFb complex in adipocyte differentiation we found that cdk9 

was expressed at all stages of differentiation of 3T3-L1 preadipocytes, both at the RNA and protein level 

(Fig.1A-B). Interestingly, western blot analysis as well as RNA quantification showed that the expression 

of p55 cdk9 protein isoform was strongly increased during adipocyte differentiation, whereas p42 cdk9 

expression was unchanged (Fig.1A-B). No differences in the expression of cyclin T1 or cyclin T2 were 

observed (data not shown). aP2 mRNA expression was quantified as a marker of differentiation (Fig. 1C). 

To further study the expression of P-TEFb during adipogenesis, immunofluorescence analyses were 

performed. During early stages of differentiation of 3T3-L1 cells cdk9 was evenly distributed between the 

cytoplasm and the nucleus (Fig. 1D; days 0 and 1). Starting at day 3, cdk9 expression became more 

prominent in the nuclear compartment (Fig. 1D). Strikingly, at this stage of differentiation coexpression of 

cdk9 with PPARγ in the nucleus of differentiating cells could be observed (Fig. 1D; days 3,8). Similar 

results were observed when the expression of cyclins T1 and T2 were analyzed (supplemental Fig. 1). 

Furthermore, immunoprecipitated cdk9 from differentiated adipocytes was able to phosphorylate purified 

recombinant RNA pol II CTD, showing a gradual increase in cdk9 activity as, as measured by the level of 

RNA pol II CTD phosphorylation, indicating that cdk9 was indeed active in adipocytes (Fig. 1E). This 

H
A

L author m
anuscript    inserm

-00144653, version 1



Cdk9 and adipogenesis                                                                                                                                Iankova et al. 

 5 

was consistent with the increase in nuclear localization of cdk9 at the same stages of adipocyte 

differentiation (Fig. 1D). 

These results suggested a role of P-TEFb in adipose tissue biology and differentiation. 

 

DRB inhibition of cdk9 results in impaired clonal expansion and terminal adipocyte differentiation 

To further assess the role of cdk9 in the differentiation of 3T3-L1 cells, cdk9 activity was inhibited using 

5,6-dichloro-1-β-ribofuranosyl-benzimidazole (DRB). 3T3-L1 cells treated with either vehicle or DRB 

were compared for their ability to differentiate into adipocytes. After 8 days in differentiation media, 

normal lipid accumulation was observed in control cells whereas a dose-dependent decrease in lipid 

accumulation was observed in cells treated with DRB, as showed by Oil Red O staining (Fig. 2A). 

Quantitative RT-PCR performed on differentiated 3T3-L1 cells confirmed a DRB dose-dependent 

decrease in expression of the PPARγ target gene aP2, which is a marker of adipocytes (Fig. 2B). 3T3-L1 

preadipocytes re-enter cell cycle after hormonal induction of differentiation (the clonal expansion phase). 

Since this is a required event of these cells before terminal differentiation into adipocytes, we next 

explored the hypothesis that cdk9 participates in adipogenesis through the control of cell cycle during the 

clonal expansion phase. A decrease in cell proliferation during the clonal expansion phase (days 1 and 2) 

was observed, as measured by BrdU incorporation assays, in cells treated with DRB compared to cells 

treated with vehicle (Fig. 2C). This indicated that inhibition of cdk9 by DRB suppressed, at least in part 

the clonal expansion phase of adipogenesis. Furthermore, the decrease in cyclin B1 mRNA expression at 

day 1 of differentiation in cells treated with DRB suggested that cdk9 could participate in the control of 

the G2/M transition (Fig. 2D). No differences in the expression of cyclin D1 or DHFR were observed at 

this stage, whereas a significant reduction in the expression of these genes was observed at day 2 of 

differentiation (Fig. 2D). To further elucidate whether the role of cdk9 was limited to the regulation of the 

clonal expansion phase of adipocyte differentiation, cdk9 activity was inhibited starting at day 3 of 

differentiation. At this particular stage 3T3-L1 cells are quiescent and have already gone through the 

clonal expansion phase (data not shown). Five days after (day 8) treatment, oil-red-O staining indicated an 

inhibitory dose-dependent effect of DRB in lipid accumulation (Fig. 2E). A dose-dependent decrease in 
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aP2 mRNA expression in DRB treated cells further demonstrated inhibition of adipogenesis (Fig. 2F). 

These results suggested that cdk9 has a dual role in adipogenesis, i.e. a first role promoting the clonal 

expansion phase, and a second role promoting terminal differentiation. 

 

Impaired expression of cdk9 modulates adipogenesis 

The observed effects of DRB in adipogenesis could be the result of the inhibition of kinases other than 

cdk9. To prove the implication of cdk9, a 3T3-L1 cell line overexpressing a dominant negative, kinase 

dead cdk9 (DNcdk9) was created. Oil-red-o staining indicated that after 8 days in differentiation medium, 

these cells lost their capacity to differentiate into adipocytes, compared to cells expressing an empty 

vector (Fig. 3A). Overexpression of DNcdk9 was assessed by PCR assay (Fig. 3A, bottom panel). 

Inhibition of adipogenesis was further proved by decreased aP2 mRNA expression in DNcdk9 cells (Fig. 

3B).  

Since inhibition of cdk9 activity resulted in decreased adipocyte differentiation, we next tested whether 

overexpressing cdk9 could accelerate this process. To test this hypothesis, we created stable cell lines 

expressing the pcDNA3-cdk9 and control vector. Overexpression of cdk9 in these cells was demonstrated 

by western blot analysis (Fig. 3C, bottom panel). After 4 days of differentiation only a small proportion of 

cells expressing a control vector were differentiated (Fig. 3A-B), whereas a strong increase in lipid 

accumulation and up-regulation of adipogenic mRNA markers was observed in cells over expressing cdk9 

(Fig. 3C-D), further demonstrating that cdk9 is an adipogenic factor.  

 

Cdk9 increases PPARγγγγ activity 

Since P-TEFb has an impact on adipogenesis we tested whether these effects could be mediated by 

PPARγ, which is the master regulator of adipocyte differentiation. To analyse the influence of cdk9 on 

PPARγ activity we performed cotransfection experiments using a PPARγ responsive, luciferase-based, 

reporter construct (PPRE-TK-Luc) and expression vectors for PPARγ, and cdk9. A cdk9 dose-dependent 

induction of luciferase activity was observed in the presence of PPARγ both in the presence and absence 

of the PPARγ agonist rosiglitazone (Fig. 4A). To further prove that the effects of cdk9 on the PPARγ 
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responsive promoter were mediated by PPARγ a chimeric Gal4-PPARγ construct containing the Gal4 

DNA-binding domain fused to either the PPARγ AB that contains the ligand-independent PPARγ 

transactivating domain, or the PPARγ LBD that contains the ligand dependent transactivating domain 

were used in combination with a Gal4 responsive, luciferase-based reporter construct (UAS-TK-Luc). 

Consistent with the results using a PPRE-TK-Luc, a robust dose-dependent increase in luciferase activity 

was observed when cdk9 was cotransfected with the Gal4-PPARγ AB construct (Fig. 4B). No effects of 

cdk9 were observed when the Gal4-PPARγ LBD construct was used either in the presence or absence of 

rosiglitazone (Fig. 4B). These results demonstrated that cdk9 modulates PPARγ activity. This was further 

proved by the observation that cdk9 inactivation by cotransfection of a dominant-negative cdk9 expression 

vector resulted in the attenuation of PPARγ activation by rosiglitazone (Fig. 4C). Moreover, inactivation 

of cdk9 kinase activity by DRB resulted in a complete inhibition of PPARγ activity (Fig. 4D). Finally to 

ascertain that cdk9 activates PPARγ-mediated transcription, chromatin immunoprecipitation studies on the 

aP2 promoter, which is a known PPARγ target gene, were performed in both non-differentiated and 

differentiated 3T3-L1 adipocytes. A 200 bp fragment of the mouse aP2 promoter, containing the binding 

site of PPARγ was amplified by PCR when anti-cdk9, anti-PPARγ, or anti-acetylated histone H4 

antibodies were used to immunoprecipitate chromatin from differentiated 3T3-L1 cells (Fig. 4E, upper 

panel). No amplification product was observed when immunoprecipitated chromatin from confluent, non-

differentiated 3T3-L1 preadipocytes was used as template, or when chromatin was immunoprecipitated 

using an irrelevant antibody, or when a non-PPRE containing region of the aP2 or GAPDH promoter were 

used as template (Fig. 4E), demonstrating the specificity of the binding. The results of the ChIP assays 

demonstrate that the complex cdk9-PPARγ is present on the promoter of a PPARγ target gene. 

Furthermore, the presence of acetylated histone H4 on the PPARγ binding site of the aP2 promoter 

suggests that, in the presence of cdk9, this promoter is active. These results suggest that P-TEFb’s 

stimulatory role during adipogenesis is likely the result of its ability to modulate PPARγ activity. 

Cdk9 physically interacts with PPARγγγγ  

To test whether the induction of PPARγ activity in the presence of P-TEFb is the consequence of a direct 

interaction between PPARγ and cdk9, nuclear extracts from COS cells transfected with cdk9 and PPARγ 
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expression vectors were immunoprecipitated with cdk9, or irrelevant antibodies. PPARγ protein could be 

detected in cdk9 immunoprecipitates as assessed by western-blot analysis (Fig. 5A), suggesting that a 

PPARγ-cdk9 complex is present in these cells. To identify the PPARγ domain responsible for the 

interaction, GST- PPARγ fusion proteins containing different PPARγ domains were incubated with in-

vitro translated 
35

S-radiolabeled cdk9 (Fig. 5B). Interestingly we found that cdk9 bind to both the A/B and 

DE domains of PPARγ (Fig. 5C-D). In particular, cdk9 bound to a region from aa 1-72 and 292-399. Same 

results were observed when cyclin T1 or T2 were used instead of cdk9 (data not shown). These results 

further demonstrated a direct interaction between cdk9 and PPARγ.  

 

Cdk9 phosphorylates PPARγγγγ 

Cdk9 is a cyclin dependent kinase that modulates the activity of its substrates through phosphorylation. 

We wanted therefore to test whether modulation of PPARγ activity implicated its phosphorylation by 

cdk9. Overexpression of cdk9 and cyclin T in Saos cells, resulted in the accumulation of the 

phosphorylated form of PPARγ as assessed by western blot analysis (Fig. 6A), suggesting that PPARγ 

could be a target for cdk9. Moreover, immunoprecipitated cdk9 from 293 cells was able to in vitro 

phosphorylate purified full length GST-PPARγ, whereas neither GST alone or GST-PPARγ LBD, which 

contains the PPARγ ligand binding domain were phosphorylated by cdk9 (Fig. 6B). In contrast, GST-

PPARγ A/B, which contains the PPARγ A/B domain was indeed phosphorylated by cdk9 (Fig. 6B). The 

PPARγ A/B domain contains S112 which has been shown to be phosphorylated by other serine-threonine 

kinases, such as cdk7. To investigate whether this residue was the target for cdk9, S112 was replaced by 

an alanine (S112A). GST-PPARγ A/B-S112 was not phosphorylated by cdk9 (Fig. 6B, right panel). These 

results demonstrate that cdk9 phosphorylates PPARγ at S112. To further elucidate how PPARγ 

phosphorylation could influence its transcriptional activity, we correlated the expression of the PPARγ 

target gene aP2 with the phosphorylation status of PPARγ. As expected, 3T3-L1 adipocytes treated with 

rosiglitazone increased the expression of aP2 (Fig. 6C). This effect was blunted by the addition of the 

PPARγ antagonist GW9662 (Fig. 6B). Strikingly, maximal aP2 induction correlated with the 

accumulation of the PPARγ phosphorylated forms (Fig. 6D). Similarly, the observed decrease in aP2 
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expression upon incubation with GW9662 correlated with a switch to non-phosphorylated PPARγ (Fig. 

6D). Furthermore, incubation of 3T3-L1 adipocytes with the cdk9 inhibitor DRB resulted in a decrease in 

aP2 mRNA expression to the levels observed in cells treated with the PPARγ antagonist GW9662 

(Fig.6E). Interestingly, PPARγ phosphorylation was inhibited when cells were incubated with DRB (Fig. 

6F). Quantification of the relative intensity of the bands demonstrated that the observed reduction in 

PPARγ phosphorylation levels was similar to what observed using the PPARγ antagonist GW9662 (Fig. 

6D and 6F). Over all these results suggested that phosphorylation by cdk9 increases PPARγ activity. 

Further supporting this hypothesis was the observation that, in differentiated adipocytes, phosphorylated 

PPARγ is complexed with the aP2 promoter as demonstrated by ChIP assays (Fig. 6G). Coincident with 

phospho-PPARγ is the presence of cdk9 and acetylated histone H4 in the aP2 PPRE, indicating that under 

these conditions the promoter is active (Fig. 6G). 

 

Cdk9 has a role in adipocyte biology 

Besides its participation in adipocyte differentiation PPARγ also plays a major role in adipocyte biology 

through regulation of genes implicated mainly in lipogenesis. Since cdk9 modulates PPARγ activity we 

asked whether cdk9 could also participate in these processes. First, we analysed the mRNA expression of 

lipogenic genes such as aP2, lipoprotein lipase (LPL), stearoyl CoA desaturase (SCD1), and fatty acid 

synthase (FAS). DRB treatment of 3T3-L1 adipocytes resulted in the inhibition of the expression of aP2, 

LPL, SCD1, and FAS (Fig. 7A), whereas no changes in the expression of genes implicated in lipolysis 

were observed (data not shown). These results suggested that similar to PPARγ, cdk9 could also be 

implicated in lipogenesis. Interestingly, expression of cdk9 was strongly increased in adipose tissue of 

mice fed a high fat diet (Fig. 7B). Furthermore, genetically obese db/db mice expressed high levels of 

cdk9 mRNA in adipose tissue compared to control non-obese mice (Fig. 7C).  
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Discussion 

General transcription is regulated by the activity of RNA pol II. The P-TEFb complex plays a crucial role 

in the control of transcriptional elongation through phosphorylation of CTD of RNA pol II. Increasing 

evidence suggest that P-TEFb also participates in the transcriptional regulation of specific genes through 

recruitment to specific promoters by particular transcription factors. Such is the case for c-Myc (20), 

NFκB (8), AR (9), and MyoD (5). As a result of the regulation of specific genes, P-TEFb coordinates 

cellular processes ranging from apoptosis, monocyte differentiation, or myogenesis (reviewed in (21)). In 

this study, we analysed the participation of cdk9 in adipocyte differentiation and we found that cdk9 was 

required for adipogenesis. This is supported by several observations. First, expression of cdk9p55 is 

highly upregulated during adipocyte differentiation (Fig. 1). Second, cdk9 activity is increased during 

adipogenesis (Fig. 1). Third, overexpression of cdk9 results in increased adipogenesis, whereas inhibition 

of cdk9 impairs the adipogenic potential of the cells (Fig. 2-3). Finally, cdk9 increases PPARγ activity 

through direct interaction with PPARγ on the promoters of PPARγ target genes (Fig. 4). The central role 

of PPARγ in adipose tissue differentiation and biology has been largely demonstrated. Consequently, any 

factor modulating PPARγ activity, and such is the case for cdk9, will have a major impact on adipocyte 

differentiation. 

A similar scenario has been observed for the transcription factor MyoD. In this case, cdk9 phosphorylates 

MyoD and increases its transcriptional activity (5). Similarly, PPARγ is also phosphorylated by the P-

TEFb complex, which may account for the observed effects of cdk9 on PPARγ activity. Interestingly, 

PPARγ is phosphorylated at S112, exactly the same residue previously reported to be phosphorylated by 

MAPK and cdk7 (22-24). The effects of PPARγ phosphorylation on PPARγ activity are so far 

inconsistent. MAPK phosphorylation of PPARγ has been reported to inhibit its activity (22, 23), whereas 

phosphorylation by cdk7 has been shown to be required for PPARγ-mediated transactivation (24). Our 

results are in agreement with this last study, and show that PPARγ phosphorylation by cdk9 results in 

PPARγ activation. Three different observations support this hypothesis. First, cdk9 mediates PPARγ 

activation in transient transfection assays (Fig. 4). Second, PPARγ phosphorylation correlates with PPARγ 
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maximal activity in transactivation of target genes (Fig. 6). Finally, phosphorylated PPARγ is complexed 

to the active promoters of target genes together with cdk9 (Fig. 6). How can phosphorylation of PPARγ at 

the same residue by different kinases result in either activation or repression of this transcription factor? 

One possible explanation is cofactor recruitment. The interaction of PPARγ with either kinase could 

modulate the interaction of PPARγ with different cofactors. In the case of MAPK, the interaction could 

result in the recruitment of corepressors, whereas for cdk7 and cdk9, the interaction could result in the 

recruitment of coactivators and the general transcriptional machinery. Coactivators recruitment is likely 

not the case, since we did not observe any difference in cofactors recruitment to PPARγ in the absence or 

presence of cdk9 (data not shown). Alternatively, phosphorylation of PPARγ might be required for 

optimal activation. The effects observed upon MAPK inactivation on PPARγ could be indirect, such as 

replacement of PPARγ by a more potent transcription factor. Unfortunately no data is available on the 

presence of PPARγ on the promoters of its target genes when MAPK inhibitors are used. Since 

phosphorylation of PPARγ coincides with RNA pol II CTD phosphorylation, we believe that PPARγ 

could tether the P-TEFb complex to the RNA pol II complex, facilitating phosphorylation and therefore 

elongation of the transcription of its target gene. This is the mechanism that has been suggested to explain 

the positive effects on the transcription of AR (9), AhR (10), or NFκB (8) mediated by the interaction of 

cdk9 with these transcription factors. In contrast to this, another mechanism of regulation of pTEFb 

activity was recently described for the glucocorticoid receptor (GR). In this scenario GR inhibits pTEFb 

activity by competing for binding to RelA and p50 complex on the promoter of the IL-8 gene, resulting in 

the repression of this gene (25). 

The analysis of the expression of cdk9 during adipocyte differentiation showed that the recently identified 

cdk9 isoform, p55, which is transcribed from an alternative promoter (2) increases during differentiation. 

This pattern of expression of p55cdk9 is suggestive of being a PPARγ target gene. Interestingly, we have 

identified a highly conserved PPAR−responsive element in the promoter of p55cdk9 (data not shown). 

Regulation of cdk9 expression by PPARγ would result in a positive feed-back loop increasing the 

availability of cdk9 to activate PPARγ-mediated transcription.  
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During adipocyte differentiation, which is a highly coordinated process, only a subset of genes are 

activated resulting in the specific adipocyte phenotype (reviewed in (15)). This selective transcriptional 

activation supports the idea that the effects of cdk9 are rather gene specific than an effect on general 

transcription in the context of adipogenesis, and likely in other differentiation processes. Most interesting 

is the fact that cdk9 could participate in adipose tissue biology in addition to adipocyte differentiation. In 

differentiated adipocytes cdk9 inactivation results in the inhibition of the expression of genes implicated 

in lipogenesis, which is consistent with the increased expression of cdk9 that we found in mouse models 

of obesity. This may have important therapeutical implications, for instance in the context of obesity. 

Studies on the effects of specific cdk9 inhibitors in adiposity in mice are currently ongoing.  

In summary, in this study we provide evidence that the nuclear receptor PPARγ uses the P-TEFb complex 

to stimulate the transcription of its target genes to drive adipogenesis. 

 

 

Materials and methods 

Materials   

All chemicals, except if stated otherwise, were purchased from Sigma (St-Louis, MO). Pioglitazone was a 

kind gift of Takeda Pharmaceuticals (Osaka, Japan) and rosiglitazone was kindly provided by Novo 

Nordisk A/S (Bagsvaerd, Denmark). Anti-cdk9 C-20 antibody, anti-cyclin T2 S-14 antibody, anti-PPARγ 

E-8 antibody, anti-PPARγ H-100 antibody, and anti-histone H1 FL-219 antibody were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA). Anti-cdk9 ab6544 antibody, anti-cyclin T1 ab2098 antibody, 

and the acetylated histone H4 (Lys 9) antibody were from Abcam Ltd (Cambridge, UK). Anti-

phosphoPPARγ (Ser112) antibody was purchased from Euromedex (Mundolsheim, France), The RNA 

polymerase II carboxy-terminal domain (CTD) purified protein was purchased from ProteinOne 

(Bethesda, MD). 

Plasmids and oligonucleotides  

PBSK and pcDNA3 vectors were purchased from Stratagene (La Jolla, CA). GST-PPARγ AB, GST-

PPARγ DE, PPRE-TK-Luc, and the PPARγexpression vector were previously described (26, 27). GST-
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PPARγ deletion mutants were generated by PCR and inserted into pGEX-4T-1 vector. A pCMV β-

galactosidase vector was used as an internal control for transfection efficiency in mammalian cells. PCMV 

Sp6-cdk9, pCMV Sp6.1-cyclinT2 and pCMV Sp6-cyclin T1 expression vectors were purchased from 

MRC geneservice (Cambridge, UK), a distributor for the Mammalian Gene Collection. The pCMV-

dominant negative cdk9 HA-tagged (DNcdk9) vector was a kind gift from Monsef Benkirane. Dominant 

negative cdk9 is containing a point mutation at nucleotide 563, which converts Asp to Asn. Following 

plasmids were kindly provided from Karsten Kristiansen: upstream activating sequence UAS-TK-luc 

reporter, pSG5-cdk9, pRc/CMV-cyclin T1, pcDNA3.1-PPARγ2, Gal4-PPARγ A/B, Gal4-PPARγ LBD, 

pGEX-5X-2 GST-PPARγ2 full-length, GST-PPARγ2 LBD, GST-PPARγ2 A/B, and GST-PPARγ2 A/B 

S112A. Oligonucleotides used in ChIP assays to amplify the mouse aP2 promoter in PPRE region are 5’ -

GAGCCATGCGGATTCTTG- 3’ and 5' -CCAGGAGCGGCTTGATT GTTA- 3'; for nonPPRE region of 

the aP2 promoter: 5’ CAGCCCCACATCCCCACAGC and 3’ GGATGCCCAACAACAGCCACAC; and 

for mouse GAPDH promoter amplification: 5’ AAGGCTGGTGCTGTGGAGAAACTG and 3’ 

GTCCCCTTGCAACATACATAACTG. Oligonucleotides used for real time PCR experiments are the 

following in 5’ to 3’ orientation: cdk9p42 forward, GCCAAGATCGGCCAAGGCAC; cdk9p42 reverse, 

CAGCCCAGCAAGGTCATGCTC; cdk9p55 forward, CCTCTGCAGCTCCG GCTCCC; cdk9p55 

reverse, CACTCCAGGCCCCTCCGCGG; T7 promoter GTAATACGACTCACTCACTATAGGG; aP2 

forward, AACACCGAGATTTCCTTCAA; aP2 reverse, AGTCACGCCTTTCATAACACA; 18s forward, 

GTTCCGACCATAAACGATGCC; 18s reverse, TGGTGGTGCCCTTCCGTC AAT; LPL forward, 

GAGACCAAGAGAAGCAGCAAGATGT; LPL reverse, AGTCGGGCCAGCTGAAGTAGGAGT; 

SCD1 forward, TGGGTTGGCTGCTTGTG; SCD1 reverse, GCGCTGGGCAGGATGAAG; FAS 

forward, TGCTCCCAGCTGCAGGC; FAS reverse, GCCCGGTAGCTCTGGGTGTA.  

RNA isolation, Reverse transcription and Real Time PCR 

RNA was purified using an RNeasy Mini Kit of Qiagen (Hilden, Germany). Reverse transcription of total 

RNA was performed at 37°C using the M-MLV reverse transcriptase (Invitrogen SARL, France) and 

random hexanucleotides primers (Promega, Madison, WI), followed by a 15 min inactivation at 70°C. 

Quantitative PCR was carried out by Real Time PCR using a LightCycler and the DNA double strand 
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specific SYBR Green I dye for detection (Roche, Basel, Switzerland). Results were then normalized to 

18s levels.  

Cell culture, Cell differentiation and Transfections 

NIH-3T3, COS, 293 and 3T3-L1 cells were grown in DMEM supplemented with 10% fœtal bovine serum 

(FBS), 100U/ml penicillin and 100µg/ml streptomycin in a humidified atmosphere of 5% CO2 at 37°C. 

3T3-L1 cells were differentiated with DMEM, 10% serum, 0,5mM 3-Isobutyl-1methylxanthine (IBMX), 

10µg/ml insulin, 1µM dexamethasone and 100nM pioglitazone for 2 days. From the day 3 on, cells were 

incubated with DMEM, 10% serum, 10µg/ml insulin, and 100nM pioglitazone. Oil Red O staining was 

performed as described (28). Transfections were performed using the Jet PEI reagent (Qbiogene, Irvine, 

CA). Rosiglitazone was used at the concentration of 1µM. The luciferase and β-galactosidase activities 

were measured as described (29). For stable transfections, Jet PEI was mixed with plasmid DNA, 

according to the manufacturer's instructions, and the mixtures were left on the cells in the incubator for 4 

hr. Twenty-four hr following transfections, G418 or puromycin (Invitrogen SARL, France) was added at a 

final concentration of 1mg/ml or 2.5 µg/ml respectively. The medium plus G418 or puromycin was 

replaced 3 times/week until no surviving cells were observed.  

Protein expression assays  

For nuclear extracts cells were homogenized in a lysis buffer containing 10mM Hepes pH7.9, 10mM KCl, 

0.1mM EDTA, 0.1mM EGTA, 0.1% Nonidet P-40 (MP Biomedicals, Aurora, OH), and 1mM 

dithiothreitol. A protease inhibitor cocktail was added (Sigma). Lysates were centrifuged and resuspended 

in a buffer containing 20mM Hepes pH 7.9, 1mM EDTA, 1mM EGTA, 0.4M NaCl, 1mM dithiothreitol 

and protease inhibitor cocktail. Protein concentrations were determined by Bradford method (Bio-Rad, 

Hercules, CA).  SDS-PAGE and electrotransfer was performed as described (30). The membranes were 

blocked 1h in blocking buffer (PBS, 0,5% Tween-20, 5% skimmed milk). Filters were first incubated 

overnight at 4
o
C with the indicated primary antibodies, and then for 1h at room temperature with a 

peroxidase conjugate secondary antibody. The complex was visualized with enhanced chemiluminescence 

(ECL) (Interchim, France). 

Immunofluorescence in 3T3-L1 cells  
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For all immunofluorescence experiments cells were grown on coverslips. After fixation and 

permeabilization with 100% methanol, cells were incubated with antibodies directed against cdk9 (Abcam 

Ltd, UK), cyclin T1 (Abcam Ltd, UK) and PPAR gamma (Santa Cruz Biotechnology, CA). For cyclin T2 

detection cells were fixed with 4% formaldehyde, then permeabilized with 0.1% Triton X-100 (Sigma) 

and incubated with cyclin T2 antibody (Santa Cruz Biotechnology, CA). Preparations were then incubated 

with a combination of Texas Red -conjugated anti-mouse IgG and FITC -conjugated anti-rabbit IgG 

(Jackson ImmunoResearch, West Grove, PA), or FITC-conjugated anti-goat IgG (Santa Cruz 

Biotechnology, CA). 

Coimmunoprecipitation and chromatin immunoprecipitation (ChIP) assays  

For co-immunoprecipitation assays whole cell extracts were precleared with protein A-agarose beads 

(Roche) during 30 minutes at room temperature, an aliquote of the precleared lysates was saved as input. 

Extracts were then centrifuged (5 minutes at 3000rpm) and supernatants were immunoprecipitated with 

the indicated specific antibodies overnight at 4°C, rabbit IgGs (Sigma, St-Louis, MO) were used as 

negative control (mock). Immunoprecipitates were then washed twice with IP buffer (150mM NaCl, 1% 

NP40, 50mM Tris/HCl pH8 and protease inhibitor cocktail) and three times with washing buffer (0,25M 

KCl in PBS) and subjected to SDS-PAGE electrophoresis. Chromatin immunoprecipitation assays were 

performed as described previously (31). Briefly, proteins were formaldehyde cross-linked to DNA in 

confluent 3T3-L1 preadipocytes before induction of differentiation or in cells induced with differentiation 

medium for 7 days. Proteins were then immunoprecipitated using the indicated antibodies, rabbit IgGs or 

beads were used as mock, DNA was extracted from the immunoprecipitates and PCR amplification was 

performed using promoter-specific oligonucleotide primers. 

Pull-down assays 

In vitro translation of pCMV-cdk9 was performed with 
35

S-methionine (Perkin Elmer, Boston, MA) in a 

TNT-coupled transcription-translation system, as described by the manufacturer (Promega, Madison, WI). 

GST fusion or GST alone were expressed in Escherichia Coli, and purified on glutathione-sepharose-4B 

beads (Amersham Biosciences, Uppsala, Sweden). For in vitro binding GST, GST-PPARγ AB, GST-

PPARγ DE and GST-PPARγ deletion mutants were incubated with the labeled protein in 1 ml binding 
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buffer containing 300mM NaCl, 0.5% Triton-X-100, 50mM Tris pH8, and 2mM EDTA at room 

temperature for 1 hr. Beads were washed five times with the same buffer. The proteins were visualized by 

autoradiography after SDS-PAGE electrophoresis. 

Kinase assays 

Immunoprecipitated cdk9 from 3T3-L1 cells at different stages of differentiation was used as kinase. 

Immunoprecipitates were washed once with kinase buffer (25mM Tris/HCl pH7.5, 150mM NaCl, 10mM 

MgCl2, 1mM DTT and protease inhibitor cocktail) in the presence of a protease inhibitor cocktail (Sigma, 

St-Louis, MO) and phosphatase inhibitors (5mM Na4P2O7, 50mM NaF, 1mM vanadate). Kinase assay was 

performed during 30 minutes at 37°C in the presence of 40M ATP and 8µCi γ
33

P-ATP; purified RNA 

polymerase CTD or GST, GST-PPARγ2 A/B, GST-PPARγ A/B S112A, GST-PPARγ LBD or GST-

PPARγ2 full-length were used as substrates.  Reaction was stopped boiling the samples during 5 minutes 

in the presence of denaturing sample buffer. Samples were then subjected to SDS-PAGE electrophoresis; 

gels were then dried in a gel dryer for 1h at 80
o
C and exposed to an X-ray film.  
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Figure Legends 

Figure 1. Expression of cdk9 during 3T3-L1 differentiation 

(A) Western blot analysis of nuclear extracts prepared at different days of adipocyte differentiation of 

3T3-L1 cells. The proteins detected with specific antibodies are indicated. Histone H1 is used as a load 

control marker. 

(B-C) Quantification of mRNA expression levels by real time PCR of the long form (cdk9p55) and total 

cdk9 (B), and of the adipogenic marker aP2 (C) at the indicated times of differentiation. Results were 

normalized by the expression level of 18s RNA.  

(D) Comparative analysis of PPARγ and cdk9 expression by immunofluorescence in 3T3-L1 cells induced 

to differentiate. Days of differentiation indicate proliferating (day -1), confluent (day 0), re-entry into cell 

cycle (day 1), early differentiation (day 3), and terminally differentiated (day 8) cells. PPARγ expressing 

cells are labeled in red whereas cdk9 expressing cells are in green. Nuclei were visualized with Hoechst 

staining. 

(E) In vitro kinase assay using immunoprecipitated cdk9 from 3T3-L1 cells at different stages of 

differentiation. Purified human RNA polymerase II carboxy-terminal domain (CTD) was used as 

substrate. 

 

Figure 2.  Effects of Cdk9 on adipogenesis  

(A-E). Representative micrographs of oil-red-O staining of 3T3-L1 cells differentiated in vitro for 8 days 

in the presence or absence of the indicated concentrations of the specific cdk9 inhibitor DRB added either 

at the induction of differentiation (A) or two days after induction (E). mRNA of differentiated cells was 

analysed for the expression of the adipocyte marker aP2 by quantitative PCR in response to DRB added 

either before (B) or after (F) the clonal expansion phase. Results were normalized by the expression of the 

βactin RNA. Cell cycle status of the cells was analysed by quantification of BrdU incorporation either in 

the absence or presence of 30 µM DRB added before the clonal expansion phase (C). mRNA expression 
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of cyclin B1, DHFR, and cyclin D1 was quantified at different times of adipocyte differentiation (d0, d1, 

d2) in the absence or in the presence of DRB added before the clonal expansion phase (D). 

 

Figure 3. Cdk9 promotes adipogenesis 

(A) Micrographs of Oil Red O staining of 3T3L1 adipocytes expressing either an empty vector (control) 

or a vector encoding a dominant negative cdk9 mutant (DNcdk9) 8 days after induction of differentiation. 

The expression of DNcdk9 is visualized by PCR using T7 and cdk9_42 reverse primers (see Materials and 

methods) (lower panel).  

(B) mRNA expression of aP2, analysed by real-time PCR, of cells used in (A). Results were normalized 

by the expression of the 18s RNA. 

(C) Representative micrographs of Oil Red O staining of 3T3L1 adipocytes expressing either an empty 

vector (pcDNA3-3T3L1) or a vector encoding cdk9 (cdk9-3T3L1) 4 days after induction of 

differentiation. Overexpression of cdk9 in cdk9-3T3L1 cells is visualized by Western blot (lower panel). 

Histone H1 was used as a load control marker. 

(D) mRNA expression of aP2, analysed by real-time PCR, of cells used in (C). Results were normalized 

by the expression of the 18s RNA. 

 

Figure 4. Cdk9 modulates PPARγγγγ-mediated transactivation in vitro and in vivo 

(A) Activity of the PPRE-TK-luc reporter transfected in NIH-3T3 cells in the presence or absence of the 

PPARγ agonist rosiglitazone. Cells were transfected with an expression vector encoding PPARγ and with 

the indicated amounts of expression vector coding for cdk9. The luciferase activity was measured and 

normalized to the expression of a β-gal-encoding plasmid. Activity is presented relative to the values 

obtained in cells transfected with PPARγ and treated with DMSO.  

(B) Relative luciferase activity as determined after transfection of NIH-3T3 cells with the Gal4-responsive 

reporter construct UAS-TK-Luc. Cells were transfected with an expression vector for Gal4-PPARγ A/B 

fusion protein or Gal4-PPARγ LBD fusion protein in the absence or presence of increasing concentrations 

of a cdk9 and cyclin T1 expression vectors (collectively termed P-TEFb in the figure) and in the absence 
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or presence of rosiglitazone as indicated. Results were normalized for the expression of a β-gal reporter. 

Values are the mean of 3 independent experiments.  

(C) NIH-3T3 cells were transfected with PPRE-TK-luc and expression vectors coding for PPARγ and a 

dominant negative form of cdk9 (DNcdk9) in the presence or absence of PPARγ agonist rosiglitazone.  

(D) Same transfection as in (A) using PPRE-TK-luc and PPARγ vectors. Cells were treated with 

increasing concentrations of the cdk9 inhibitor DRB (10-50 µM). Results were normalized to the 

expression of a β-gal-encoding plasmid. 

(E) Chromatin immunoprecipitation (ChIP) assay demonstrating binding of cdk9 to the aP2 promoter. 

Cross-linked chromatin from either confluent preadipocytes (down panel) or 3T3L1 adipocytes 

differentiated during 7 days (upper panels) was incubated with antibodies against PPARγ, cdk9, acetylated 

histone H4, with purified rabbit IgGs or without any antibody (mock). Immunoprecipitates were analyzed 

by PCR using primers specific for the aP2 promoter region containing a PPRE (aP2 prom), a region of the 

aP2 promoter non-containing the PPRE, or the GAPDH promoter. The input, included in the PCR, 

represents 20% of the total chromatin. 

 

Figure 5. PPARγγγγ interacts with cdk9 

(A) Coimmunoprecipitation of PPARγ and cdk9 from Cos cells transfected with PPARγ and cdk9 

expression vectors. Extracts were immunoprecipitated with a cdk9 antibody or purified rabbit IgGs 

(mock) and revealed by an anti-PPARγ antibody. One twentieth of total extract is shown as a control 

(input). 

(B) Schematical representation of the deletion GST-PPARγ constructs used in the subsequent 

experiments. 

(C-D) GST pull-down assay showing the interaction of cdk9 with the A/B (C) or DEF (D) domains of 

PPARγ. In vitro translated 
35

S-radiolabeled cdk9 protein was incubated with glutathione-sepharose bound 

GST- PPARγ (deletion constructs) fusion proteins or GST alone. Bound proteins were separated by SDS-

PAGE and detected by autoradiography. Input represents total in vitro translated protein.  
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Figure 6. Cdk9 phosphorylates and activates PPARγγγγ. 

(A) Western blot analysis of PPARγ phosphorylation status in Saos cells transfected with expression 

vectors for PPARγ, cdk9/cyc T1, or both in the absence or presence of rosiglitazone. Two hours before 

harvesting cells were treated with either rosiglitazone (1µM) or the DMSO vehicle. The phospho PPARγ 

slow migrating form is indicated by p. 

(B) In vitro kinase assay using purified GST, GST-PPARγ full-length, GST-PPARγ LBD, GST-PPARγ 

A/B, or GST-PPARγ A/B S112A fusion proteins as a substrate and immunoprecipitated cdk9 from 293 

cells transfected with cdk9. Migration of the different constructs in the SDS gels is indicated by arrows. 

Specificity of the kinase reaction is verified by the use of the cdk9 kinase inhibitor DRB (250µM). 

(C) RT-PCR measuring aP2 mRNA levels in 3T3-L1 adipocytes treated for 6h with rosiglitazone and 

increasing concentrations of the PPARγ antagonist GW9662. Results were normalized for β-actin 

expression. 

(D) Western blot analysis of 3T3-L1 adipocytes, treated for 2h with the indicated concentrations of 

rosiglitazone and GW9662, showing PPARγ phosphorylation status (left panel). A p indicates migration 

of phospho-PPARγ. The relative intensity of the bands of phosphorylated / non phosphorylated PPARγ is 

quantified in the right panel. 

(E) QPCR analysis of aP2 mRNA expression in 3T3-L1 adipocytes treated with either rosiglitazone at 1 

µM or rosiglitazone and DRB (30 µM). Results were normalized for β-actin expression. 

(F) Western blot analysis of PPARγ phosphorylation (slow migrating forms) upon incubation of 3T3-L1 

cells with rosiglitazone or rosiglitazone and the cdk9 inhibitor DRB for 2h at the indicated concentrations. 

The relative intensity of the bands of phosphorylated / non phosphorylated PPARγ is quantified in the 

right panel. 

(G) Chromatin immunoprecipitation (ChIP) assay demonstrating binding of phosphorylated PPARγ to the 

aP2 promoter. Cross-linked chromatin from 3T3-L1 adipocytes differentiated during 5 days was incubated 

with antibodies against PPARγ, phospho-PPARγ, cdk9, acetylated histone H4, or with purified rabbit 

IgGs. Immunoprecipitates were analyzed by PCR using primers specific for the aP2 promoter region 

containing a PPRE (aP2 prom). The input, included in the PCR, represents 20% of the total chromatin. 
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Figure 7. Cdk9 participation in adipose tissue biology 

(A) mRNA expression of lipogenic genes in 3T3-L1 adipocytes treated or not with DRB measured by 

qPCR. DRB was added for 24h in a concentration of 50µM. Results are normalized for the expression of 

β-actin mRNA.  

(B) Expression of cdk9 mRNA measured by real-time PCR in the adipose tissue of mice fed a chow diet 

(C56Bl/6), a high fat diet (HFD), or in the adipose tissue of obese db/db mice. Results are normalized for 

the expression of β-actin mRNA. 

 

Supplemental figure 1. Expression of cyclin T1 and cyclin T2 during 3T3-L1 differentiation 

(A-B) Comparative analysis of PPARγ and cyclin T1 (A) or cyclin T2 (B) expression by 

immunofluorescence in 3T3-L1 cells induced to differentiate. Days of differentiation indicate proliferating 

(day -1), confluent (day 0), re-entry into cell cycle (day 1), early differentiation (day 4), and terminally 

differentiated (day 8) cells. PPARγ expressing cells are labeled in red whereas cyclin T1 and cyclin T2 

expressing cells are in green. Nuclei were visualized with Hoechst staining. 

 

Supplemental figure 2. Cyclin T1 and cyclin T2 participation in adipose tissue biology 

(A-B) Expression of cyclin T1 (A) and cyclin T2 (B) mRNA measured by real-time PCR in the adipose 

tissue of mice fed a chow diet (C56Bl/6), a high fat diet (HFD), or in the adipose tissue of obese db/db 

mice. Results are normalized for the expression of β-actin mRNA. 

 

 
H

A
L author m

anuscript    inserm
-00144653, version 1



H
A

L author m
anuscript    inserm

-00144653, version 1



Iankova et al.; Figure 2

0 10µµµµM 30µµµµM 50µµµµM

DRB before clonal expansion

0 10µµµµM 30µµµµM 50µµµµM

DRB after clonal expansion

1

2

0 10 30 50 µµµµM DRB

after clonal expansion

D

E

A B

C

F

1

2

3

4

DHFR Cyc D1 Cyc B1

d0

d1-

d1+DRB

d2-
d2+DRB

0

20

40

60

80
Control
DRB

0 1 2 0 1 2 Days

1 2

aP2 mRNA rel. units

before clonal expansion

0

10

30

50

H
A

L author m
anuscript    inserm

-00144653, version 1



0

1

2

3

4

5

control DNcdk9

pcDNA3-
3T3-L1

cdk9-
3T3-L1

pcDNA3cdk9

cdk9

hist H1

3

1

2

pcDNA3-
3T3-L1

cdk9-
3T3-L1

4

control

DNcdk9

400 bp

control DNcdk9

A B
Iankova et al.; Figure 3

C D

H
A

L author m
anuscript    inserm

-00144653, version 1



0

0,6

1,2

1,8

2,4

3

DNcdk9 -

+ +

+

control
rosi 1µµµµM

C PPRE-TK-luc

A B
Iankova et al.; Figure 4

+ -

+- +
-

P-TEFb

rosi 0,5 µµµµM

UAS-TK-luc

- - -

pSG5

cdk9 2µg

cdk9 4µg

E

aP2 prom

Adipocyte

Preadipocyte

aP2 nPPRE

GAPDH prom

1

2

3

4

0

10 30 50
µµµµM DRB

PPRE-TK-luc+PPARγγγγ

control
rosi 1µµµµM
rosi + DRB

PPRE-TK-luc+PPARγγγγ

D

µµµµM rosi

aP2 prom

1

2

3

4

5

6

7

1

2

3

4

5

0 0.05 0.5 10

H
A

L author m
anuscript    inserm

-00144653, version 1



S 112

1

2

3

4

5

6

7

GST-PPARγγγγ

cdk9

A/BGSTInput 1 2

GSTInput DEF

cdk9

3 4 5 6 7

GST-PPARγγγγ
D

Mock

IP

Input ααααcdk9

PPARγγγγ

Iankova et al.;Figure 5

A

B

C

1 72

73 106

201 291

292

399

382

475

H
A

L author m
anuscript    inserm

-00144653, version 1



Iankova et al.; Figure 6

control
aP2 PPRE

DRB

A

F

C

γγγγ2

γγγγ1

p

p

Rosi

GW9662

0 01 1 1 1 1

10 0.10 10 100100

(µµµµM)

(µµµµM)

D

DRB - + - +

γγγγ2

γγγγ1
PPARγγγγ

Rosi

DRB

(µµµµM)

(µµµµM) 0 0 1 10 100

0 1 1 1 1

E

B

Rosi

P-TEFb

PPARγγγγ2
p

- + - +

- - + +

G

1

2

3

aP2

rosi
rosi + DRB

p

p

Rosi

GW9662

0 1 1 1 1 1

10 0.10 10 100

(µµµµM)

(µµµµM)

0

1

2

3

1

2

3

PPARγγγγ1PPARγγγγ2

Control

Rosi 1 µµµµM

Rosi
GW9662 100 µµµµM

0.5

1

1.5

PPARγγγγ1PPARγγγγ2

Control

Rosi 1 µµµµM
Rosi
DRB 100 µµµµM

H
A

L author m
anuscript    inserm

-00144653, version 1



Iankova et al.; Figure 7

0

10

20

30

40

50

C57Bl/6 HFD db/db

B

A

0

0,4

0,8

1,2

1,6

aP2 LPL SCD1 FAS

control
control + DRB

H
A

L author m
anuscript    inserm

-00144653, version 1


