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Abstract: In this correspondence, we present a two-level physiological model that is able to

reflect morphology and function of vascular networks, in clinical images. Our approach

results from the combination of a macroscopic model, providing simulation of the growth and

pathological modifications of vascular network, and a microvascular model, based on

compartmental approach, which simulates blood and contrast medium transfer through

capillary walls. The two-level model is applied to generate biphasic computed tomography of

Hepatocellular Carcinoma. A contrast-enhanced sequence of simulated images is acquired,

and enhancement curves extracted from normal and tumoral regions are compared to curves

obtained from in vivo images. The model offers the potential of finding early indicators of

disease in clinical vascular images.

Keywords: vascular model, compartment model, computed tomography simulation,

enhancement curves, Hepatocellular Carcinoma
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1. Introduction

Imaging of vascular networks is of major significance for detection and characterization of various

pathologies affecting vessels topology, geometry, or function. It allows for detecting early indicators

of disease in a non-invasive manner. In this context, models can help to understand the mechanisms

underlying image formation, by testing hypotheses concerning pathology origins. It seems obvious

that only physiological models can achieve this task [1]. In [2], we proposed an image modeling

approach able to represent geometric and haemodynamic properties of vascular networks, down to the

macroscopic level of arterioles and venules (around 50 to 100µm). However, early signs of onset and

development of the disease generally arise at finer scales (i.e., capillaries) and vascular modeling

should not therefore be restricted to the macroscopic level. This is especially crucial for realistic

contrast material propagation, where simplified solutions as proposed in [15] are of limited use.

In this paper, we propose to combine our physiological model with a microscopic compartment one.

The originality of this approach lies in the fact that it is neither limited to a purely geometric

description as in many macroscopic models (e.g., [3], [4]), nor to a specifically functional one, like in

several studies based on compartment models [5], [6]. The strength of the proposed approach is in the

combination of the two main aspects influencing vascular imaging: morphology (vessels) and function

(contrast medium propagation). Moreover, this two-level approach offers the possibility to simulate

enhancement changes related to focal or diffuse vascular diseases.

The proposed method is applied to simulating of Hepatocellular Carcinoma (HCC) observed by means

of biphasic CT. In hepatic carcinogenesis, tumor evolution expresses itself by important

capillarization [7], with arterialization, and decrease in portal supply. Early tumor characterization

(benign nodule vs. malignant tumor) is fundamental in the therapy choice, and imaging markers of

malignancy are of crucial importance. Our approach offers the potential to reveal this kind of markers

due to the modeling chain going from an organ to time stamped sequences of images (see Figure 1).

In Section 2, the macroscopic and microscopic levels of the model are briefly described and the

method of the contrast enhanced CT modeling is also explained. The results are summarized in

Section 3, and the paper is concluded in the last section.
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2. Model

2.1 Macrovascular model

The model enables us to simulate up to three connected vascular structures. It is especially suitable for

the liver, with its two supplying trees (Hepatic Artery – HA, and Portal Vein – PV), and Hepatic Vein

(HV). The organ is composed of Macro-Functional Units (MFUs), made of tissue and small vessels.

Several classes of MFUs can co-exist in the organ. Variations of physiological properties (such as

blood pressure and flow, or time dependent mitosis/necrosis rates) allow us to introduce pathological

changes. At each growth cycle of the organ, new MFUs appear, and are perfused by new vessels

sprouting from the existing network (angiogenesis). A local optimization process is performed to

determine new bifurcations geometry, respecting the minimum blood volume criterion. Each binary

tree is composed of consecutive vessel segments (rigid tubes with wall thickness depending on their

type and radius), characterized by their geometry, blood pressure and flow (governed by Poiseuille

law). After perfusion of a new MFU, characteristics of the vascular structures (blood flow, pressure

and radii) are updated [8]. As shown in Figure 1, an independent microscopic model represents each

MFU.

2.2. Microvascular model

Compartment models have been applied recently to simulation of vessels/tissue exchanges ([9], [10])

or to estimation of perfusion and capillary permeability [11]. In contrast to such global models our

approach enables to locally compute the contrast medium concentration. It also takes into account the

portal circulation and integrates liquid movements (not only molecular transfer). Moreover, the direct

coupling between the microvascular and the macrovascular models allows us to generate not only

enhancement curves, but also dynamic enhanced images.

The model entries are the two blood supplies coming from hepatic arteriole (ha), and portal venule

(pv). They are characterized by their flows, ( )tQha  and ( )tQpv , and contrast medium concentrations,

)(tCha  and )(tC pv , which are deduced from contrast medium propagation in the macroscopic model.

The three compartments of the model are depicted in Figure 2: “sinusoids”, “extra-cellular space” and

“hepatic venules”. Blood arriving in the sinusoids is mixed with contrast medium at the concentration
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)(tCs  and goes through the capillary wall into the extra-cellular space with the flow )(tF . Plasma and

contrast medium molecules can exit the extra-cellular space compartment by two possible ways: (i)

due to the hydrostatic and osmotic pressures [12] toward hepatic venules, with flow )(tR , and (ii)

toward lymphatic capillaries, with flow )(tQl . In this compartment, the liquid has the concentration

( )ecC t . Finally, blood leaves MFU by hepatic venule, with flow ( )hvQ t . The re-flow )(tQ pl  from

hepatic venules into extra-cellular space [13] is also integrated into the model. The contrast medium

concentration in the third compartment is )(tChv . As the macroscopic vascular model does not

currently include the lymphatic circulation, the lymphatic flow from the extra-cellular space ( )(tQpl ) is

artificially connected to the venous circulation ( )(tQhv ) leading to only one output: the hepatic venous

flow.

In order to study variations in concentration in the different compartments, we formalized exchanges

by the following differential equations:

( )
( ) ( ) ( ) ( ) ( ) ( )s

s ha ha pv pv s
dC t

V C t Q t C t Q t C t F t
dt

= + − , (1)

( )
( ) ( ) ( ) ( ) ( )( ( ) ( ))ec

ec s hv pl ec l

dC t
V C t F t C t Q t C t R t Q t

dt
= + − + , (2)

( )
( ) ( ) ( )( ( ) ( ))hv

hv ec hv pl hv

dC t
V C t R t C t Q t Q t

dt
= − − . (3)

The compartment volumes (Vs,Vec,Vhv) are obtained by dividing the corresponding volumes (sinusoids,

extra-cellular, and hepatic vein) of the liver by the number of MFUs constituting it. For transvascular

flows, we used general circulation data, leading to the following relations [5]: pvha QQF += ,

FR 84.0= , FQl 21.0= , and FQRQ lpl −+= .

Even if the macroscopic model currently sets the same pressure to all MFUs, microvascular blood

flows (F, R, and plQ ) depend on hydrostatic and osmotic pressures. The flow evolution with pressures

and permeability can be easily integrated by using equations like the one of F

[5]: ( )iplecss PPKF ππ +−−= * , where Ps and Pec are hydrostatic pressure in sinusoids and extra-

H
A

L author m
anuscript    inserm

-00144365, version 1



5

cellular space, plπ  and iπ  are corresponding osmotic pressures. Coefficient Ks reflects the capillary

permeability.

2.3.  Biphasic CT modeling

The first step to simulate dynamic CT [15] is injection of contrast medium into HA and PV. It

propagates through vessels and parenchyma. The concentration of the contrast medium is calculated in

all the macroscopic vessels, as well as in each MFU. A 3D representation is generated, where each

voxel is assigned an attenuation coefficient depending on its composition (blood/parenchyma/contrast

medium). Then, the CT scan acquisition is carried out through the following steps: (i) X-ray cone

beam projections with noise-added are computed using the Radon transform, (ii) projections are

filtered in the Fourier domain, by a band-limited filter, and (iii) a back-projection is applied to

reconstruct the image. Virtual CT simulation is described in more details in [2]. It should be noticed

that in this model of CT acquisition, certain simplifications have been made concerning e.g. the

surrounding anatomical structures are not present.

3. Results

We applied the proposed two-level model to simulation of biphasic CT of the liver affected by HCC.

HCC is the most common hyper-vascular hepatic malignant tumor. The main parameters of the

macroscopic model, with some details concerning among other things initialization (external organ

envelope, initial vessels, ...) and growth simulations can be found in [2] and [15]. Different classes of

MFUs are used to simulate normal parenchyma and a focal lesion. Abnormal MFUs are introduced

among normal ones, in a bounded area of the organ. Tumoral MFUs co-exist with the healthy ones,

and evolve with them, in a succession of regeneration events (mitosis/necrosis). Some parameters of

pathological MFUs are modified (e.g., probability of mitosis, maximum local density and blood flow

are increased in the pathological case, compared to healthy tissue). Moreover, these MFUs are only

supplied by arteriole and not by portal venule [7]. Significantly increased blood flow (4 times

compared to normal tissue) in arterial and absence of portal supply constitute differences between

normal liver and HCC simulated at the microscopic level.
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Profiles used for contrast medium injection are taken from [10]. Compartments volumes are adapted to

the volume of the MFU (total hepatic volume divided by the number of MFUs, which is around 12000

at the end of the organ growth): 57 /12000sV ml= , 524 /12000ecV ml= , 15 /12000hvV ml=  [12].

Figure 3 shows simulated vessels of HA, in two regions: normal and HCC. Tumor arterialization of

nodules and HCC can be observed. Figure 4 shows three simulated vascular trees displayed at two

acquisition times, typically used in clinical examinations: (i) arterial phase (20 to 30 seconds after

injection), when the iodinated x-ray dye is mainly in HA, not in PV and arrives in HV only in the

tumor, and  (ii) portal phase, when a large amount of dye arrives in the portal tree. This 3D

visualization allows us to isolate the lesion during the arterial phase and confirms its significance for

hypervascular tumor characterization. In Figure 5a, simulated CT scans (slice thickness - 5mm, pixel

size 0.125mm, 8-bit gray levels, ...) of the same trees as in figure 4 are presented. As expected, HCC is

hyper-intense in the first phase, due to the large contrast concentration in HA (an artery pointed by

white arrows). During the second phase, the lesion conspicuity decreases significantly. This can be

explained by an increase of normal parenchyma enhancement, resulting from contrast supplied by

portal vein (strongly injected portal vein pointed by black arrow). In Figure 5b, simulations of CT

findings concerning a few times smaller tumor placed at the same location are presented. It can be

noticed that the tumor conspicuity evolves over time in analogous way and the lesion is still visually

detectable in arterial phase. However, when the arterial supply is decreased for HCC (50% of the

previous blood flow), the lesion becomes not visible even in HA (Figure 5c).

The direct comparison of the simulated CT scans with the real data is not an easy task, because, except

for CT images, we usually have only partial knowledge about the pathological changes for a given

patient. In clinical conditions, structural and functional characteristics of the lesion are obviously

inaccessible. In Figure 6, typical HCC patterns in two standard phases are presented. We observed that

the general agreement is satisfactory, however the real tumor is more heterogeneous (maybe due to

necrosis in the center).

Finally, the enhancement curves computed in normal parenchyma and tumor are represented in Figure

7. They have been obtained using a representative set of physiological and physical parameters. Then
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these simulated curves have been compared with those measured by Kim et al. on 24 patients [10]. We

would like to stress that we obtained a good agreement between simulated and real enhancement

curves. Influence of parameters will be evaluated in future works.

4. Conclusion

In this paper, we proposed a two-level physiological model combining macroscopic and microscopic

vascular properties. The model enables to relate first signs of microvascular pathological alterations to

changes in clinical images. The proposed approach is exemplified by simulation of biphasic CT of

Hepatocellular Carcinoma and the impact of certain tumor characteristics (i.e. tumor size and arterial

supply) on the lesion conspicuity is studied. Visual patterns and enhancement curves derived from

simulated scans are in good agreement with real data, however this tentative validation has to be

extended. This study demonstrates that the model-based method constitutes a good way toward a

better interpretation of clinical images and could be useful in finding early image indicators of a

disease, like measurable vascular changes corresponding to the development of HCC.

It is natural that presented models can be extended in many directions. For example, in the

compartment model, a direct communication between the sinusoids and the hepatic venules can be

incorporated and additional functional parameters can be introduced, like the capillaries permeability

(via pore sizes and number or the basal membrane structure). The macro-vascular model can profit

from more elastic vessels representation (e.g., based on Bezier curves). Moreover, the simplified cone

beam scanning can be replaced by multi-slice acquisitions.

Acknowledgements

The authors are grateful to Prof. Jean-Louis Coatrieux for his support and inspiring discussions. This

work was supported by the grant W/WI/5/05 from Bialystok Technical University.

H
A

L author m
anuscript    inserm

-00144365, version 1



8

Figure 1:
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Figure 2:
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Figure 3 :
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Figure 4:
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Figure 5:
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Figure 6:
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Figure 7:
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List of figure and table captions:

Fig. 1 Framework of the model-based approach to medical images understanding. Two-level vascular

model is coupled with virtual CT modality. During the contrast medium propagation at given

time instants, density representations are generated and then CT scans are reconstructed based

on classical algorithm of filtered back-projections. More details can be found in [2].

Fig. 2 Three-compartment microscopic model proposed for simulating of hepatic transvascular

exchanges.

Fig. 3 Simulation of hepatic arterial structure in normal liver (left) and HCC (right, the hyper-vascular

tumoral region is denoted by circle).

Fig. 4 Simulation of contrast medium propagation (only injected vessels are displayed; gray level

corresponds to contrast concentration).

Fig. 5 Simulated biphasic CT scans (slice thickness - 5mm, pixel size 0.125mm, 8-bit gray levels, ...):

a) extensive lesion – HCC, b) smaller tumor, c)  the same lesion as in b) but with decreased

arterial supply.

Fig. 6 Real CT slices with confirmed diagnosis of HCC in arterial (a) and portal  (b) phase.

Fig. 7 Enhancement curves derived from normal and tumoral ROIs depicted in Figure 5a.

H
A

L author m
anuscript    inserm

-00144365, version 1



16

References:

[1] J.Demongeot, J. Bezy-Wendling, J. Mattes, P. Haigron, N. Glade, J.L. Coatrieux, “ Multiscale

Modeling and Imaging: The Challenges of Biocomplexity”, Proc. of the IEEE, 91(10), pp. 1723-

1737, 2003.

[2] M. Kretowski, Y. Rolland, J. Bezy-Wendling, J.L. Coatrieux, “Physiologically based modeling of

3-D vascular networks and CT-scan angiography”, IEEE Trans. Med. Im., 22(2), pp. 248-257,

2003.

[3] M. Zamir, “Arterial branching within the confines of fractal L-system formalism”, Journal of

General Physiology, 118, pp. 267-275, 2001.

[4] J. Bezy-Wendling, M. Kretowski, Y. Rolland, W. Le Bidon, “Toward a better understanding of

texture in vascular CT scan simulated image”, IEEE Trans. Biomed. Eng., 48(1), pp. 120-124,

2001.

[5] J.L. Bert, K.L. Pinder, “Analog simulation of the human microvascular exchange system”,

Simulation, 39, pp. 89-95, 1982.

[6] R. Materne et al., “Non-invasive quantification of liver perfusion with dynamic CT and a dual

input one-compartmental model”, Clinical Science 99, pp. 517-525, 2000.

[7] S.C. Efremidis, P. Hytiroglou, “The multistep process of hepatocarcinogenesis in cirrhosis with

imaging correlation”, Eur. Radiol, 12, pp. 753-764, 2002.

[8] M. Kretowski, Y. Rolland, J. Bézy-Wendling, J.L. Coatrieux, “Fast algorithm for 3-D vascular

tree modeling”, Computer Methods and Programs in Biomedicine, 70 (2), pp. 129-136, 2003.

[9] K.T. Bae, J.P. Heiken and J.A. Brink, “Aortic and hepatic contrast medium enhancement at CT,

prediction with a computer model”, Radiology  207, pp. 647-655, 1998.

[10] S. Kim, J.H. Kim, J.K. Han, K.H. Lee, B.G. Min, “Prediction of optimal injection protocol for

tumor detection in contrast-enhanced dynamic hepatic CT using simulation of lesion to liver

contrast difference”, Computerized Medical Imaging and Graphics  24, pp. 317-327 (2000).

[11] G. Brix et al., “Regional blood flow, capillary permeability, and compartmental volumes:

measurement with dynamic CT – initial experience”, Radiology 210, pp. 269-276, 1999.

H
A

L author m
anuscript    inserm

-00144365, version 1



17

[12] E. Carson, C. Cobelli, “ Modelling Methodology for Physiology and Medicine”, Academic Press,

2001

[13] C. Chapple et al., “A model of human microvascular exchange: parameter estimation based on

normals and nephrotics”, Computer Methods and Programs in Biomedicine 41, pp. 33-54, 1993.

[14] B. Fagrell, “Advances in microcirculation network evaluation: an update”, J. Microcirc. 15, pp.

34-40, 1995.

[15] J. Bézy-Wendling, M. Kretowski, Y. Rolland, “Hepatic tumor enhancement in CT: combined

models of liver perfusion and dynamic imaging”, Comp. in Biol. and Med., 33, pp. 77-89, 2003.

H
A

L author m
anuscript    inserm

-00144365, version 1


