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Abstract : 

To test for association between a disease and a set of linked markers, or to estimate relative 

risks of disease, several different methods have been developed. Many methods for family 

data require that individuals be genotyped at the full set of markers and that phase can be 

reconstructed. Individuals with missing data are excluded from the analysis. This can result in 

an important decrease in sample size and a loss of information. A possible solution to this 

problem is to use missing-data likelihood methods. 

We propose an alternative approach, namely the use of multiple imputation. Briefly, this 

method consists in estimating from the available data all possible phased genotypes and their 

respective posterior probabilities. These posterior probabilities are then used to generate 

replicate imputed data sets via a data augmentation algorithm.  

We performed simulations to test the efficiency of this approach for case/parent trio data and 

we found that the multiple imputation procedure generally gave unbiased parameter estimates 

with correct type 1 error and confidence interval coverage.  

Multiple imputation had some advantages over missing data likelihood methods with regards 

to ease of use and model flexibility. Multiple imputation methods represent promising tools in 

the search for disease susceptibility variants. 
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Introduction 

To identify variants involved in disease susceptibility, a traditional approach consists in 

testing for association between a disease and a set of markers. This is usually performed by 

comparing allele or genotype frequencies at the markers in samples of cases and controls. It is 

also possible to use case-parent trios and compare the alleles or genotypes transmitted to the 

affected child to the corresponding non-transmitted alleles or genotypes [1,2]. A major 

advantage of these family-based tests is their robustness to population stratification. 

Moreover, the familial structure allows the testing of both linkage and association. A 

disadvantage is the difficulty to recruit large samples of case-parent trios and consequently, 

sample sizes are generally smaller than that achievable with the case-control approach, 

leading to a possible lack of power as compared to the case-control approach.  

 

Often association studies are faced with a problem of missing data, either in the form of a 

missing genotype or in the form of unknown phase. Current genotyping technologies do not 

provide phase information and so we need to reconstruct it from the observed genotype 

information, which is not always possible. For case-parent trio data, the presence of an 

affected offspring does not ensure the data availability on his parents. Refusal to participate, 

death, false paternity or genotyping failure are different factors which can generate a missing 

genotype. With the availability of high-density SNP maps, the number of genotyping failures 

is expected to increase (it is obvious that the higher the number of polymorphisms genotyped, 

the less the number of complete families likely to be available) and there is more phase 

ambiguity. There is a temptation to simply ignore the missing data and only use the complete 

and phase-known observations, but it has been shown that this can induce bias [3] and/or loss 

of efficiency [2]. It might also result in a significant reduction in sample size and 

consequently a loss in power. When the level of missing data differs from one marker to 

another, focusing only on the complete data in the analysis will make it very difficult to 
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compare the different markers. It may lead to false conclusions regarding which marker(s) are 

most likely to explain the detected association and thus on the location of sites involved in 

disease susceptibility. Indeed, if the disease susceptibility site is among the studied sites but is 

poorly genotyped, it is possible that one marker in linkage disequilibrium with this site 

obtains a better association score than the disease susceptibility site itself.  

 

Several methods have been developed to infer the missing data from the rest of the data. In 

the context of family-based association studies, specific methods have been developed mostly 

based on likelihood approaches (see for example TRANSMIT (www-

gene.cimr.cam.ac.uk/clayton/software/), TDTPHASE [4] or Haplotype FBAT [5]). One 

problem with these methods and their corresponding software is their lack of flexibility. 

Different applications of these methods are required if, for example, one wants to additionally 

account for environmental risk factors and potential gene-environment interactions in the 

analysis.  

 

In this context, it is of interest to develop methods to test for association with genetic risk 

factors in the framework of traditional statistical packages such as Stata, S-Plus/R  or SAS, 

which allow the inclusion of arbitrary genetic and/or environmental predictor variables in a 

model. Indeed, for family-based data as well as for cases  and controls, such methods have 

previously been proposed [2,6]. The main drawback of using a standard statistical software 

package is the difficulty to deal with missing data, and families with missing data are usually 

discarded from the analysis. Multiple imputation (MI) [7] provides a convenient solution to 

the problem. The idea of the method is to fill in missing data by values that are predicted by 

the observed data. MI is a Monte Carlo technique in which the observed data set containing 

missing values is replaced by m simulated versions, where m is typically small (e.g. 3-10). 

Each of the simulated complete datasets is analyzed by standard methods, and the results are 
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combined to produce estimates and confidence intervals that incorporate the missing-data 

uncertainty [7-9]. For case-control data, a MI method is implemented in SNPHAP program 

(www-gene.cimr.cam.ac.uk/clayton/software/) and the performance of the method to estimate 

genotype relative risks has recently been evaluated and compared to likelihood-based 

methods [10]. In this paper, we adapt the MI method to the case-parent trio design. In this 

design, the familial structure of the data imposes constraints on the possible phased genotypes 

compatible with the observed genotype data, allowing a better reconstruction of the missing 

values. The performance of our method is evaluated by simulations for different levels of 

missing data and different disease susceptibility models. We investigate the power to detect 

an association and the efficiency of the method to identify the disease susceptibility sites 

among several markers. We also investigate the performance of the method with regard to 

estimation of genotype relative risk parameters, and (for some genetic models) find improved 

performance from use of MI with case-parent trios compared to its performance with 

unrelated cases and controls. 
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Methods 

Multiple Imputation Approach 

Given observed unphased genotype data (with possibly missing values) for a set of case-

parent trios, we generate complete phase-known data sets using a MI approach via a data 

augmentation (IP) algorithm [11]. For case-parent trio data, this algorithm proceeds as follow:  

1. (I-step) Given current parameter values for population haplotype frequencies and 

phase-known genotype frequencies in affected offspring, sample from the posterior 

probability of phase-known haplotype configurations for each family (given the 

observed genotype and phenotype data) to obtain a complete data set. For each family 

containing a missing value, a haplotype assignment is picked from all the possible 

assignments with a probability given by the current posterior distribution.  At the 

starting point, the posterior distribution is unknown but a starting value can be derived 

from the observed data by using an EM algorithm. Here, we use the 

ZAPLO/PROFILER software (www.molecular-haplotype.org/zaplo/zaplo_index.html, 

www.molecular-haplotype.org/profiler/) for this purpose and obtain for the different 

families in the sample a listing of the phased genotype configurations that are 

compatible with the observations, and their initial posterior probabilities.  

2. (P-step) The population haplotype frequency and phase-known affected-offspring 

genotype frequency parameters are then updated by sampling them from their 

posterior distribution given the current complete data file.  Under the assumption that 

the prior distribution of haplotype (genotype) frequencies is a Dirichlet distribution 

with constant degrees of freedom (df) on all possible haplotypes (genotypes), the full 

conditional posterior distribution is also Dirichlet with degrees of freedom equal to the 

observed number of haplotypes (genotypes) in the complete data file +  the prior df. 
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We cycle round the I and P steps a large number of times, to reach a stationary distribution (in 

this study we used a burn-in period of n=1000 iterations). At intervals (e.g. every 1000 

iterations) we output the current complete data file. The IP algorithm is repeated until we have 

output m replicates of complete data sets (imputations) that will then be analysed. The number 

of iterations between two imputations must be large enough to ensure a statistical 

independence between imputed data files. In this analysis, 1000 iterations are run between 

each output imputation. 

 

At the I-step, the new familial configuration posterior probabilities are calculated by 

computing their relative likelihood which corresponds to the likelihood of the familial 

configuration divided by the sum of the likelihood of all the possible familial configurations: 

∑ ×

×
=

pomn

lkij

hhg
hhg

likelihoodrelative  (1) 

where gij is the frequency of the affected child phased genotype and hk, hl the frequencies of 

the untransmitted haplotypes, for a given configuration. Note that by considering affected 

child phase-known genotype frequencies rather than transmitted haplotype frequencies, we 

avoid making an assumption of Hardy Weinberg equilibrium in the affected sample, which is 

a necessary assumption when using MI with case-control data [10]. 

 

At the P-step, given a complete data realisation, to update the genotype frequencies and the 

untransmitted haplotype frequencies we simply count genotypes in affected children and 

count untransmitted haplotypes. Then, we add a data augmentation parameter that 

corresponds to the prior Dirichlet df. In practice, we set this to be high at the first iteration 

(typically two times the size of the population) and then decrease it linearly for each iteration, 

resetting it back to the high value after outputting each of the m replicate imputed data sets.  
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The optimal number of imputations m depends on the rate of missing data. Indeed, as shown 

by Rubin [12], the efficiency of an estimate based on m imputations is: 

1

1
−

⎟
⎠
⎞

⎜
⎝
⎛ +=

m
efficiency γ  (2) 

where γ  is the missing information rate which depends of the variability between the m 

complete data sets induced by missing data. For a small number of replicate m (typically in 

the range of 3-10), we can obtain a very good efficiency [13]. 

 

Each of the m complete data sets are analysed by a statistical method. In this paper, the 

method used for the data analysis is conditional logistic regression [2,14,15]  which compares 

the genotype of each affected child (the case, denoted as person 1) to the three possible 

genotypes (the pseudocontrols, denoted as persons 2-4) that can be formed by the 

untransmitted parental alleles (or haplotypes when several loci are considered). Given a 

reference genotype with baseline risk termed β0, (which in fact will cancel out of the 

likelihood), each genotype relative risk βi (i=1, …, n) is estimated by maximization of the 

likelihood : 
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where  is an indicator taking value 1 if person j in family k has genotype i, and 0 

otherwise. 

kijx

 

Under the null hypothesis of no association, the likelihood is simply L0 corresponding to βi =0 

(i=1,…, n). 

For each of the m complete data files i, we calculate the likelihood ratio test di

[ ])ln()ln(2 01 LLdi −=  (4) 
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The m results are then combined using the method described in [8,9]. Briefly, for each set of 

imputed data set, we calculate the average of the statistics. id

∑= m
dd i  (5) 

and derive 
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 (6) 

where k is the the number of degrees of freedom of the likelihood ratio test and r is the 

variance between the m imputed datasets which can be calculated by the following 

expression: 
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D follows a F distribution with k and v degrees of freedom and 
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The combined p-value over the m imputations is then: 

p-value=F(k,v) (9) 

We may also perform parameter estimation and confidence interval (CI) construction for the 

genotype or haplotype relative risks,  

∑
=

=
m

i
im 1

ˆ1 ββ  and  VCI 96.1±= β  (10) 

where the variance V is the sum of the variance within imputations ∑
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and the variance between imputations  ( )
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weighted by a term that depends on the number m of imputations: 
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Simulation Study 

The performance of the MI algorithm was tested by simulations. Genotypes of case-parent 

trios were simulated at five completely linked loci under different genetic models with one or 

two disease susceptibility loci. The five loci were in linkage disequilibrium (LD) and the 

haplotype frequencies and resulting pattern of LD are shown in Table 1 and in supplementary 

information, Figure 1. Briefly the simulation process is the following: for each parent, two 

haplotypes are randomly picked from the population of 17 possible 5-locus haplotypes where 

each haplotype has a frequency as reported in Table 1. Then, one haplotype is randomly 

drawn from each parent to generate the child’s genotype and, based on the penetrance 

associated with this genotype, an affection status is generated for the child. If the affection 

status is "unaffected", the trio is discarded and the process is repeated until we obtain 

sufficient trios with an “affected” child. Finally, missing data are generated completely at 

random, that is to say with the same percentage of missing data on each of the five SNPs.  

 

Concerning the genetic models, for one-locus models, the disease susceptibility (DS) locus 

was assumed to be the second marker (SNP2) and dominant or recessive models with 

genotype relative risks (GRR) of 1.5 or 3 were considered (see Table 2a). An additional 

model with no effect (GRR=1 for all genotypes) was also considered to evaluate the type I 

errors. For two-locus models, SNP2 and SNP3 were assumed to be the DS loci and both a 

multiplicative and non multiplicative models were considered (see Table 2). For each set of 

simulation, 500 simulated data sets were generated and run through the MI algorithm (with 

the following parameters: burn-in period = 1000 iterations, interval between two imputation 

n=1000 iterations and number of imputations m=9).  For the different models, the power/type 

I error to detect the association was evaluated by determining, the proportion of replicates 
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among the 500 replicates where the combined p-value (as defined in equation 9) at SNP2 

(assumed disease susceptibility site) was smaller than or equal to 5%. The performance of the 

algorithm for parameter estimation was also studied by reporting the bias and 95% CI 

coverage for the different GRR estimations. 
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Results  

Type I error rates for a nominal value of 5% are presented in Figure 1 for different levels of 

missing data. As expected, when families with missing data are ignored,  we find that type I 

errors are not inflated by the presence of missing data, since these missing data are at random 

with respect to genotypes (see curve without MI). The use of the MI method does not increase 

the type I errors for up to 30% of missing data. Above 30%, we observe a significant increase 

in type I error rates. For 50% of missing data, there is a three fold increase in the type I error 

(0.16 instead of 0.05). This increase in the type I error rate can be explained by the fact that 

the number of families without missing data (complete families) becomes too small (for 50% 

missing data, less than one fourth of the families are complete, as shown in Figure 1) and in 

incomplete families, several genotypes might be missing. Under these circumstances, missing 

data are poorly inferred and the test becomes anti-conservative. 

 

Figure 2 shows the power to detect association under the different one locus models. Without 

the MI algorithm, the power of detection of the DS site is sensitive to missing data due to the 

decrease of the sample size. The more the percentage of missing data increases, the more the 

number of informative families decreases and consequently, the more the power to detect the 

DS site decreases. In this context, the MI algorithm allows good power for detection of the 

DS site. For the recessive model (Figure 2a), we see a loss in power of 14.2% with 30% of 

missing data (without the MI algorithm, we observed a loss in power of 58% in the same 

configuration). For the dominant model (Figure 2b), the power remains at approximately 80% 

with 30% of missing data (so basically no loss in power as compared to a 59.1% power loss 

when MI algorithm is not used). 

 

To check the efficiency of the MI method, the correlation between p-values obtained on the 

true complete data sets (available to us since this is simulated data) and p-values obtained by 
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using the MI algorithm on the same data, after adding a percentage of missing data, were 

investigated (supplementary information, Figure 2). With 5% missing data, we note a very 

good correlation rate in both models. With 50% of missing data, correlations are obviously 

lower: on the recessive model (model 1) p-values are often decreased and consequently a lot 

of non significant tests became significant. In contrary, p-values are slightly increased for the 

dominant model (model 2). Consequently, the efficiency of the MI is limited when the 

percentage of missing information is high; nevertheless, for up to 30%  missing data  this 

method gives acceptable performance. 

  

We performed analysis to examine how often the DS site gives the highest score (i.e. the 

highest test statistic) as a  function of the percentage of missing data (Figure 3). For the 

recessive model, we see a loss of detection of the true DS site of 14.4% with 30% missing 

data (without the MI algorithm, we observed a loss of detection of 33.8%). On the dominant 

model, we see a loss of detection of 0.2% with 30% missing data against a loss of detection of 

30% without using the MI algorithm. 

 

To investigate parameter estimation under the MI method, results with and without using the 

algorithm have been compared. With or without the MI algorithm, when the same percentage 

of missing data is used for all loci, no bias is expected. Without MI, when conditional logistic 

regression is used, only families genotyped for all markers are taken into account. So, missing 

data will involve a decrease in the sample size ( e.g. only 15% of informative families are 

available for analysis with 50% missing data) but not a change in the properties of the model. 

Table 1 of the supplementary information confirms this point: for each of the models 

considered, the bias between the observed and the expected values of the genotype relative 

risks is near 0, and the 95% confidence intervals for the genotype relative risk parameters 

correctly cover the true values approximately 95% of the time  (for a missing data proportion 
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of up to about 30%).  We also investigated the correlation between the parameter estimates 

obtained from the true complete data set and those obtained using the MI approach 

(supplementary information, Figure 3) and found that as expected the correlation decreases as 

the percentage of missing data increases but even with 50% of missing data, there is still a 

strong correlation. 

 

Two 2-locus models have also been investigated. Figure 4 shows the bias between the 

expected and the observed haplotypic risks for different rates of missing data under the 

multiplicative model only, since risk estimation on haplotypes only have a sense if haplotypes 

have a multiplicative effect. For up to 10% of missing data, bias is weak with and without MI. 

For a larger percentage of missing data and when missing data are ignored, we observe a 

strong increase in the bias for all the haplotype relative risks. In contrast, when we use the MI 

algorithm, the bias stays reasonably low. For example, with 50% of missing data the bias is in 

the range [26.5 , 29.1] without MI compared to [0.15 , 1.17] with MI.  

Figure 5 presents the bias obtained under the two models on phased genotypic risks. The 

median bias over the 10 genotype relative risks is reported. As for haplotypic risks, we note a 

high increase in the bias when the percentage of missing data increases. Without MI the 

median bias reaches 32.89 for the multiplicative model and 30.47 for the non multiplicative 

model opposed to a weak increase with MI (1.16 for the multiplicative model and 4.47 with 

the non multiplicative model). However, observed bias could be very different from one 

genotype to another and as expected, strong bias may be observed especially for rare 

genotypes.  

These results confirm the ones obtained by Cordell [10] when using MI on case-control data. 

An important difference however between case-control and trio data is the fact that under a 

non-multiplicative model, the case-control data do not allow the distinction between the two 

following genotypes: the one composed by haplotypes aA and bB and the one composed by 
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haplotypes aB and bA. Indeed, use of an MI algorithm with case/control data [10] 

distinguishes between these configurations by borrowing information (when it is possible) 

from resolvable genotypes under a Hardy Weinberg equilibrium assumption which 

corresponds to assuming multiplicative haplotype effects. Consequently, this method fails for 

case/control data when the underlying haplotypic effects are not multiplicative [10]. However, 

with family data, information from the parents can allow knowledge of this phased genotype 

for the affected child. We performed simulations under different multiplicative and non-

multiplicative models to check this property of the case/parent trio data. We choose to present 

in this paper results obtained with one of the non-multiplicative models used in [10] with 10 

percent of missing data. Table 3 shows the bias and coverage when using the MI approach in 

a case/control and in a case/parent trio data set. As expected, we note the presence of a bias 

higher than 0.3 with the case/control data with poor confidence interval coverage (near 0.8) 

for both genotypes 1-1/2-2 and 1-2/2-1. The use of case/parent trio families generally gives 

less bias, particularly for the two phased genotypes (bias of 0.012 and 0.019 respectively). 

Consequently, we confirm the capacity of the method to correctly estimate these two phased 

genotype configurations with family data, which is not the case for case/control data. 
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Discussion  

We have proposed an MI algorithm for testing and estimation of genotype and haplotype 

effects using case/parent trio data. Through simulations, we have examined the efficiency of 

the MI algorithm on several one and two locus models. Results show the usefulness of the MI 

approach With conditional logistic regression, this approach allows us to work with three 

pseudocontrols for each family whereas in the original case/pseudocontrol approach, only one 

pseudocontrol can be generated for families with unknown phase. When the percentage of 

missing data is small, parameter estimation can be correct without the use of MI. 

Nevertheless, use of MI increases efficiency and allows better comparison of results at 

different loci and detection of the true disease susceptibility site. Obviously, the MI algorithm 

is only one of the possible methods to take into account uncertainty due to missing data. The 

MI approach proposed here shares some similarities with Gibbs sampling and also with the 

stochastic EM algorithm [16-18]. Indeed, the sampling mechanism used in the IP algorithm 

that we describe is virtually identical to that used in Gibbs sampling. The main difference 

between MI and Gibbs sampling or an EM algorithm (either in its original or stochastic 

version) is that in a Gibbs sampling or EM algorithm framework, one runs the algorithm until 

convergence and uses the final parameter estimates obtained to make inference. In the MI 

approach, one instead writes out imputed data sets at intervals (e.g. every 1000 iterations), 

analyses these imputed data sets using standard statistical methods (e.g. regression) and then 

uses methods described in the MI literature [8,12,13] to produce a combined parameter 

estimate or make combined inference from all of the imputed data sets. 

 

Compared to Gibbs sampling or an EM algorithm, MI is thus a two stage procedure. In the 

first stage one performs imputation to generate 3-10 imputed data sets; in the second stage 

one performs analysis on these imputed data sets and produces a combined result. The main 

advantage of this from an operational point of view is that one need not actually fit the full 
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model at the second stage. For instance, one could do the imputation assuming that 3 loci in a 

region influence disease, but then at the analysis stage one could fit the full model where all 3 

loci influence disease, or one could fit a restricted model where just 2 of the loci influence 

disease, or indeed a further restricted model where just one of the loci influences disease. To 

compare all of these nested models in an EM or Gibbs sampling procedure, one would have to 

run the EM/Gibbs sampling algorithm 3 separate times, whereas in the MI approach one runs 

the IP algorithm only once, then fits the different nested models at the analysis stage. 

 

Conceptually and in practice, therefore, it appears that MI is a promising approach for use in 

the search for disease susceptibility genes. Future work will involve extending this approach 

for association analysis using larger family structures (e.g. extended pedigrees) and with 

quantitative as opposed to merely dichotomous (disease) traits.   
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haplotypes frequencies
1 1 1 1 1 0.310
1 1 1 1 2 0.005
1 1 1 2 1 0.099
1 1 2 1 1 0.018
1 2 1 1 1 0.002
1 2 2 1 2 0.002
2 1 1 1 1 0.003
2 1 1 2 1 0.002
2 1 2 1 1 0.060
2 1 2 1 2 0.003
2 1 2 2 1 0.002
2 2 1 1 1 0.017
2 2 1 1 2 0.002
2 2 2 1 1 0.376
2 2 2 1 2 0.094
2 2 2 2 1 0.002
2 2 2 2 2 0.003  

Table 1: Haplotype frequencies for the five loci considered in the simulations.  
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a parameter model1 model2 model3 model4
11 1 1 1 1
12 1 1.5 1 3
22 1.5 1.5 3 3

b parameter 11 12 21 22
11 1 3 5 6
12 3 9 15 18
21 5 15 25 30
22 6 18 30 36

c parameter 11 12 21 22
11 1 2 2 2
12 2 8 2 2
21 2 2 12 2
22 2 2 2 16

one locus
models

multiplicative
model

non
multiplicative

model
 

Table 2:  a. List of the different 1-locus models used in simulation where parameters 

correspond to the genotype relative risks for genotypes 1/1, 1/2, 2/2 respectively. 

  b. Multiplicative 2-locus model where parameters correspond to the genotype 

relative risk arising from the association of the two transmitted haplotypes, with the four 

possible haplotypes denoted 11, 12, 21, 22 respectively . 

  c. Non-multiplicative 2-locus model where parameters correspond to the 

genotype relative risk arising from the association of the two transmitted haplotypes, with the 

four possible haplotypes denoted 11, 12, 21, 22 respectively. 
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genotypes relative 
risk Bias Coverage Bias Coverage

 1-1/1-2 2 -0.089 0.968 0.027 0.959
 1-1/2-1 2 0.002 0.971 0.070 0.971
 1-1/2-2 2 -0.315 0.792 -0.012 0.968
 1-2/1-2 8 -0.170 0.950 -0.141 0.956
 1-2/2-1 2 0.371 0.783 -0.019 0.950
 1-2/2-2 2 0.191 0.953 -0.014 0.950
 2-1/2-1 12 -0.063 0.950 -0.054 0.968
 2-1/2-2 2 0.212 0.868 0.050 0.962
 2-2/2-2 16 -0.056 0.962 -0.031 0.974

case/control trios families

 

Table 3: Bias and 95% confidence interval coverage of genetic parameter estimates from two-

locus simulation study when using case/control or case/parent trio data with 10% missing 

data. The second column corresponds to the expected relative risk associated with each 

genotype. 
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Figure Legend : 

Figure 1: Type 1 error at α=0.05 on simulated data as a function of the percentage of missing 

data when using or not the MI approach. The number of complete families available for the 

study without MI is plotted on the second y axis. 

Figure 2: Power at α=0.05 on simulated data as a function of the percentage of missing data 

when using or not the MI approach for a recessive model (a) and a dominant model (b) with 

genotype relatve risks 1.5. The number of complete families available for the study without 

MI is plotted on the second y axis. 

Figure 3: Percentage of replicates among the 500 replicates where the disease susceptibility 

site (locus 2) gives the best score in function of the percentage of missing data when using or 

not the MI approach for a recessive (a) and a dominant model (b) with genotype relative risks 

1.5. 

Figure 4: haplotypic bias between the expected and the observed haplotypic relative risk in 

function of the percentage of missing data in the case of the 2-locus multiplicative model 

when using or not the MI algorithm. Haplotype relative risks hr2, hr3 and hr4 correspond to 

the relative risks for haplotypes 12, 21 and 22 respectively (relative to haplotype 11). 

Figure 5: Median of the absolute genotypic bias in function of the percentage of missing data 

in the case of the 2-locus multiplicative and non multiplicative model when using or not MI 

algorithm. 
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 Supplementary information: 

model 1
expected 0% 1% 5% 10% 20% 30% 40% 50%

500 486.364 434.362 374.658 271.916 189.814 125.752 77.82

GRR2 1 0.006 0.006 0.007 0.008 0.008 0.001 0.010 0.040
GRR3 1.5 0.007 0.006 0.006 0.006 0.007 -0.009 -0.005 0.053

coverage 2 0.95 0.938 0.940 0.930 0.946 0.936 0.942 0.966 0.960
coverage 3 0.95 0.928 0.924 0.926 0.940 0.948 0.958 0.954 0.966

GRR2 1 0.006 0.007 0.012 0.018 0.033 0.055 0.096 0.154
GRR3 1.5 0.007 0.008 0.013 0.015 0.022 0.027 0.036 0.045

coverage 2 0.95 0.938 0.936 0.938 0.934 0.928 0.932 0.906 0.843
coverage 3 0.95 0.928 0.928 0.936 0.936 0.928 0.922 0.926 0.896

model 2 
expected 0% 1% 5% 10% 20% 30% 40% 50%

500 486.162 434.33 374.626 272.086 189.468 125.198 78.422

GRR2 1.5 0.008 0.007 0.010 0.014 0.017 0.019 0.015 0.008
GRR3 1.5 -0.001 -0.002 0.000 0.006 0.004 0.006 -0.006 0.000

coverage 2 0.95 0.960 0.958 0.960 0.956 0.952 0.962 0.976 0.958
coverage 3 0.95 0.962 0.952 0.958 0.960 0.952 0.948 0.962 0.952

GRR2 1.5 0.008 0.009 0.014 0.020 0.036 0.054 0.084 0.129
GRR3 1.5 -0.001 0.001 0.006 0.012 0.017 0.023 0.021 0.018

coverage 2 0.95 0.960 0.954 0.952 0.952 0.950 0.948 0.942 0.910
coverage 3 0.95 0.962 0.958 0.954 0.968 0.958 0.960 0.928 0.938

model 3
expected 0% 1% 5% 10% 20% 30% 40% 50%

500 486.654 434.302 374.572 271.576 188.566 126.432 77.568

GRR2 1.5 0.009 0.008 0.007 0.007 0.015 0.016 0.001 0.045
GRR3 1.5 0.003 0.002 0.004 0.005 0.011 0.014 0.023 0.096

coverage 2 0.95 0.922 0.924 0.912 0.938 0.940 0.942 0.932 0.964
coverage 3 0.95 0.934 0.930 0.932 0.930 0.938 0.940 0.940 0.954

GRR2 1.5 0.009 0.010 0.015 0.023 0.040 0.068 0.116 0.179
GRR3 1.5 0.003 0.005 0.009 0.015 0.022 0.032 0.049 0.058

coverage 2 0.95 0.922 0.920 0.916 0.922 0.924 0.918 0.898 0.830
coverage 3 0.95 0.934 0.934 0.938 0.936 0.924 0.930 0.922 0.904

model 4
expected 0% 1% 5% 10% 20% 30% 40% 50%

500 486.066 433.57 375.192 272.884 189.626 125.612 78.068

GRR2 1.5 0.012 0.013 0.009 0.016 0.017 0.039 0.070 0.285
GRR3 1.5 -0.002 0.000 -0.007 -0.001 0.006 0.010 0.056 0.247

coverage 2 0.95 0.946 0.958 0.962 0.974 0.956 0.942 0.950 0.966
coverage 3 0.95 0.958 0.956 0.956 0.956 0.960 0.970 0.968 0.952

GRR2 1.5 0.012 0.014 0.016 0.025 0.036 0.050 0.084 0.137
GRR3 1.5 -0.002 0.000 0.003 0.010 0.014 0.008 0.015 0.033

coverage 2 0.95 0.946 0.944 0.954 0.954 0.964 0.956 0.948 0.922
coverage 3 0.95 0.958 0.954 0.964 0.960 0.970 0.958 0.948 0.934

without 
multiple imputation

with 
multiple imputation

% of missing data

% of missing data

number of 
complete families

% of missing data

with 
multiple imputation

% of missing data

without 
multiple imputation

number of 
complete families

without 
multiple imputation

number of 
complete families

with 
multiple imputation

without 
multiple imputation

number of 
complete families

with 
multiple imputation

 

Supplementary table 1: Bias and coverage of genetic parameter estimates from one-locus 

simulation study as a function of the percentage of missing data. The number of informative 

families for the analysis without MI is noted on the third row.
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Supplementary Figure 1: LD pattern between the five loci considered in the simulations. 

Gradation of greys represents the level of the D’ and numbers are the D’ values. This LD 

pattern is similar to the one observed in the CTLA4 gene in a sample of 450 multiple sclerosis 

trios [19]. 

Supplementary Figure 2: Correlation plot between the logarithm of the p-value obtained on 

the complete data file and data with 5, 30 and 50% of missing data when using MI approach 

on the recessive model 1 (a, b and c respectively) and the dominant model 2 (d, e and f) with 

genotype relative risks 1.5. For a better understanding of these graphs, the linear equation y=x 

has been plotted. 

Supplementary Figure 3: Correlation plot between the genotype relative risk of the 

homozygous 2/2 obtained on the complete data file and data with 5, 30 and 50% of missing 

data when using MI approach on the recessive model 1 (a, b and c respectively) and the 

dominant model 2 (d, e and f) with genotype relative risk 1.5. For a better understanding of 

these graph, the linear equation y=x has been plotted. 
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Supplementary information, figure 2 

  31

H
A

L author m
anuscript    inserm

-00143682, version 1



a      d   

recessive model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 5
%

 o
f M

D

3

dominant model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 5
%

 o
f M

D

 

b      e 

recessive model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 3
0%

 o
f M

D

dominant model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 3
0%

 o
f M

D

 

c      f 

recessive model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 5
0%

 o
f M

D

dominant model

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

GRR2 on complete data file

G
R

R
2 

on
 d

at
a 

w
ith

 5
0%

 o
f M

D

 

Supplementary information, figure 3 
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