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�✂✁☎✄✝✆✟✞✝✠☛✡✝☞✝✄✍✌✎✞✍✁✑✏✱

 A hundred years have now elapsed since Dr. Antonin Marfan1 reported on the case of 
✲

Gabrielle P. thus describing some of the skeletal features that today define the syndrome that 
✳

carries his name. Since then, substantial progress has been made with respect to the 
❑

description of the pleiotropic manifestations of this disease, the understanding of underlying 
▲

pathophysiological mechanisms and the availability of prevention and treatment of major 
▼

complications. 
◆

 
❖

✒✔✓✖✕✗✞✝✘✙✞✛✚✜✞✝✢✛✣✤✏✦✥★✧✍✩✛✄✪✌✎✘✬✫✭✩✮✆✰✯✱✩✮✁✲✘✙✣✳✁☎✠☛✆✟✞✂✴✦✵✶✄✱✞✝✠✮✩✛✣✸✷P

 Marfan syndrome (MFS, OMIM#154700) is an autosomal dominant connective tissue 
✱❘◗

disorder that has an estimated incidence of 1/5 000 with probably over 25 % of sporadic 
✱❙✱

cases. The syndrome involves many systems (skeletal, ocular, cardiovascular, pulmonary, 
✱❚✲

skin and integument, and dura) but its more prominent manifestations are skeletal, ocular 
✱❘✳

and cardiovascular. In 1986, an international group of experts agreed upon diagnostic criteria 
✱❚❑

to distinguish classic Marfan syndrome from many related disorders. These criteria constitute 
✱❯▲

what is currently referred to as the "Berlin nosology" 2. Patients are diagnosed based on 
✱❘▼

involvement of the skeletal system and two other systems with at least one major 
✱❘◆

manifestation (ectopia lentis, aortic dilation/dissection, or dural ectasia). Patients with an 
✱❯❖

affected first degree relative are required to have involvement of at least two other systems 
✱❘P

with one major manifestation preferred but not required. 
✲✟◗

This nosology has been found wanting in many individual cases and revised criteria 
✲❱✱

were subsequently proposed that constitute the "Ghent nosology" 3. This new formulation 
✲❙✲

requires involvement of three systems with two major diagnostic manifestations. It provides 
✲✟✳
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for major skeletal manifestations and considers affected first-degree relatives or molecular 
✱

data as major diagnostic criteria.  
✲

Finally, development of preventive measures and surgery for aortic aneurysms and 
✳

dissection have lead to treatment of life-threatening cardiovascular complications associated 
❑

with the Marfan syndrome and have considerably altered life expectancy for patients. 
▲

Interestingly, the review of the medical problems of surviving patients has revealed possible 
▼

unidentified pleiotropic manifestations of the Marfan syndrome or manifestations that could 
◆

be related to aging of this population. These medical problems include the onset of arthritis 
❖

at an early age, varicose veins, ruptured or herniated discs, and prolapse of the uterus or 
P

bladder in women. These medical problems now need to be properly investigated and 
✱❘◗

monitored. 
✱❙✱

The continued efforts to redefine diagnostic criteria emphasize persistent 
✱❚✲

shortcomings. The phenotype of the Marfan syndrome remains incompletely defined. Most 
✱❘✳

manifestations are age-dependant and are difficult to quantify. The Ghent nosology has been 
✱❚❑

field-tested in The National Institutes of Health 4. Their study shows that 19% of patients 
✱❯▲

diagnosed under the Berlin criteria failed to meet the Ghent standard. Molecular data are 
✱❘▼

important to better characterize this subset, to study its natural history and implement 
✱❘◆

relevant preventive measures. 
✱❯❖

 
✱❘P

� ✓✂✁✦✧✍✵ ✫ ✩ ✆ ✯✱✩✳✁ ✘✱✣✮✁☎✠ ✆✟✞✍✴✦✵ ✩✮✁☎✠☎✄✝✆✟✞✡✠ ✓✲✟◗

 Scientists, as early as 1931, suggested that the basic defect in Marfan syndrome lay in a 
✲❱✱

defect in the mesoderm 5. In 1955, Victor McKusick considered the syndrome as a prominent 
✲❙✲

member of the new nosologic group he named “the heritable disorders of connective tissue” 
✲✟✳
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6
. The Marfan syndrome was long considered to be due to a defect either in one of the 

✱

collagens or elastin since their abnormalities are prominent features of the disease. However, 
✲

protein and gene studies conclusively demonstrated that neither was involved. In 1986, Sakai 
✳

and co-workers identified a new extracellular matrix protein that they named “fibrillin” 7 
❑

(OMIM#134797). This protein is the major component of microfibrils that are structures found 
▲

in the extracellular matrix either as isolated aggregates or closely associated with elastin 
▼

fibers. Ultrastructurally, microfibrils display a typical "beads-on-a-string" appearance 
◆

consisting of a long series of globules connected by multiple filaments. In 1990, Hollister et al. 
❖

using a monoclonal antibody against fibrillin, reported abnormalities of the microfibrillar 
P

system in the Marfan syndrome 8. The following year, the gene encoding fibrillin-1 (FBN1) 
✱❘◗

was cloned and the first mutations in the gene were identified in Marfan syndrome patients 9-✱❙✱

11. Interestingly, the year before the FBN1 gene was cloned, Kainulainen et al. 12 demonstrated 
✱❚✲

through linkage analysis that the gene involved in classic complete forms of the Marfan 
✱❘✳

syndrome was located on human chromosome 15 precisely where the FBN1 gene was later 
✱❚❑

located. Therefore the identification of the gene defect in Marfan syndrome is a rare example 
✱❯▲

in which both positional and functional cloning strategies converged rapidly to identify a 
✱❘▼

disease gene. 
✱❘◆

 
✱❯❖

� ✓✂✁✦✧✍✵ ✄ ✆ ✞✡✠✶✢✛✵ ✁☎✵ ✩✮✁✝✠ ✞✍✄✝✧ ✵ ✆ ✴ ✵ ✴✂✁☛✵ ✆ ✘ ✞✝✯✬✄✝✧✛✵ ✯✛✌✄✁☛✆✝✌✜✚ ✚ ✌ ✁✲✯✱✩☛✴✗✌ ✚ ✣ ✓✱❘P

 The gene encoding type 1 fibrillin (FBN1) lies on the long arm of chromosome 15 at 
✲✟◗

15q15-q21.1. This very large gene [first estimated at 110 kb, now at over 230 kb (Human 
✲❱✱

Genome Sequencing Project NT_034890 sequence)] is highly fragmented into 65 exons, 
✲❙✲

transcribed in a 10 kb mRNA that encodes a 2871 amino acid protein 10, 11, 13, 14. Three additional 
✲✟✳
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alternatively-spliced exons, likely untranslated, were found upstream of exon 1 15. 
✱

Conservation of nucleotide sequences within this region between human, mouse and porcine 
✲

suggests that this region of the gene may harbor important regulatory elements. This region 
✳

is GC-rich, contains a CpG island, and lacks conventional TATA or CCAAT boxes.  
❑

The deduced primary structure reveals a highly repetitive protein that contains 
▲

essentially three repeated modules (figure 1): 
▼

• The first repeated module is the EGF-like module that is homologous to one found in the 
◆

epidermal growth factor. These modules contain six cysteine residues that form three intra-
❖

domain disulfide bonds. There are 47 of these throughout the fibrillin-1 protein. Among 
P

these, 43 contain a conserved consensus sequence for calcium binding and are called cb EGF-
✱❘◗

like modules. In these domains, the residues putatively involved in calcium binding are 
✱❙✱

numbered sequentially in figure 2 as in Dietz and Pyeritz 
16. They include the aspartic acid at 

✱❚✲

position 2, glutamic acid at position 5, asparagine at position 10 and tyrosine or 
✱❘✳

phenylalanine at position 15.  
✱❚❑

• The second repeated module, found 7 times interspaced with cb EGF-like in the protein, is 
✱❯▲

called TGF β1β1β1β1-binding protein-like module (TGF β1-BP-like module) since it is homologous 
✱❘▼

to modules found in the Transforming Growth Factor -β1 binding protein. This domain 
✱❘◆

appears to be limited to proteins that localize to matrix fibrils [fibrillins and latent 
✱❯❖

transforming growth factor β-binding proteins (LTBPs)]. These modules contain eight 
✱❘P

cysteine residues. The fourth TGF-β1-BP-like module contains the RGD sequence which can 
✲✟◗

interact with cell receptors 17. No specific function has yet been ascribed to these modules. 
✲❱✱

However, some evidence suggests that these domains mediate specific protein-protein 
✲❙✲

interactions 18.  
✲✟✳
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• Finally, the protein contains a third module consisting of approximately 65 amino acids, 
✱

and found twice in the protein. These are called “hybrid modules” since they combine 
✲

features of the EGF-like and the TGF-β1-BP-like modules. This module is also found in 
✳

LTBPs, which have a single hybrid domain. 
❑

Finally the protein contains three unique regions: a proline-rich region that may act as 
▲

a “hinge-like” region 13 and the amino and carboxy terminal domains. The N- and C-
▼

terminal domains of the fibrillins display two prominent features : the presence of an even 
◆

number of cysteine residues, four in the N-terminal and two in the C-terminal domains and 
❖

the presence of the basic consensus sequence for processing by furin-types enzymes BXBB 
P

(B=basic amino acid residue, K or R) in each domain. The 4-cysteine domain in the N-
✱❘◗

terminus of fibrillins is homologous to similar 4-cysteine domains in the N-terminal extended 
✱❙✱

forms of the LTBPs. The C-terminal domains of the fibrillins are homologous to the C-
✱❚✲

terminal domain of all four members of the fibulin family, and thus a new type of 
✱❘✳

extracellular module of approximately 120 amino acid residues in length has been proposed 
✱❚❑

19. This type of homology is not shared by the LTBPs. 
✱❯▲

 When the FBN1 gene was cloned, a second gene sharing a high degree of homology 
✱❘▼

was identified and located on chromosome 5. This gene was named FBN2 and the protein it 
✱❘◆

encodes fibrillin-2 10. FBN2 has been genetically linked to a rare disorder that shares features 
✱❯❖

of Marfan syndrome: congenital contractural arachnodactyly (CCA) (OMIM#120150). The 
✱❘P

clinical manifestations of CCA are essentially found in the skeleton and associated with 
✲✟◗

distinctive manifestations including crumpled ears and campodactyly. Several mutations 
✲❱✱

were identified in this gene in CCA patients 20.  
✲❙✲

Ikegawa et al. described the structure and chromosomal assignment to 2p16 of a 
✲✟✳

“fibrillin-like” gene (FBNL), that is highly homologous to fibrillin 21. The FBNL gene is 
✲❙❑
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expressed in many tissues but it is not expressed in brain and lymphocytes. The amino acid 
✱

sequence of the FBNL gene is 36.3% identical to FBN1 (OMIM#134797) and 35.4% identical to 
✲

FBN2. FBNL contains 1 EGF-like module and 5 repeated cb EGF-like modules. The gene 
✳

spans approximately 18 kb of genomic DNA and contains 12 exons. The FBNL gene was 
❑

thought to possibly be involved in Marfan-like conditions such as hypermobility syndrome 
▲

or mitral valve prolapse. In 1999, Stone et al. identified a single nonconservative mutation in 
▼

the FBNL gene, also named EFEMP1 (EGF-containing fibulin-like extracellular matrix 
◆

protein 1) in 5 families with Doyne honeycomb retinal dystrophy (DHRD; OMIM#126600), or 
❖

malattia Leventinese (MLVT) 22. This autosomal dominant disease is characterized by yellow-
P

white deposits known as drusen that accumulate beneath the retinal pigment epithelium. 
✱❘◗

 
✱❙✱

�✦✓✂✁✦✧✍✵ ✯ ✌ ✁✳✆☎✌ ✚ ✚ ✌ ✁✂✁✮✆✟✞✝✄✱✵☛✌ ✁☎✘☛✓✱❚✲

The fibrillins are extracellular matrix glycoproteins that show a wide distribution in 
✱❘✳

both elastic and non-elastic tissues and are integral components of 10 nm diameter 
✱❚❑

microfibrils 7, 23. Fibrillin-1 is synthesized as profibrillin and proteolytically processed to 
✱❯▲

fibrillin. The cleavage site has been mapped to the carboxy-terminal domain of profibrillin-1. 
✱❘▼

The propeptide starts at position S2732 directly C-terminal to the R2728KRR sequence. Wild type 
✱❘◆

profibrillin is not incorporated into extracellular matrix until it is converted to fibrillin 24. The 
✱❯❖

N-terminal region of each protein directs the formation of homodimers within a few hours 
✱❘P

after secretion and disulphide bonds stabilize the interaction 25
. Dimer formation occurs 

✲✟◗

intracellularly, suggesting that the process of fibrillin aggregation is initiated early after 
✲❱✱

biosynthesis of the molecules. Fibrillin is post-translationally modified by β-hydroxylation 
✲❙✲

and N-and O-linked carbohydrate formation 
26
. 

✲✟✳
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The solution structure of the TGF-β-like module from human fibrillin-1 identified a 
✱

novel fold which was globular in nature 27 and appears to break up linear regions within 
✲

fibrillin-1 molecules after rotary shadowing electron microscopy. If these linker regions are 
✳

effectively flexible, the kinks and bends observed in fibrillin-1 molecules would be required 
❑

for proper alignment of molecules within the assembled microfibril 18. 
▲

Baldock et al. have derived a model of fibrillin alignment in microfibrils based on 
▼

automated electron tomography, immunolocalization in directionally orientated untensioned 
◆

microfibrils, mass changes on microfibril extension, immunofluorescence studies and 
❖

published observations 28. Their model predicts maturation from a parallel head-to-tail 
P

alignment to an approximately one-third stagger that is stable as a 56-nm folded form, but 
✱❘◗

not as an ~100-nm form. This model accounts for all microfibril structural features, suggests 
✱❙✱

that inter- and intramolecular interactions drive conformation changes to form extensible 
✱❚✲

microfibrils, and defines the number of molecules in cross section. 
✱❘✳

Fibrillin-1 and –2 co-distribute in elastic and non-elastic connective tissues of the 
✱❚❑

developing embryo, with a preferential accumulation of the FBN2 gene product in elastic 
✱❯▲

fiber-rich matrices 23. Mouse study of the developmental expression of the fibrillin genes has 
✱❘▼

revealed different patterns. Except for the cardiovascular system, in which Fbn1 gene activity 
✱❘◆

is early and always higher than Fbn2, Fbn2 transcripts appear earlier than Fbn1 transcripts 
✱❯❖

and accumulate for a short period of time just before overt tissue differentiation i.e. a 
✱❘P

window of time immediately preceding elastogenesis. In contrast, the amount of Fbn1 
✲✟◗

transcripts increases at an apparently gradual rate throughout morphogenesis and is mainly 
✲❱✱

expressed during late morphogenesis and well-defined organ structures. Furthermore, Fbn1 
✲❙✲

transcripts are predominantly represented in stress- and load-bearing structures like aortic 
✲✟✳

adventitia, suspensory ligament of the lens, and skin. Spatio-temporal patterns of gene 
✲❙❑
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expression thus suggest distinct but related roles in microfibril physiology. Fibrillin-1 would 
✱

provide mostly force-bearing structural support whereas fibrillin-2 would predominantly 
✲

regulate the early process of elastic fiber assembly 29. Fibrillins would contribute to the 
✳

structural and functional heterogeneity of microfibrils. 
❑

 
▲

� ✓✂✁ ✞✍✚ ✵ ✞ ✯☎✄ ✩✝✆✟✞ ✌ ✁✬✯ ✌ ✁✳✆☎✌ ✚ ✚ ✌ ✁✡✠▼

The implication of the variable calcium binding affinities observed in fibrillin 
◆

fragments is biologically significant. A number of studies have shown that the presence of 
❖

calcium ions significantly protects full-length or recombinant fragments of fibrillin-1 from 
P

proteolysis by trypsin, elastase, endoproteinase Glu-C, plasmin and matrix 
✱❘◗

metalloproteinases 31-34. Moderate to high affinities for calcium suggest that fibrillin cb EGF-
✱❙✱

like modules would be close to fully saturated in vivo. Particular regions of fibrillin may 
✱❚✲

need to be rigid for appropriate function. For example, cb EGF-like#12-13, located in the 
✱❘✳

neonatal Marfan syndrome region (see paragraph 8) where mutations leading to severe 
✱❚❑

phenotypes cluster, may be part of a region where rigidity is required for function. Fully 
✱❯▲

saturated calcium binding sites may be required for stabilization of the microfibril against 
✱❘▼

proteolytic degradation, when low-affinity sites not fully saturated in vivo may contribute to 
✱❘◆

flexibility of the polypeptide chain or to biomechanical function. It may be advantageous to 
✱❯❖

allow some degree of extensibility of assembled microfibrils in tissues subjected to 
✱❘P

mechanical forces. The importance of domain context for modulating the structural effects of 
✲✟◗

calcium binding mutations suggests an explanation why MFS phenotypes associated with 
✲❱✱

apparently similar mutations may be diverse 33. 
✲❙✲
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 To date over 500 mutations have been identified in the FBN1 gene in Marfan 
✲

syndrome patients and related diseases (Figure 3) 34 (Collod-Béroud et al., In preparation). No 
✳

major rearrangements have been identified except for three cases of multi-exon deletions 35, 36. 
❑

Three categories of mutations have been described: 1) missense mutations, 2) small insertions 
▲

or deletions, mutations causing premature termination of translation and 3) exon-skipping 
▼

mutations. 
◆

 FBN1 gene mutations have been identified in complete and incomplete forms of 
❖

Marfan syndrome but also in various disorders: severe neonatal Marfan syndrome, 
P

dominantly inherited ectopia lentis 37, isolated skeletal features of MFS 38, the Shprintzen-
✱❘◗

Goldberg syndrome 39 and, more recently, familial or isolated forms of aortic aneurysms 40. 
✱❙✱

These results define the new molecular group of “type 1 fibrillinopathies” that comprises a 
✱❚✲

spectrum of overlapping diseases. Presently no genotype/phenotype correlations have been 
✱❘✳

identified except for neonatal mutations (see paragraph 8). To facilitate their identification, a 
✱❚❑

“Marfan database” has been developed that includes not only molecular but also clinical 
✱❯▲

data. The database is attached to a software that provides various tools for its analysis and 
✱❘▼

allows optimized multicriteria research 34, 41-43. It is only through a large collaborative 
✱❘◆

international effort that genotype/phenotype correlations will be eventually identified.  
✱❯❖

 No case of incomplete penetrance has ever been demonstrated for families in which 
✱❘P

patients carrying fibrillin-1 mutations are associated with Marfan syndrome. However, 
✲✟◗

patients with the same mutation can show a wide degree of phenotypic variability. This has 
✲❱✱

been exemplified in large pedigrees with sharp differences in clinical severity of 
✲❙✲

musculoskeletal and cardiovascular features of the syndrome 
44
. 

✲✟✳



�✂✁☎✄✆✄✝✁✟✞✟✠☛✡✌☞✎✍✏✁✒✑✓✞✕✔✗✖✙✘✚✄✜✛

 12/27 

 
✱

� ✓✖✕✗✵✛✞✍✁☎✩✮✄✙✩✮✚ ✫✭✩✮✆✰✯✱✩✮✁✲✘✱✣✮✁☎✠✳✆✰✞✍✴✦✵ ✩✮✁☎✠☎✄✝✆✟✞✡✠ ✢✛✵✮✁☎✵ ✴✦✡✝✄☎✩✛✄✝✌✜✞✍✁✝✘✲

 Neonatal Marfan syndrome is the most severe form of the disorder. Affected new-
✳

borns display severe cardiac valve regurgitation and dilatation of the proximal aorta which 
❑

usually lead to heart failure and death in the first year of life. Skeletal manifestations such as 
▲

arachodactyly, dolichostenomelia, and pectus deformities are typically present. Such infants 
▼

may also display congenital flexion contractures, crumpled ears, loose redundant skin, and a 
◆

characteristic "senile" facial appearance 45. The mean life span is usually low (approximately 1 
❖

year 46). The primary cause of death is congestive heart failure associated with mitral and 
P

tricuspid regurgitation. Family investigation usually reveals that the Marfan patients with the 
✱❘◗

severe neonatal phenotype are sporadic cases: Buntinx et al. reported that 37 of 44 cases with 
✱❙✱

neonatal manifestations were sporadic 45. For a longtime it was generally thought that the 
✱❚✲

neonatal phenotype could be explained by mutations in a distinct gene than that involved in 
✱❘✳

the classic “adolescent-adult” form of the syndrome as the observed symptoms were 
✱❚❑

extremely severe and overlapped with congenital contractural arachnodactyly. Godfrey et al. 
✱❯▲

showed an abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients 
✱❘▼

with the neonatal phenotype 46. As in the classic “adolescent-adult” form, there was an 
✱❘◆

apparent decrease in accumulation of immunostainable fibrillin, but they appeared shorter, 
✱❯❖

fragmented and frayed. Molecular analyses revealed that the neonatal Marfan syndrome was 
✱❘P

also due to mutations within the FBN1 gene. Furthermore a clustering of mutations in the 
✲✟◗

protein region encoded by exons 24 to 32 was observed (figure 4), suggesting an unknown 
✲❱✱

but critical function of these domains 47. The severe phenotype associated with these specific 
✲❙✲

mutations in this region of the gene represents, to date, the only genotype/phenotype 
✲✟✳
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relationship established. The observed clustering of mutations enables, in a first step, direct 
✱

screening of this region of the FBN1 gene to help in diagnosis of neonatal Marfan syndrome 
✲

in patients. Finally, confirmation of the sporadic nature of the mutation is important for 
✳

genetic counseling since perinatal lethal Marfan syndrome can also result from compound 
❑

heterozygosity 48 or potential homozygosity. 
▲

 
▼

� ✓✂✁✝✩✛✄ ✧✍✞☎✢✂✵☛✁ ✌ ☞✪✴✦✵✮☞✛✧✍✩✮✁✛✌ ✘ ✴✦✘◆

 Fibrillins are important components of the microfibrillar system that may act as a 
❖

scaffold for elastogenesis. Elastic fibers first appear in fetal development as aggregates of 
P

microfibrils. These microfibrils are arranged in parallel arrays on which elastin is deposited 
✱❘◗

and appears as an amorphous material. Elastin-containing microfibrillar bundles aggregate 
✱❙✱

to form true elastic fibers. These observations suggest that microfibrils determine the form 
✱❚✲

and the orientation of elastic fibers, therefore directing fiber assembly as a scaffold on which 
✱❘✳

elastin is deposited 29. This model explains the typical fragmentation and disarray of elastic 
✱❚❑

fibers observed in the media of Marfan patients. However, unlike elastin, fibrillin-1 is also 
✱❯▲

highly expressed in the vascular adventia. Therefore reduction of this protein in the adventia 
✱❘▼

is very likely also involved in the mechanism for dilatation and for increased risk of 
✱❘◆

aneurysm since the role of the adventia is to maintain the vascular diameter. The pleiotropic 
✱❯❖

manifestations of the disease can be explained by the observation that numerous 
✱❘P

microfibrillar aggregates devoid of elastin are found in the zonule, as well as cartilage and 
✲✟◗

the extracellular matrix of many organs. However, the actual pathogenic mechanisms in 
✲❱✱

these tissues still remain speculative. 
✲❙✲
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 At the molecular level, two different groups of mutations are distinguishable: 
✱

mutations leading to a truncated protein and missense mutations. The first group correspond 
✲

to one third of the mutations and is constituted of nonsense mutations (~10% of all 
✳

mutations), splicing errors (~12%, only one demonstrated case of exon addition), small 
❑

deletions leading to premature STOP codon (~8%), small inframe deletions (~2%), multi-exon 
▲

deletions (~0.6%), and insertions leading to premature STOP codon (~4%). Mutations can be 
▼

responsible for the appearance of a premature STOP codon that reduces the stability of the 
◆

mutant transcript and consequently greatly reduces protein production from the mutated 
❖

copy of the gene (in the affected subjects, the amount of fibrillin-1 protein produced is 50 % 
P

that of normal and is produced only from the normal gene copy), or for the production from 
✱❘◗

the mutated copy of an abnormal monomere that considerably interferes with the assembly 
✱❙✱

(polymerization) of fibrillin molecules (the amount of fibrillin is greatly reduced, < 35 %). 
✱❚✲

The second group represent two third of mutations and correspond to missense mutation. 
✱❘✳

Among them, three quarters are located in calcium binding modules. They are implicated 
✱❚❑

either in creating (~3% of all mutations) or substituting (~24%) cysteine residues potentially 
✱❯▲

implicated in disulfide bonding and consequently in the correct folding of the monomere. 
✱❘▼

The majority of remaining mutations of this type of module affects residues of the calcium 
✱❘◆

consensus sequence that play a major role in defining interdomain linkage 55. An increased 
✱❯❖

protease susceptibility is a mechanism also suggested for missense mutations. Other modules 
✱❘P

are carriers of one quarter of missense mutations and pathological mechanisms have yet to be 
✲✟◗

clearly demonstrated. 
✲❱✱

 What is still unknown are the multiple consequences triggered by the various 
✲❙✲

mutations and the effect of unknown modifier (enhancing or protecting) genes on the clinical 
✲✟✳
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expression. These mechanisms and the great number of mutations identified in the FBN1 
✱

gene explain the great variability of the disease observed not only between families but also 
✲

among affected individuals in a single family. 
✳

 
❑

� ✓✂✁ ✵✮✁☎✵✮✄✝✌✜☞ ✧✛✵✛✄✙✵✮✆✙✞☎✢✛✵✳✁☎✵☛✌ ✄✰✣ ✌ ✁✪✫✭✩✮✆✰✯✱✩✮✁✲✘✙✣✳✁☎✠☛✆✟✞✂✴✦✵▲

 The clinical variability of Marfan syndrome is only partly explained by the great 
▼

number of mutations identified in the FBN1 gene. In effect, we have demonstrated the 
◆

existence of genetic heterogeneity, i.e. the involvement, in certain cases of Marfan syndrome 
❖

of mutations located in another gene named MFS2 (for Marfan syndrome type 2). Genetic 
P

heterogeneity was demonstrated through the study of a large French family in which affected 
✱❘◗

individuals display an incomplete form of the syndrome: typical skeletal and cardiovascular 
✱❙✱

features as well as involvement of the skin and integument. No ocular manifestations were 
✱❚✲

observed until recently when one of the children developed ectopia lentis. We showed that 
✱❘✳

fibrillin-1 was normal in several affected family members and excluded linkage between the 
✱❚❑

FBN1 gene and the disease in the family 50. By exclusion mapping we located the MFS2 gene 
✱❯▲

on the short arm of chromosome 3 51. In this area is located the gene that encodes fibuline-2 
✱❘▼

(FBLN2), another microfibrillar component. Again through a double approach (genetic and 
✱❘◆

protein) we showed that MFS2 and FBLN2 were not identical 52. We are now identifying 
✱❯❖

MFS2 through positional cloning. Other teams have already identified families comparable to 
✱❘P

the French family in that they are not linked to or do not carry a mutation in the FBN1 gene 
✲✟◗

(M. Boxer, L. Peltonen and Beat Steinmann, personal communications). Clinically these 
✲❱✱

families are indistinguishable from other families linked to FBN1. Therefore, we are also 
✲❙✲

trying to determine the percentage of Marfan syndrome cases that are associated with 
✲✟✳
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mutations in MFS2 through genetic analyses as well as their clinical spectrum. Other teams, 
✱

through protein studies have identified between 7 and 16 % of Marfan syndrome patients 
✲

with normal fibrillin metabolism 53, 54. The precise determination of this % is important for 
✳

laboratories involved in diagnosis of Marfan syndrome since it will give the risk associated 
❑

with investigation of only the FBN1 gene. 
▲

 
▼

✒✁� ✓✄✂ ✁ ✌ ✴✦✩✮✚ ✴✦✞✝✠☛✵✮✚ ✓◆

 The first animal model described was a limousine calve which presented with skeletal 
❖

(kyphosis, long, thin limbs), integuments (severe joint and tendon laxity), ocular 
P

(microspherophakia, ectopia lentis) and cardiovascular (heart murmurs, aortic dilatation, 
✱❘◗

sudden death at a young age due to aortic rupture) abnormalities 55. The similarities between 
✱❙✱

the human and the bovine diseases suggest that similar metabolic defects could be 
✱❚✲

responsible. To date, although reduced immunostained fibrillin in cultured aortic smooth 
✱❘✳

muscle cells in this limousine calve 56, no mutation in the corresponding bovine FBN1 gene or 
✱❚❑

in another gene was yet identified in this model. 
✱❯▲

 Mice carrying the Tight skin (Tsk) mutation harbor a genomic duplication within the 
✱❘▼

fibrillin-1 (Fbn1) gene that results in a larger than normal in-frame Fbn1 transcript 57. Tsk/+ 
✱❘◆

mice exibit a thickening of the skin with loss of elasticity, larger skeletal size because of 
✱❯❖

excessive bone and cartilage growth, emphysema-like condition, myocardial hypertrophy 
✱❘P

and small tendons with tendon sheath hyperplasia. Tsk fibrillin-1 is produced, assembled, 
✲✟◗

and deposited in the extracellular matrix but beaded Tsk fibrillin-1 microfibrils have a longer 
✲❱✱

than normal periodicity and an altered morphology and organization in skin. Vascular 
✲❙✲

complications were thought to be absent in these animals because the level of functional 
✲✟✳
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microfibrils does not drop below the critical threshold. The heterozygous mice have a normal 
✱

life span contrary to the human counterpart.  
✲

 Gene-targeting experiments in mice resulted in two mutant lines in mice: the mg∆ 
✳

mutant from the J1 lines of ES cells (deletion of exons 19 to 24) 58 and the mgR mutant from 
❑

R1 lines of ES cells (integration of the PGKneo-cassette without loss of endogenous sequence) 
▲

59. Homozygous mg∆ mice begin life with a drastic reduction in protein (5%) and die early 
▼

because of structural failure of the vascular system. Homozygous mgR mice produce a 
◆

quarter of the normal amount of fibrillin-1 and display phenotypic features in the skeleton 
❖

and the aorta similar to those of patients with classic Marfan syndrome. The mgR/mgR mice 
P

support the notion that microfibrils control bone overgrowth negatively.  
✱❘◗

 Finally, Jaubert et al. demonstrated the implication of type C receptor for natriuretic 
✱❙✱

peptides (NPR-C) in the strigosus (stri) mutation 60. Homozygous mutant mice show as early 
✱❚✲

as 6 days of age increased body length, longer digits, and a typical cone-shaped implantation 
✱❘✳

of the tail. When older, mutant mice are exceptionally thin and have arachnodactyly, thoracic 
✱❚❑

kyphosis and frequent tail and/or sacral kinks. The unexpected expression of mutations 
✱❯▲

within this gene as a Marfan-like skeletal phenotype should not be overlooked in the 
✱❘▼

investigation of the pathogenesis of Marfan syndrome. 
✱❘◆

 
✱❯❖
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 Although no specific therapy exists for Marfan syndrome, it is of great importance to 
✲✟◗

confirm or firmly exclude the diagnosis in family members at risk as early as possible 
✲❱✱

because of the potential fatal complications of the disease. At present, diagnosis is still based 
✲❙✲

on thorough clinical examination, including measurements of body proportions, 
✲✟✳
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echocardiography of the aorta, slit-lamp ophthalmological evaluation and radiographs. A 
✱

complete family history is also an essential part of the diagnosis. However in some cases the 
✲

manifestations are not evident until adolescence and the clinical expression of the disease 
✳

varies greatly between affected members of a single family. Therefore, there is an absolute 
❑

need for an accurate diagnostic test. 
▲

 The discovery of the involvement of fibrillin-1 has raised high hopes for a protein or 
▼

DNA test applicable to Marfan syndrome patients. Immunofluorescence studies of cultured 
◆

fibroblasts and skin sections of patients using monoclonal antibodies against fibrillin have 
❖

revealed that the amount of fibrillin deposition or of fibrillin microfibrils is greatly reduced 8. 
P

Therefore, immunofluorescence analysis could be helpful in diagnosis. However the method 
✱❘◗

has proven to be insufficiently sensitive and specific because of the existence of non-Marfan 
✱❙✱

syndrome type 1 fibrillinopathies and of genetic heterogeneity. Therefore, an abnormal test 
✱❚✲

result does not diagnose Marfan syndrome, and a normal test result does not exclude Marfan 
✱❘✳

syndrome. 
✱❚❑

 The identification of the FBN1 gene has allowed the development of two types of 
✱❯▲

diagnostic tests: either genetic family studies or mutation identification. Family studies can 
✱❘▼

be performed with specific FBN1 polymorphic markers to identify the mutation-bearing 
✱❘◆

haplotype 61. These studies are only reliable in families in which several affected individuals 
✱❯❖

are available since the involvement of a FBN1 mutation (and not that of another gene) must 
✱❘P

be clearly demonstrated. However, most family structures do not comply with this 
✲✟◗

requirement. Furthermore, the method is inappropriate in sporadic cases. In practice, these 
✲❱✱

instances represent over 40 % of the cases referred for biological diagnosis. The second 
✲❙✲

molecular test is mutation identification. Mutation identification is very costly and long. In 
✲✟✳

effect, there is no quick and 100 % reliable method to investigate a large (~ 230 kb) and 
✲❙❑
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highly fragmented (10 kb of coding sequence fragmented in 65 exons) gene, knowing that 
✱

almost each family has its own specific defect and that the mutations are essentially point 
✲

mutations. Finally, this very costly analysis may fail to identify a mutation since only the 
✳

coding sequence and closely surrounding regions are investigated. However, in the case of 
❑

neonatal Marfan syndrome, where a clustering of mutations is found in a specific region, 
▲

molecular diagnosis can be performed. In all other instances and until better molecular tools 
▼

are available, mutation identification cannot be performed on a systematic basis. However, in 
◆

a few cases where the family mutation had been identified, it was possible to perform 
❖

prenatal diagnosis on chorionic villus samples or offer presymptomatic diagnosis in children 
P

at risk of affected subjects 62, 63. 
✱❘◗

 
✱❙✱
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