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Abstract

Protein Blocks (PBs) comprise a structural alphabet of 16 protein fragments, each 5 Ca long. They make
it possible to approximate and correctly predict local protein three-dimensional (3D) structures. We have
selected the 72 most frequent sequences of five PBs, which we call Structural Words (SWs). Analysis of
four different protein data banks shows that SWs cover 92% of the amino acids in them and provide a good
structural approximation for residues (i.e., sequences) 9 Ca long. We present most of them in a simple
network that describes 90% of the overall residues and, interestingly, includes more than 80% of the amino
acids present in coils. Analysis of the network shows the specificity and quality of the 3D descriptions as
well as a new type of relation between local folds and amino acid distribution. The results show that the 3D
structure of these protein data banks can be easily described by a combination of subgraphs included in the
network. Finally, a Bayesian probabilistic approach improved the prediction rate by 4%.

Keywords: 3D local structure prediction; 3D protein topology; probabilistic approach; sequence-structure

relationship; structural alphabet; 3D overlapping motifs

Supplemental material: See www.proteinscience.org.

One of the most important tasks of structural biochemistry
is to determine, from the examination of a one-dimensional
(1D) protein sequence, how it folds into a three-dimensional
(3D) biologically active structure. A solution to this enigma
is ever more necessary in view of the huge increase in
completely sequenced genomes. In most cases, the 3D bio-
logically active structure is unknown (Genome International
Sequencing Consortium 2000), and in rarer cases even the
protein function is unknown. Clearly, any approach that
could provide information about 3D structure from the 1D
sequence alone would be useful. Theoretical prediction
methods are one possible way to fill in this gap (Baker and
Sali 2001).
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The most traditional method for predicting 3D protein
structure relies on the progressive divergence of se-
quences from a given ancestor at the same time that they
preserve their functional 3D structure. This method, called
homology modeling, requires sequence alignment and
3D structure targets (Jaroszewski et al. 1998; Fiser and Sali
2002). Automated software such as Modeller (Sali and
Blundell 1993) is useful for proteins that share more than
40% of their sequence identities. For proteins sharing be-
tween 20% and 40%, threading is an alternative approach:
it searches for the best fit between a protein sequence
and an ensemble of known 3D protein structures (Kelley
et al. 2000; Xu and Xu 2000; Meller and Elber 2001).
Software such as Threader 2 (Jones et al. 1999) explores all
the possible folds for the sequence and uses statistical
parameters to score the 1D-3D compatibility. The use of
this approach is limited by the completeness (or lack
thereof) of the 3D structural data bank and the statistical
parameters.
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The only method that does not directly use 3D structure
targets is ab initio modeling. Useful for understanding the
main principle of a protein fold, it generally consists of
simplifying the representation of proteins, often with
pseudo-atoms that mimic protein backbone and side chains.
Physicochemical parameters are used to determine the fold-
ing (Bonneau and Baker 2001). However, this method is
often limited to small proteins (Orengo et al. 1999). Ab
initio methods (Simons et al. 1997) with new constraints
have recently improved prediction substantially (Bonneau et
al. 2001). Nevertheless, whatever the method used and
whether or not it requires 3D structure targets, progress in
this area depends on a systematic examination of the avail-
able 3D structures. They furnish the basic elements for
studying the relation between sequence and structure, which
is essential for better knowledge of the principles governing
the folded state.

Until recently, this exploration, still in its initial phase,
consisted of simplifying the 3D structure into secondary
structures, including the well-known repetitive and regular
zones—the o-helix (30% of protein residues) and the
B-sheet (20%). The remaining elements constitute a cat-
egory often considered ‘variable,” with coils composed of
all the non-a and non-B residues (50% of the structures).
Many groups have attempted to predict these three states,
and prediction rates are constantly improving. Currently,
standard prediction methods combine neural networks with
information from sequence homologies (Rost and Sander
1993; Salamov and Solovyev 1997; Chandonia and Karplus
1999; Ouali and King 2000), and prediction rates now ap-
proach 80% (Petersen et al. 2000; Rost 2001; Pollastri et al.
2002).

Even so, however, the approximation of a 3D structure
with only three states is very crude; without additional in-
formation, no 3D reconstruction is possible. We note here
three of the many obstacles. First, classic regular zones are
flexible structures; for example, a-helices may be curved
(Kumar and Bansal 1998), and more than one-quarter of
them are irregular (Barlow and Thornton 1988). On the
other hand, the ® and V¥ dihedral angles of B-sheets are
highly dispersed. Second, because of energetic constraints
(Rohl and Doig 1996), the other periodic protein structural
zones (4% of residues are in 3, helices and 0.2% in m-he-
lices) are limited to a few residues generally located at the
a-helix ends (Rajashankar and Ramakumar 1996). Third,
coils, which represent 50% of residues, have not yet been
described well. Their large conformational variability
makes it difficult to classify every type of coil region. None-
theless, many studies have shown that similar structures can
be detected for many of the protein fragments that make up
this coil state. These include B-turns (Richardson 1981;
Wilmot and Thornton 1988; Hutchinson and Thornton
1994), mr-turns (Rose et al. 1985; Milner-White 1988),
B-bulges (Richardson et al. 1978; Chan et al. 1993), 3-hair-
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pins (Sibanda and Thornton 1991), w-loops (Fetrow 1995),
and a-turns (Pavone et al. 1996; Chou 1997). Protein frag-
ments of the same length (less than nine residues) in the
periodic structures of a-helices and (3-sheets have been
completely classified (Kwasigroch et al. 1996; Wintjens et
al. 1996; Boutonnet et al. 1998), and these projects have
proved useful for local structure prediction (Wojcik et al.
1999).

Alternative classifications have described fragments of
lengths ranging from six to 16 residues (Leszczynski and
Rose 1986); the very long loops are described as a combi-
nation of small ones (Ring et al. 1992). Inherently, however,
all these classifications depend greatly on the definition of
periodic regular zones and cannot completely describe the
3D protein structure. The difficulty of description becomes
clear when we compare the results of different secondary
structure assignment algorithms: they all detect regular
zones but disagree strongly about their extent and exact
location (Colloc’h et al. 1993; Labesse et al. 1997; Cuff and
Barton 1999).

For these reasons, various teams have recently tried to
proceed without using classic secondary structure descrip-
tions. Instead, they categorize the 3D structures, without any
a priori definition, through a set of small protein fragments
frequently observed in one or several structural data banks.
Depending on the author, the number of structural frag-
ments used may range from four to 100. They may have
fixed or variable lengths (from four to nine residues) and be
more or less similar geometrically. These prototypes may be
said to provide a “structural alphabet” (Unger et al. 1989;
Rooman et al. 1990; Schuchhardt et al. 1996; Fetrow et al.
1997; Bystroff and Baker 1998; Camproux et al. 1999; de
Brevern et al. 2000) that makes it possible to redefine not
only regular periodic structures but also their capping re-
gions. Moreover, because they characterize different proto-
types for coil regions, they provide more precise structural
descriptions; they thus furnish new insights into the relation
between the 1D sequence and the 3D structure and reveal
particular sequence specificities (Bystroff and Baker 1998;
de Brevern et al. 2000; Camproux et al. 2001). For a more
exhaustive review of the structural alphabets, see de Brev-
ern et al. (2001).

In a previous paper, we described the structural alphabet
we developed, based on a mean of 16 protein fragments,
each five residues long. We used these Proteins Blocks
(PBs; see Fig. 1) both to describe 3D protein backbones and
to predict local structures (de Brevern et al. 2000). When
used with a new method called the Hybrid Protein Model,
which compacts a structural protein data bank into a limited
set of clusters, they have proved reliable for long fragments
(de Brevern and Hazout 2001, 2002). We also used them in
a more detailed approach towards understanding the relation
between sequence and structure (de Brevern and Hazout
2000).



Structural alphabet

Here we evaluated four different protein data banks ob-
tained by distinct criteria, so that we could take into account
the constant increase of available protein structures. Encod-
ing these nonredundant protein data banks in terms of PBs
revealed interesting features of the PB distribution; there
were fewer possible arrangements for the 3D structures and
strong sequential features. This paper examines and dis-
cusses the rules governing the association of local PBs.

Toward this end, we analyzed the most frequent sets of
five consecutive PBs, which we will call Structural Words
(SWs) because they combine structural alphabet elements
into meaningful units. The presentation focuses on three
essential points: (1) the structural meaning and relevance of
SWs, (2) their ability to summarize most of the 3D struc-
tures in protein structure data banks with a very simple
network, and (3) the use of their amino acid specificity to
improve prediction of local 3D structures defined as PBs.

To clarify the utility of SWs, we will frequently compare
their use with that of the previously proposed structural
motifs (a-helices, -sheets, and the coils defining a three-
state alphabet).

Results
Figure 1 describes the Ca trace of the 16 PBs we deter-

mined previously. The approximation of local structures is

(a] b

particularly efficient, with the mean root mean square de-
viation (RMSD) of 0.58 A. A very rough allocation into the
more standard secondary structure categories would yield
three B-strand C-caps, two N-caps and one central 3-strand
(PB d), four distinct coil PBs, two a-helix N-caps, three
a-helix C-caps, and one central a-helix (PB m).

Choice of Structural Words

The transitions between successive PBs are highly specific
and lead to a limited number of PB combinations. We ana-
lyzed different series with PBs of different lengths. The
series of five consecutive PBs had the most interesting fea-
tures. One PB represents five residues, and thus five PBs
represent nine residues. The sets of five PBs are, as noted
above, referred to as Structural Words (SWs).

The PBs were designed on 228 proteins of the PdbSelect
A protein data bank. Because of the continuous increase in
the size of the Protein Data Bank (PDB; Bernstein et al.
1977; Berman et al. 2000) and the existence of various
nonredundant data banks, we then assessed our description
on four other data banks (culled-Pdb, PdbSelect B, SCOP,
and PAPIA; see Materials and Methods and Table 1). The
stability of the PBs, defined by their frequency and struc-
tural meaning, did not vary significantly.

The total number of different SWs in each of the four data
banks increased with the size of the data bank: fewer than

i) {d)

Fig. 1. Example of 3D protein fragment associated with each Protein Block (visualization with MOLMOL software, Koradi et al. 1996).
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Table 1. The five Databanks (PdbSelect A, PAPIA, culled-Pdb,
SCOP, and PdbSelect B) with the number of protein chains, the
number of residues, and the number of corresponding

protein blocks

Protein Amino Protein
Databank chains acids blocks
PdbSelect A 342 88,258 86,890
PAPIA 717 180,854 177,986
culled-Pdb 886 167,535 164,667
SCOP-ASTRAL 558 137,510 134,642
PdbSelect B 1229 238,208 235,340

4000 SWs for PdbSelect A, roughly 8500 for culled-Pdb
and PdbSelect B, 6600 for SCOP, and 9400 for PAPIA. The
structural diversity of the SWs seems to increase with the
number of proteins considered. It is therefore necessary to
select a relatively limited number of combinations to predict
structure based on reliable sequence specificity.

We defined a criterion to select the appropriate number of
SWs: it is based on the ability of the selected SWs to encode
a given 3D zone and is defined as the number of amino
acids encoded by the SWs relative to the total number in the
protein. This criterion is called coverage and is expressed as
a percentage.

The number of SWs to be selected was thus determined
by the coverage values; Figure 2 reports the variation of
both. Up to 30 SWs, coverage increases markedly (60% and
80% with six and 20 SWs, respectively). Thirty SWs can
encode an average of 85% of the 3D structure of any protein
in the data bank. Thereafter, coverage is essentially satu-
rated, regardless of the number of SWs: when the number
increases from 72 to 190, coverage increases only slightly

100 T

covering

20 L L .
¢} 20 40 60 80

SWs number
Fig. 2. Variation of the coverage of SWs as a function of N (the number

of SWs selected). SWs were extracted from PdbSelect A (solid line) and
PAPIA (dotted line).
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and the curve reaches a plateau. This behavior was observed
in all four data banks. Considering both sequence specificity
and coverage, we selected 72 as the optimum number of
SWs for prediction purposes (~92%, see Fig. 3 and first
column of Table 2).

Figure 4A represents the coverage distribution for all the
proteins in the PAPIA data bank. Most have coverage val-
ues of at least 90%. Figure 4B shows the distribution of the
fragment lengths not associated with an SW in PAPIA: the
mean value is 5.3 residues, and the median is 4.4. The size
of the noncoded fragments is thus generally small.

The set of 72 SWs was not identical for each of the data
banks, although 65 SWs appeared in all five data banks
examined (see below). The remaining seven SWs had fre-
quencies < 0.23% in the data banks but were are often found
among the first 97 SWs (frequency > 0.13%).

Structural Words

The frequencies of the most common SWs were very simi-
lar in the four largest data banks and ranged from 18.4% to
16.6% (SW mmmmm), while those of the rarer words
ranged from 0.21 to 0.07% (SW mmmpm). Table 3 details
the frequency associated with each SW from PdbSelect A.
These features were similar for the other data banks (data
not shown, see Supplementary data).

The most frequent SWs are related to the principal peri-
odic local structures (mmmmm and ddddd). The PBs m and
d are present at least once in 19 and 44 SWs, respectively,
related mainly to a-helix and B-sheet secondary structures.

al & i

(=) it ':i)

etV o] T

Fig. 3. Example of 3D protein fragments associated with nine Structural
Words: (a) mmmmm, (b) ddddd, (c) bcedd, (d) pacdd, (e) acddf, (f) iacdd,
(g) cddfb, (h) ddfbf, and (i) dfbfk (visualization with MOLMOL software,
Koradi et al. 1996).
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Table 2. Coverage values obtained with the full set of SWs and the selected set (58 SWs) from the Protein Network

Covering STRIDE P-SEA PBs

SWs Protein Network a-helix B-sheet coil a-helix B-sheet coil a-helix B-sheet coil
Databank (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
PAPIA 91.4 89.3 97.0 92.0 81.0 99.6 94.1 78.9 98.1 95.2 80.2
culled-Pdb 93.6 90.3 97.1 924 81.6 99.6 94.6 79.5 98.0 95.5 82.9
SCOP-ASTRAL 92.1 89.2 97.2 92.5 81.8 99.4 94.6 79.5 98.0 95.7 82.1
Pdb-select B 923 88.9 97.4 93.2 81.0 99.6 95.1 80.9 98.0 95.3 82.5
mean 92.4 89.4 97.2 92.5 81.4 99.6 94.6 79.7 98.0 95.4 81.9

The following two columns correspond to the repartition of coverage values of the Protein Network according to the classic secondary structures assigned
with two different algorithms: STRIDE (Frishman and Argos 1995) and P-SEA (Labesse et al. 1997). The last column corresponds to the same coverage
values assigned with PB m as the a-helix, the PB d as the B-sheet, and the rest as the coil state.

The first SW without PB m or d is nopac, which has a
frequency of 0.6%.

As expected, all of the selected SWs were overrepre-
sented, but some were observed considerably more often
than expected. Figure 5 reports the ratio of observed to
theoretical frequency, denoted as R. This ratio ranged from
0.8 to 34. The SWs with the most significant R values are
noted in Figure 5. Most of them had common roots—*“dc”

A —

100 120

80

occurence

to0a

900
1

LENCTH

26 30 35

Fig. 4. (A) Histogram of the distribution of the coverage values for the 717
protein chains from the PAPIA data bank. (B) Histogram of the distribution
of the fragments not covered by the 72 SWs obtained from the PAPIA data
bank.

and “ fk”. Interestingly, these SWs did not belong to the
repetitive secondary structures.

Most of the SWs we selected were independent of the
composition or size of the data bank. Nonetheless, some
differences appeared, mainly for the rarer SWs; they ap-
peared to depend on the data bank. For example, mmmpm,
mmmmp, and cddde are substantially less frequent in the
four most up-to-date data banks. Conversely, mmmmg,
which was absent in PdbSelect A, now occurs at a frequency
of almost 0.20%.

Most of the SWs overlap: the last four PBs (respectively
first) of a given SW may be identical to the first four (re-
spectively last) PBs of another. For example, mnopa over-
laps with nopac, nopab, and nopaf. The overlapping occurs
mainly in the N-caps and C-caps of SWs involving PB d,
namely B-strands, with for instance ccddd with bcedd,
cdddd, cdddf, and cddde. This may be due to the great
flexibility of these local structures. Overall, 55 SWs overlap
on both sides with other SWs, 16 SWs overlap on one end,
and only one does not overlap at all. These latter 17 SWs are
less common (frequency < 0.4%).

Another interesting point is that some SWs differ by only
one PB; examples are mmmmn, mmmmc, and mmmmp, Of,
again, nopac, nopab, and nopaf. These may correspond to a
real structural transition; for example, the word nopac may
evolve into nopacddd, nopab into nopabd, and nopaf into
nopafkl, or to a local structural modification, for instance, a
PB change such as that observed in mmmpm, mimmm and
mklmm correspond to irregular a-helices.

Structure and sequence in Structural Words

To ensure the reliability of the SWs, we calculated the val-
ues of the RMSD and RMSDa root mean square deviation
on angular values (RMSDa) for all of the pairs of fragments
corresponding to the same SW. The RMSDa values ranged
from 28° to 32°. These values are quite consistent with
those computed for the five-residue fragments making up
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Table 3. The 72 Structural Words used in the prediction with
their frequencies and their root mean square deviation (RMSD)

Table 3. Continued

SW Obs. freq. (%) RMSd (A) SW Obs. freq. (%) RMSd (A)
mmmmm 17.27 0.43 dfkbc 0.21 0.66
ddddd 3.87 1.04 pafkl 0.21 0.78
Immmm 2.45 0.34 mmmmc 0.20 0.69
klmmm 2.36 0.41 acddf 0.20 0.75
fklmm 2.00 0.59 dfkop 0.20 0.58
cdddd 1.73 0.94 deddf 0.19 0.93
ddddf 1.38 0.82 nopab 0.19 0.75
mmmno 1.24 0.42 ddehj 0.19 0.67
mmmmn 1.24 0.51 acfkl 0.19 0.67
mmnop 1.09 0.63 fklpc 0.19 0.59
dddfk 1.06 0.63 abdcd 0.18 0.67
mnopa 1.03 0.72 echia 0.18 0.55
dfklm 0.98 0.71 opabd 0.18 0.55
ddfkl 0.95 0.73

bdcdd 0.91 0.73

acddd 0.86 0.66

fbded 0.79 0.75

dddfb 0.75 0.74 the PBs. Figure 6A reports the RMSD values for the SWs:
ceddd 0.71 0.72 they range from 0.34 A to 1.11 A (see Table 3), with an
d;fldd 828 82; average value of 0.70 A. Even the largest value was con-
C m . . . . . . .

opacd 0.65 059 siderably smaller. than those associated with coils ina three-
nopac 0.61 0.68 state alphabet. Figure 6B reports the total population asso-
hiacd 0.58 0.73 ciated with each RMSD range. Clearly, most fragments had
ehiac 0.55 0.91 a small RMSD value. The largest value was for ehiac,
ciggz g‘gj 8'22 which can be roughly described as a loop region connecting
gddde 0.54 0.80 two strands. The srr?allftst value was associatefi with the
dfbde 0.53 0.80 central zone of a periodic PB m. The SWs that include the
dddeh 0.53 0.63 PB m often had an RMSD less than 0.60 A, and those
facdd 0.52 0.51 including d were slightly higher (0.75 A).

gg?brgmp 83; (1)?(1) An average RMSD of 0.7 A is a very good approximation
dehia 043 0.81 of nine-residue fragments of 3D structurf?s: The results are
cdddf 0.43 0.62 better than those for structural loop classifications (Kwasi-
ddehi 0.37 1.00 groch et al. 1996; Wojcik et al. 1999). The RMSD range of
beedd 0.37 0.63 eight-residue loops, for example, reached 5 A. This large
mmmpe 0.35 0.73 discrepancy could be attributed to the remaining 10% non-
cdfkl 0.35 0.69

cddfk 030 076 encoded zones. N .

cfbde 0.30 0.69 The amino acid propensities of the SWs, that is, the
kbeed 0.30 0.57 amino acid frequencies in each SW position, are extremely
afklm 0.27 0.60 variable. Because of the overlapping, however, the propen-
ELT;HHT 832 8% sities between SWs seem to be governed by strong and
bfklm 025 0.48 logi.c.al rules. For example, prqline is .overrepresented in
nopaf 0.25 0.40 position (+2) or (+3) of ddehi, in position (+1) or (+2) of
fkbece 0.25 0.79 dehia, and in position (+1) and (0) of ehiac. Similarly, ali-
cddfb 0.24 0.66 phatic hydrophobic residues are strongly underrepresented
?ﬁ?ﬁa 8§§ ggg in positions (—1), (0) and (+1) of ehiac, hiacd, and iacdd.
ddfkb 022 0.66 Conventional amino acic'i propensities were observed for the
ddfbf 0.22 1.01 N- and C-caps of a-helices (Aurora and Rose 1998).

fbdef 0.22 0.73 We also observed in many cases that the propensities
opafk 0.22 0.67 differ from those observed for the PBs (see below). Over-
glflgl&cc 8;3 (1)-2411 lapping does not completely explain the SW propensities.
bdedf 021 077 F.or exgmple, .the underrepresentation of aliphatic hydrophg-
mmmpm 021 0.51 bic residues in ehiac, hiacd, and hiacdd is also found in

2876 Protein Science, vol. 11
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Fig. 5. Relative frequency R of the different 72 SWs. The value R is computed as the ratio between the observed probability p,, and
the theoretical probability p,, deduced from the PB frequencies considering a first-order markovian transition process. pg,
(SW;=uvwxy) = p(y[x)p(x|w)p(w|v)p(vlu)p(u) where p(y|x) is the probability that y follows X in a sequence; p,,s (SW;) = Nb(SW))
/ Np(SW); N«(SW) is the total number of SWs in the data bank, and Nb(SW;) is the occurrence of SW;,.

Coverage: An example

Figure 7 shows the sequence and structure of methionyl-
tRNA synthetase (PDB entry: 1a8h). Coverage computed
with 72 SWs for this very large protein reaches 97.4%. The
nonencoded regions are split into five small zones, colored
in black. They contain one to five residues and are located
between repetitive structures such as pm (position 180-181)
as well as in unstructured regions such as hiafe (position
141-145).

The network

The overlapping property of most of these SWs can be used
to define long continuous chains. They can thus be as-
sembled into a simplified network (see Materials and Meth-
ods). We used the first 14 SWs to set up the network and the
next 44 to supplement it. The last 14 were much more
difficult to include in a simple network and have been omit-
ted for clarity. Thus the network described in Figure 8 in-
cludes 58 SWs (called the “network set”) that were often
found in all of the data banks. This network is unique be-
cause of the number of SWs and the rules for selecting it.
The inclusion of other SWs according to the same rules will
yield a different network.

The network summarizes all of the possible pathways
followed by the backbones of all of the proteins in all of the
data banks. For example, the sequence (called subgraph
hereafter) m—n—o0—>p—a is followed by the subgraph
n—0—p—a—c. Superposition of the subgraphs completes

A,

OCCUSRENCE

<0.50

0.50-0.59 0.60-0.74 0.75-0.9% =099
RMSD

FRELUENS
0

2

0.75-0.9% =099

<0.50

0.50-0.59 0.60-0.74
RMSD

Fig. 6. (A) Histogram of RMSD values distribution computed between the
3D fragments associated with each of the 72 SWs (see Table 3). (B)
Histogram of the frequency of fragments in a given range of RMSD values.
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Fig. 7. (Left) The sequence of methionyl-tRNA synthetase from Thermus Thermophilus (code PDB 1a8h). (A) The amino acid
sequence, (B) the Protein Blocks deduced from the structure, and (C) the coverage by the SWs with the symbol (*): included and (-)
not included. (Right) Visualization of the 3D backbone structure with VMD software (Humphrey et al. 1996).

the graph: the subgraph in this case becomes mnopac. The
graph may include branches; that is, a series may be fol-
lowed by several distinct series. Thus, the subgraph mnopa
is followed by two subgraphs: nopac 68% of the time and
nopaf 32%.

This network is composed of 31 nodes and uses 15 of the
16 PBs. Because of the overlap between SWs, the number
of nodes is very small relative to the 58 SWs included in the
network. The efficiency of the alphabet’s definition and
description is shown by the ability to base a network on a
selection of SWs: all of the PBs are meaningful in the de-
scription of 3D protein structures. We also note that the 58
SWs defining the network are identical for all of the data-
bases.

The network is based on the two periodic structures, node
01 (PB m, a-helix) and node 07 (PB d, B-sheet). The re-
petitive PBs m and d are each considered only one node
turning over on itself. For example, the subgraph fk(m),nop,
where PB m is repeated x times, corresponds to the sequence
of the nodes fkl(m*)nop, with the asterisk representing the
repetition of blocks. Colors represent the observed occur-
rences (see Figure 8). The repetition has been mentioned
before (de Brevern et al. 2000) and described with an av-
erage number of repeats (anr) index, which equals 6.74 for
PB m and 2.74 for PB d.

2878 Protein Science, vol. 11

The principal entrance into helical structures is the triplet
fkl (nodes 08-09-10), and the principal exit is nop (nodes
02-03-04). There are also two shorter and rarer series: pcc
(nodes 20-21-22) and ¢ (node 23). The subgraph including
node 07 (PB d) is more complex: entrance occurs only
through one node, 06 (PB c¢). It is included in the nopac
graph (nodes 02—03-04-05-06) and kbc subgraphs (nodes
31-27-06). Its most significant exit is the subgraph dehiacd
(nodes 07-25-16—17-18-19-07). The next most important
exit that includes node 07 is subgraph dfkl (nodes 07-08—
09-10). The more complex exit df (nodes 07-13) goes to-
wards nodes 14 (PB b) and 31 (PB k).

Network coverage and Protein Blocks

We next considered the relevance and structural stability of
the network. After encoding the entire set of data banks with
the structural alphabet, we counted all of the protein frag-
ments corresponding to SWs in the network (58); we ended
up including nearly 90% of the amino acids in the structural
data bank. This coverage is thus very similar to that ob-
tained with the set of 72 SWs defined above.

The most interesting point is that the network contained
not only the periodic structures (98% of the a-helices and
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Fig. 8. The protein network composed of 31 nodes. Each node is labeled with the PB letter and its own number. The colors depend
on the occurrence rates: red, > 10% of the protein structural data bank; blue, between 10% and 6%; gray, between 6% and 3.5%; and
pink, less than 3.5%. Nodes 01 and 07 represent Protein Blocks m and d, respectively. Their repetition (anr of 6.74 and 2.74,
respectively) is symbolized with a double circle and a star (m* and b*). Node 28 (PB /) and nodes 29-30 (PBs k and /) are included
in the mim and mklm sequences. The network is discontinuous, and thus nodes 12, 22, and 23 (PB c), node 25 (PB j), and node 24 (PB

f) are obligatory ends.

95% of the 3-strands) but also coils, with coverage reaching
80%. Thus, most protein topologies observed in the struc-
tural data bank may be described with only 58 SWs based
on a simple 16-state alphabet.

Table 2 reports the coverage for each of the four up-to-
date data banks, as computed with the entire set of SWs (72)
and the set selected from the network (58). The values are
very similar for all of the data banks, with the small differ-
ences due simply to slightly different occurrence rates for
each SW. Using the SWs in the network, we computed the
coverage of secondary structures by the protein network.
Table 2 summarizes the results for three types of secondary
structures, which are, in general, difficult to assign
(Colloc’h et al. 1993; Cuff and Barton 1999; de Brevern et
al. 2002), and for three assignment methods. The difference
between the results reflects the specificity of the assignment
method. P-SEA (Labesse et al. 1997) is based on geometric
criteria, whereas STRIDE (Frishman and Argos 1995) uses
energetic criteria. The last assignment is based on the Pro-
tein Blocks, with PBs m and d describing the core of regular
secondary structures. Despite these different assignment
methods, the results were very similar.

The PBs covered could be clustered into different groups:
coverage of the periodic structures (PBs m and d) was ex-
cellent, ranging from 95% to 99%, whereas that for their N-
and C-caps ranged from 80% to 90%. The PBs with the
poorest coverage were j, g, and p, with values of 58%, 69%,

and 73%, respectively. Because they are usually present in
long loops, they are not often found in the protein network.

Most of the residues (90%) in the data bank are thus
included in the network. The main doublets not included are
bd and fb. The triplet fbd (more than 500 occurrences in
PdbSelect A) is included in the network (nodes 13—14-07)
but is found with 413 occurrences in SWs not considered
among the 72 selected SWs. The PBs located at the N- and
C-ends of this triplet vary greatly, and thus probably few
sequences of five consecutive blocks were considered in the
network.

Words and 3D stability

The structural alphabet was developed to approximate the
three-dimensional structure of 5 Ca locally, and the network
uses overlapping sequences of five PBs (i.e., 9 Ca). It is
therefore important to verify whether these local approxi-
mations with average values still yield similar protein frag-
ments. We extracted from the 58-SW network 17 subgraphs
(i.e., series of sequential nodes), which were from four to
seven PBs long (i.e., 8 to 11 Ca) and covered the network
entirely. The average RMSD and RMSDa were calculated
for all pairs of protein fragments in the data bank that cor-
responded to the same subgraph (Table 4). Then we looked
for possible structural subfamilies in the subgraphs, that is,
distinct local folds associated with the same PB sequence.
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Table 4. The 17 subgraphs (protein fragments) used to test the
structural stability of the simplified network with the associated
SW series, the number of PBs, the number of associated Ca,
and the corresponding nodes

RMSd

Subgraphs PBs Ca A) Nodes

mnopacd 7 11 0.61 01-02-03-04-05-06-07
mnopa 5 9 0.72 01-02-03-04-05
ehiac 5 9 0.91 15-16-17-18-19
dehiacd 7 11 1.02 07-15-16-17-18-19-07
dfbf 4 8 0.59 07-13-14-24
dfkopa 6 10 0.64 07-13-31-03-04-05
fklm 4 8 0.66 07-13-14-24

afkl 4 8 0.58 05-08-09-10

dfbd 4 8 0.75 07-13-14-07
mklmm 5 9 0.47 01-29-30-01-01
mlmm 4 8 0.49 01-28-01-01

mpce 4 8 0.15 01-20-21-22

fklpc 5 9 0.75 08-09-10-11-12
echiac 6 10 0.54 26-15-16-17-18-19
dehj 4 8 0.67 07-15-16-25

dfkbc 5 9 1.01 07 -13-31-27-06
dfklm 5 9 0.71 07 -08-09-10-01

PBs are defined on the basis of the RMSDa. All 17 sub-
graphs had an average RMSDa value close to 30 degrees
(with a Gaussian distribution; data not shown). This value is
similar to that chosen for defining individual PBs, although
the number of angles involved was high (14 to 20) for the
subgraphs. A clustering procedure with two or three groups
was applied for each subgraph (see Materials and Methods).
The average RMSDa for each cluster was quite similar to
the value found before clustering. We searched for specific
positions among the angle signals in the subgraph with the
greatest variability. The (),{s) signals were well conserved
for most of the words.

We calculated the mean Cao RMSD for the same pairs of
fragments for which we calculated the RMSDa. The Ca
superimposition of the fragments showed remarkable con-
sistency: the average RMSD for most subgraphs was close
to 0.66 A (see Table 3). Figure 9A illustrates the subgraph
dfkopa (nodes 07—13-31-03-04-05), which has an RMSD
of 0.64 A for a length of 8 Ca. In this example, all of the
fragments—for both periodic and nonperiodic regions—
were well-approximated structures. Figures 9B and C su-
perimpose fragments from the subgraphs dehiacd (nodes
07-15-16-17-18-19-07) and mnopacd (nodes 01-02-03—
04-05-06-07). Their respective RMSD values were 1.02 A
and 0.61 A, both for a length of 11 Ca. After the subgraphs
were clustered, the RMSD, like the RMSDa, remained quite
similar to that observed for the entire set.

On the whole, the 3D folds appeared similar for all of the
fragments associated with a given subgraph. In conclusion,
the network ensured an accurate structural description and
reasonable structural variability as well as accurate approxi-
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mation of the local 3D structure of long fragments. These
results are similar to those previously reported for long
loops (Wintjens et al. 1996; Boutonnet et al. 1998) but,
unlike those studies, we did not use any a priori definition
of secondary structure.

Amino acid specificity

The amino acid distributions in the nodes have several in-
teresting properties. We observed three different cases. In

Fig. 9. 3D superimpositions of protein fragments associated with different
subgraphs (cf. Table 4) (A) dfkopa (nodes 07-13-31-03-04-05), (B)
dehiacd (nodes 07-15-16-17-18-19-07), and (C) mnopacd (nodes 01—
02-03-04-05-06-07).
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the first, the amino acid distribution of a node was very
similar to that of the PB corresponding to this node: PB and
node had almost identical amino acid over- and underrep-
resentations. In the second case, there were some qualitative
differences, but for only one or two amino acids. In the third
case, the distribution in the node is quite distinct from that
in the PB (i.e., most of the amino acids behave drastically
differently). Node 16 (PB #, Fig. 10A) is an example of the
first situation: it is involved in six different SWs, and the
distribution of amino acids is similar to the average distri-
bution observed in the central position of PB 4. The same
behavior is observed for node 17 (PB i), node 25 (PB j), and
node 02 (PB n).

Substantially different occurrence rates prevent the easy
comparison of some PBs involved in different nodes.
Hence, the amino acid distribution in node 06 (PB c) is
similar to that in PB ¢, and this node represents 68% of the
PB c included in the network, whereas nodes 12, 19, 21, 22,
and 23 never account for more than 10% of the occurrences
of PB c. Nodes 14 (78%) and 27 (22%), both PB b, were
well represented. Proline is underrepresented in node 14 but
strongly overrepresented in PB b. The relative absence of
proline in node 14 is counterbalanced by an overrepresen-
tation of glycine that may have similar structural conse-
quences. Figures 10B and C provide two examples of strong
divergences for the same PB within two different nodes.
The characteristics of nodes 04 and 20 (PB p, Fig. 10B) are
rather distantly related: node 4 is very similar to PB p,
whereas node 20 differs quite substantially, with overrep-
resentations of histidine, serine, and lysine. Nodes 05 and 18
(PB a, Fig. 10C) are also very different. The distribution in
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node 05 is similar to that in the PB a distribution but with
more pronounced overrepresentations (isoleucine, valine,
lysine), whereas the distribution in node 18 is almost the
inverse, with strong underrepresentations of these amino
acids and a strong propensity for glycine and aspartate that
was not observed in the original PB.

Relation between Structural Words and so-called loops

In some ways, the SWs can be compared to additional states
introduced to define more precisely some local motifs as-
sociated with the “coil” states of the three-state alphabet.
Hence, 50% of the type I turns extracted from the complete
Protein Data Bank (nearly 15,000 entries) are represented
by a PB k that is always close to a PB m in subgraphs fkim
(nodes 08-09-10-01) or mklm (nodes 01-29-30-01). Simi-
larly, 80% of type II turns end with ia, and more than half
of those are in the network, in the subgraph ehia (nodes
15-16-17-18). Type III turns, like type I turns, are always
near PB m, so that 80% of them are characterized by the
subgraph /m (nodes 10-01/29-01) and more than 60% by
klm (nodes 09-10-01/29-30-01). The network thus allows
these turns to be found, but does not connect them directly
to secondary structures.

Structure prediction

The Bayesian approach with PBs yielded an initial predic-
tion rate of 34% (de Brevern et al. 2000). Prediction fea-
tures, however, may be strongly influenced by amino acid
specificity, which may not be the same in SWs as in PBs

LM oA

Fig. 10. Z-scores of the amino acid distribution: (A) node 16 (PB k), (B) nodes 04 and 20 (PB p), and (C) nodes 05 and 18 (PB a).
Z-scores less than —4.4 are in blue, Z-scores between —4.4 and —1.96, in green, Z-scores between —1.96 and +1.96, in white, Z-scores
between +1.96 and +4.4 in orange and more than 4.4, in red. The amino acids are defined on the vertical axis in the order

IVLMAFYWCPGHSTNQDERK.
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alone. We therefore decided to test how SWs affected pre-
diction. To do so, we used one half of a data bank to per-
form the learning step, and the other half for the validation.
With PdbSelect A (342 proteins: 228 in the training set and
114 in the validation) and 72 SWs instead of 16 PBs, the
prediction rate increased by 4%. We repeated this test with
the PAPIA (358 and 359 proteins) and culled-Pdb (443 and
443 proteins) data banks and obtained very similar results.
Globally, the prediction rate was 38.5% for the learning set
and 38% for the validation set.

Figure 11 reports an example for both prediction ap-
proaches (PB-based and SW-based) applied to ubiquitin-
conjugating enzyme (PDB code: 1aak, 144 residues). Use of
the latter approach improved the prediction rate from 30.5%
to 41.0%. Both approaches predicted 25 sites in common;
use of PBs predicted an additional 17, and SWs an addi-
tional 31. The predictions with SWs also provided longer
regions. They are thus clearly interesting for local structure
prediction. These results are perfectly representative of the
results obtained for the proteins tested (from 114 to 443
proteins, according to data bank).

Discussion

Analysis of a structural data bank encoded in Protein Blocks
shows that some PB sequences are common and strongly
interdependent. They allow us to construct a simple directed
graph that logically connects the most frequent five-PB se-
ries. The network contains 90% of the five protein structural
data banks we tested. More than 80% of the “variable”
regions of coils are described with very good 3D accuracy.
This network shows that coils can be described more pre-
cisely with a new categorization that is not based on the
standard three-state alphabet (w-helix, B-sheet, and every
non-a and non-3). We tested this method with five different
data banks, constituted with different approaches, and ob-
tained very similar final results.

This approach thus has some advantages over the tradi-
tional methods based on motifs of constant size connecting

TRUE
P.PB
P.swW
cons

TRUE
P.PB
P.SW
cons

two repetitive structures (Wojcik et al. 1999), especially
because the definition of terminal ends of repetitive struc-
tures is far from optimal (Cuff and Barton 1999). This un-
certainty about the ends may result in nearby 3D loop con-
formations being considered to belong to different structural
groups. Moreover, this network shows, as Ring and cowork-
ers (Ring et al. 1992) have already reported, that loops can
be described as composed of series. In our case, SWs cor-
respond to 9 Ca, and most of the regions covered include at
least seven SWs (thus 15 Ca). Accordingly, this approach is
quite interesting for loops and could be usefully applied in
molecular modeling.

Two final points require discussion: (1) is the number of
PBs used to define SWs appropriate? and (2) is the number
of SWs relevant? The results obtained here indicate that the
response to both questions is affirmative. First, a length of
five PBs makes it possible to describe long fragments (9
Ca) while accurately approximating most of the local pro-
tein folds. Second, the use of 72 SWs allows us to describe
most (90%) of the local protein folds. Doubling the number
of SWs improved coverage by only 1%; in addition, the
sequence-structure specificity falls rapidly for the least
common SWs and is not useful for prediction.

Various improvements may increase the prediction rate.
For example, at the C-terminal end of the ubiquitin-
conjugating enzyme (Fig. 11), the predicted blocks are
mmmlmopamdmdmmbff. Prediction based solely on PBs
found none of the last 17 PBs, whereas SW-based prediction
found eight of them. Similarly, a filtering approach might
prevent such unlikely situations as a d block surrounded by
m blocks (roughly, an amino acid in a conformation close to
a strand enclosed in a helical region). Some errors in local
prediction may thus be detected and corrected.

Even a simple alphabet, then, allows the identification of
connected zones that are structurally similar in different
proteins. Analysis of the amino acid frequency reveals sig-
nificant sequential differences that can be useful in predic-
tion methods. The improvement in the Bayesian prediction
must be compared with secondary structure analysis that
takes sequentiality into account (Bystroff et al. 2000).

A fbfk I mmmmmmmmmme cehiacdddfkl ckbeeddddddehi akgopacdddddddf kbckbecdddd fbde
fxlmmmmmmmmmnoppg fghpghiafllkacmehiacnofkiickggijcecldfkl f fkbghiackbeddddk
k1 mmmmmommmmmmda fddpacd fkkmkmd fkddmdddekob £cl fklmdl dmdcamdpdmbacdfdldddd
—————— *%F % XQO0~~~——~000————=—=—=—-0~000~——0—0~~—~=00=* —0==000——-0~*O~00~—*—

ddfklcfkopacdfklmmmge £kl ekl mmmmmmmmmmmec £k 1 c£b1lmlmmmmmmrmm 1 mrmmmmmnmrmomoom
lbfkbafghiacfklmeoiacckll fklmmmmmmmncpg fbgkbekllklmmmmmmnopmnopaccdfcfefb
ddfklmmkbkldfkmmmmEkmicl lmk]lmmmmmmmdmed fbe fbkml £kmmrapmmmmmml mopamdmdmmb £ £
00* *0~00~~00~-—=—00-—000* —Q* ¥ *¥ ¥ ¥ ¥ * ** O ——— —0-0——0—0O* * ¥ * * *Q00—-0—~~0-0~-00——~

Fig. 11. Prediction of the ubiquitin-conjugating enzyme (PDB code: 2aak): TRUE: the 3D structure encoded in terms of PBs. P. PB:
Prediction with a Bayesian probabilistic approach based on the amino acid specificity of the PBs. (Prediction rate: 30.5% [de Brevern
et al. 2000].) P. SW: Prediction with a Bayesian probabilistic approach based on the amino acid specificity of the SWs (prediction rate:
41%). Cons: Agreement and discrepancies of the two sets of prediction results compared with the PB assignment (—) no true PB found,
(0) true PB only found with P. PB, (O) true PB only found with P. SW and (*) true PB found with both approaches.
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Clearly the gap between local and global 3D prediction
remains. Nevertheless, simple local alphabets introduced as
local constraints have shown their usefulness for improving
ab initio predictions (Simons et al. 1999; Bonneau et al.
2001). Compared to similar approaches such as I-sites
(Bystroff and Baker 1998; Bystroff et al. 2000), the set of
structural words we propose combines sequence specificity
and overlapping features; it therefore leads to logical path-
ways that connect the SWs. These pathways are currently
being examined in a new prediction method.

Finally, an important feature of the network is that it can
translate the 3D structure of a protein simply but more ac-
curately than the three-state alphabet. This simplified infor-
mation could be very helpful for future classification of 3D
folds, fast and efficient comparison of 3D structures, and
searching for distant but nevertheless homologous se-
quences that share similar folds. This network could be
easily compared to a Markov chain but one with no a priori
distribution laws.

Material and methods

Protein Blocks

We previously described a set of 16 small protein fragments 5 Ca
long, called Protein Blocks (PBs; de Brevern et al. 2000). They
were obtained by an unsupervised classifier similar to Kohonen
Maps (Kohonen 1982, 2001) and Hidden Markov Models (Rabiner
1989). The 5 Ca fragments are encoded in ($, W)vectors. Figure
1 presents all 16 PBs (a—p). PBs a to f appear to be related to the
B-sheet secondary structure: d corresponds to the more regular
central part, a, b, and ¢ to the N-cap, and e and f to the C-caps. PBs
k to p may be related to the a-helix secondary structure, with PB
m for the central part of a right helix, k and / for the N-caps, and
n, o, and p for the C-caps. Blocks g through j may be associated
mainly with coil structures. The set of 16 PBs compose a structural
alphabet that efficiently approximates the local protein backbone.
The amino acid specificity within these PBs enabled us to propose
a new method for predicting 3D local protein structures (de Brev-
ern et al. 2000).

Protein data banks and encoding

The protein coding is composed of different successive states: (1)
The protein is coded as a sequence of ®-V dihedral angles, so that
a protein L amino acids long is defined by a signal of 2(L-1)
dihedral angular values. (2) Each fragment of M residues (M =5)
centered at the a-carbon Ca, is represented by a vector of eight
dihedral angles composed of ¥, _,, & ,, ¥ _,, ., ¥V, D .,
W .., and @ ,,. The fragment is compared to each PB with a
dissimilarity measure named the RMSDa (root mean square de-
viations on angular values) and defined as the Euclidean distance
of the 2(M—-1) values. The lowest RMSDa value determines the
assignment of the PB.

The 3D-protein structure data bank (Protein Data Bank or PDB,
Bernstein et al. 1977; Berman et al. 2000) contains more than
15,000 entries. Because many are very similar for sequence and/or
structure, it is necessary to use a nonredundant data bank. PBs
were first defined from a data bank containing 342 chains, ex-

tracted from the 1998-PDBselect data bank (Hobohm et al. 1992;
Hobohm and Sander 1994), and taking into account only the X-ray
structures established with a resolution of less than 2.5 A and
sequences sharing less than 25% identity. Each chain was carefully
examined with geometric criteria to avoid bias from zones with
missing density. The data bank is denoted here as PdbSelect A. In
the present work, we considered different data banks to take into
account the considerable increase in available 3D structures.

All computations were performed with four different data banks.
The first (denoted PAPIA) is based on the PAPIA/PDB-REPRDB
database (Noguchi et al. 2001); we selected the chains with a
resolution of 2 A or less and an R-factor less than 0.2. Each
selected structure has an RMSD value larger than 10 A from all of
the representative chains and a sequence identity no higher than
30%. The second data bank is the culled-Pdb (Dunbrack 2001),
reexamined with the same structural parameters (resolution = to 2
A, R-factor less than 0.2), but with a sequence identity threshold
fixed at 20%. It is denoted culled-Pdb. The third data bank comes
from the famous SCOP data bank established from a manual fold
classification (Murzin et al. 1995). We examined it with ASTRAL
software (Brenner et al. 2000) and selected structures with a se-
quence identity threshold of 30%. Each fold is thus represented by
one protein. This data bank is denoted SCOP. Finally the fourth
data bank was the last version of Pdb-select (Hobohm et al. 1992;
Hobohm and Sander 1994). The selection criteria were identical to
those for PdbSelect A. We considered only the X-ray structures. It
is denoted PdbSelect B. In all cases, we systematically checked the
continuity of the backbone structure with geometric parameters,
such as chemical bond lengths. When the bonds were larger than
a given threshold, the protein was divided into as many subchains
as necessary.

In all cases, proteins (or protein chains or subchains) were di-
vided into fragments of five successive residues. The fragments
overlapped, so that each protein of length L was encoded with L—4
fragments. Hence the 88,258 residues of PdbSelect A, containing
342 proteins, correspond to 86,890 fragments, translated into
86,890 PBs. Table 1 summarizes the composition of the five data
banks. The four new data banks include between 137,510 and
238,208 residues.

The amino acid composition was very similar for all five data
banks.

Structural Words

Our goal was to characterize the possible relations between the
most frequent series of PBs observed in a data bank of protein
structures. Once we encoded the data bank in terms of PBs, we
examined the most frequent series of five PBs, corresponding to
nine consecutive residues. If we considered all of the different
series that occur, we would cover all of the protein substructures
but would have to deal with a huge number of series, most of
which occur at a very low frequency. The sequence-structure re-
lationship that could be deduced for these series would thus be
statistically biased. To represent both a large 3D spectrum of local
structures and a sufficiently accurate 1D-3D relationship, it is nec-
essary to select the most frequent series, and thus only a limited
number. After various experiments, we observed that, on average,
90% of the 3D structure of any protein can be represented with at
most 72 different series. This indicator is called “coverage” herein.
Each element of the series defines a so-called “Structural Word”
(SW). The frequency of each SW differs according to the database
used. In the case of the PBs from data bank PdbSelect A, the last
SW is observed 150 times. The properties of the SWs were reas-
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sessed within the four largest data banks (see above) to assess the
relevance of the selected SWs.

All of the structural fragments associated with the same SW
were optimally superimposed. The RMSD and RMSDa values
were computed to estimate the structural variability of each SW.
The Ca RMSD was computed along the nine residues; the RMSDa
included the (\W;, ®,, ,) vectors with i=1 to 8 describing the SW.

Note that the fragments are overlapping, so that each protein of
length L is encoded with L—-8 SWs.

Network conception

The relationship between the series of PBs defining the SWs may
be expressed by a simple directed graph. A graph G corresponds to
V nodes (“vertices”) and E segments (“edges”) that connect the
nodes. The graph is directed if each segment has only one direc-
tion, G (V, E). In our study, each node V; is characterized by one
PB, and each link E; corresponds to a transition between two PBs.
A sequence of five blocks is represented by a directed subgraph.
For example, the subgraph m—n—o0—p—a—>c is described by the
SW mnopa going to c. The construction of the network is the
combination of subgraphs composed of SWs: (v,— v,—> v;—
v, Vs) and (v,— v3— v,— Vs-—> V) will become (v,— v,—
V53— V,— Vs— V). The network is noncontinuous; its only rule is
to find five consecutive PBs included in the network, that is,
an SW.

Structural stability of the network

The network is based on the most frequent Structural Words. The
important question involves the relevance of our protein network:
does the combination of SWs observed in the network lead to
incompatible 3D local structures or, inversely, do we observe 3D
stability along combinations of frequently observed SWs.

To insure the structural stability of the network, we chose 17
subgraphs (i.e., series of nodes from four to seven PBs long)
included in the network and covering it entirely. We extracted all
of the protein fragments from the structural data bank associated
with each of the 17 subgraphs and superimposed, pairwise, all of
the protein fragments extracted from each. The corresponding
RMSD values were then clustered in two or three groups, hierar-
chically. The mean RMSD was calculated for each cluster and
compared to the global average RMSD to determine whether a
cluster could be assigned to a more specific local fold or not.
Similar computations were performed with RMSDa measures.

Z-score

The amino acid occurrences for a given node were normalized into
a Z-score = (nobserved(i’x) _ ntheoretical(i’x)) / \/ ntheoretical(i’x), with
n°®seved(j x) the number of times amino acid i is observed in node
x, and n™e°retcalG x) the number expected. The product of the
occurrence of node x with the frequency of amino acid 7 in the
entire data bank equals n™*°™"?!(i,x). Positive Z-scores (respec-
tively negative) correspond to overrepresented amino acids (re-
spectively underrepresented) in node x; threshold values of 4.4 and
1.96 were chosen, that is, a probability p less than 10~ and 107>

Prediction of SWs by a Bayesian
probabilistic approach

The goal was to predict the optimal PB for each position along a
sequence of length L. To this end, we used a Bayesian probabilistic
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approach similar to that proposed in a previous work (de Brevern
et al. 2000). In the present work, we focused on the conditional
probability of observing the SW, given an amino acid chain X, (a,,
a,,. . ., 3y), denoted P(SW, | X). Bayes’ theorem accomplishes the
inversion of the sequence X and the structure SW,. This leads to:

P(X | SW,) = P(a, | SW,) x P(a, | SW,) x....x P(a, | SW,)

A window of length [ (/=15 here) slides along the sequence,
centered on a position s.

To define the optimal Structural Words SW* for a given amino
acid fragment X around a site s in a protein, we used the prediction
score R;:

R, =P X|SW)/PX) = PSW,|X)/PSW,)

The ratio R, measures the information provided by knowledge
of the amino acid chain X in predicting Structural Word SW,. The
criterion is equivalent to a likelihood ratio. The optimal structural
block of the 72 possible blocks, SW,, is defined as SW* =
argmax{R,}. The central PB of SW#* is then assigned to the central
residue of the chain X. The final prediction rate is the ratio between
the number of PBs correctly predicted and all of the PBs of the
protein.

To assess the predictions, the data bank was divided into two
equal sets, one to define the SWs with the corresponding sequence-
structure relationship P(SW, | X), and the other to perform the
predictions. All of the sequences in this set have been so treated.

Electronic supplemental material

Frequencies of each SW in the five databanks.
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