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ABSTRACT 
 

Calcium is a ubiquitous second messenger which plays key roles in numerous 

physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via 

specialized voltage gated Ca2+ channels which have two main functions: (i) carrying 

depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) 

triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than 

Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review 

is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe 

local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent 

studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes 

using heterologous system expression and transgenic mice, with descriptions of the recently 

discovered Ca2+ channels α1D and α1E. We finally discuss the potential involvement of Ca2+ 

currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac 

remodelling. 

 

 

Key words: Cardiac, myocytes, calcium current, L type calcium channel, T type calcium 

channel, modulation, auto-immune, remodelling.  
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1 INTRODUCTION 
The importance of extracellular Ca2+ in cardiac contraction has been known since the 

classical experiments of Ringer at the end of the XIXth century, which demonstrated that frog 

cardiac muscle cannot contract in Ca2+ free solutions (Ringer, 1883). More than half a century 

was needed to elucidate the mechanisms behind this observation. In the 1950’s, cellular 

electrophysiology was dominated by neuronal preparations and the discovery of a surprisingly 

long action potential in cardiac preparations was unexpected (Draper and Weidmann, 1951). 

These action potentials showed a “plateau” phase (~200 ms duration) clearly contrasting with 

action potentials recorded from the squid axon (~5 ms) (Hodgkin and Huxley, 1952a). 

Characterization of the current(s) involved in this plateau phase was possible by the 

development of voltage clamp techniques. By recording inward current using two 

microelectrode voltage clamp in Purkinje fibers, Reuter (1967) was able to demonstrate that 

depolarization to –40 mV inactivated the Na+ current (INa) and further depolarization resulted 

in a small “slow inward” (si) current. This denomination arose by comparing the electrical 

characteristics of the si current with the major inward current described at this time, INa 

(Hodgkin and Huxley, 1952b), which is fast and large. Reuter also showed that si current was 

unaffected by tetrodotoxin but abolished by Ca2+ free solutions and concluded that si current 

was carried by Ca2+ (Reuter, 1967). This finding was confirmed in other cardiac preparations 

using other voltage clamp techniques (e.g. sucrose gap in frog trabeculae, Rougier et al., 

1969). 

The development of the isolated cell preparation led to improvement of the voltage clamp 

conditions, by increasing the quality of voltage clamp and reducing extracellular ionic 

accumulation-depletion in inter-cellular clefts in multi-cellular preparations. Insenberg and 

Klockner (1982) were the first to describe the si current as “large and fast” hence proposing 

that si was an inaccurate name for this current. A considerable further technical advance came 

with the development of the patch clamp technique (Hamill et al., 1981) which allows control 

of intracellular solutions (permitting the use of intracellular and extracellular channel blockers 

to separate the current of interest from other ionic currents). Tsien’s laboratory proposed 

renaming si current as L-type Ca2+ current, for “Long Lasting” (Nowycky et al., 1985); indeed, 

L type Ca2+ current contrasted with another Ca2+ current present in some cardiac cell types 

(e.g. sinoatrial node, atrial and Purkinje cells) which is “Tiny and Transient” (T-type Ca2+ 

current, Nowycky et al., 1985). From the mid 1980’s, investigation of Ca2+ current (ICa) in 

cardiac myocytes led to a profusion of data. The role of the Ca2+ current (ICa, L and T) as a 

depolarizing current was characterized in all cardiac cells types. Meanwhile, the development 

of fluorescent dyes to monitor intracellular ion concentrations helped to elucidate the role of 
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the L type Ca2+ current in excitation-contraction coupling (EC coupling) as the major trigger 

for Ca2+ release from the sarcoplasmic reticulum (via the Ca2+-induced Ca2+-release 

mechanism, CICR). More recently, the development of molecular biology techniques has 

allowed the identification of the molecular components of cardiac Ca2+ channels identified in 

electrophyiological studies. Molecular biology now provides tools to alter gene expression in 

transgenic mice, allowing knockout or overexpression of specific targets and the discovery of 

new Ca2+ channels in cardiac preparations. 

This review is subdivided into four parts. In part I, a description is given of the 

physiological functions of cardiac Ca2+ channels i.e. their role in membrane depolarization, EC 

coupling and excitation-transcription coupling (ET coupling). Part II deals with regulation of 

cardiac Ca2+ channels, with emphasis on recent information about local signaling and interplay 

between different regulatory pathways. Part III provides recent information on the structure-

function relationship of cardiac Ca2+ channels investigated using molecular biology and 

expression systems. Part IV discusses the involvement of ICa in cardiac pathologies, such as 

diseases with autoimmune components, and remodeling. 
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2 PHYSIOLOGICAL FUNCTION OF CARDIAC Ca2+ 
CHANNELS 
The view that cardiac ICa can be classified into two main types, L-type and T-type, has 

been challenged recently by work on transgenic mice. The major L type Ca2+ channel 

expressed in the heart is generally thought to contain α1C (CaV1.2 in the new nomenclature, see 

section 4 for details and also table 1) as the pore-forming subunit. However, another high 

voltage activated channel (HVA), CaV1.3 (α1D), is also present in cardiac myocytes. This 

channel has properties similar to CaV1.2, although it activates at slightly more negative 

potentials (see section 3.1.1 and see Figure 1). Mice that lack CaV1.2 expression (α1C 

knockout, CaV1.2 α1-/-) have been generated; this knockout mutation is embryonic lethal 

(Seisenberger et al., 2000), emphasising the crucial importance of CaV1.2 in cardiac 

physiology. However before the embryo dies CaV1.3 gene expression is upregulated, 

suggesting a compensatory regulation (Xu et al., 2003), although this does not lead to a viable 

mouse. The reverse also occurs: mice that lack CaV1.3α1 expression (α1D knockout, CaV1.3 

α1-/-) show compensatory upregulation of CaV1.2 channel expression (Zhang et al., 2002b). In 

this mouse Ca2+ channel function is unaffected by the loss of one CaV1.3 allele (heterozygous 

mice), suggesting that there is upregulation to the same level of the output from the remaining 

functional allele (Zhang et al., 2002b). The same upregulation has been observed in CaV1.2 

heterozygous mice (Seisenberger et al., 2000). The mechanism underlying this upregulation is 

not known. Recently, a third HVA channel has been described in rat and mouse cardiac 

myocytes (R type, α1E or CaV2.3) (Weiergraber et al., 2000; Mitchell et al., 2002; Lu et al., 

2004).  

The low voltage activated (LVA, see Figure 1) family (the T type Ca2+ channel) has not 

expanded in a similar way, although the cloning of 3 genes coding for T-type Ca2+ channels 

has led to a better understanding of these channels in cardiac myocytes (Perez-Reyes, 2003). 

In this section, we will review the potential physiological role of these Ca2+ channels in 

different types of cardiac myocytes. As described above, Ca2+ entering the cardiac cell has 

three main roles: carrying depolarizing current, activating contraction and regulating gene 

expression. 

 

2.1 Depolarizing current 
As Ca2+ enters the cell, it carries positive charges, which contributes to the electrical 

current responsible for depolarization. This function differs between cell types in the heart. 
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2.1.1 Working cells (ventricular, atrial) 

Working cells in the heart are strongly contractile i.e. atrial and ventricular myocytes. ICaL 

is present in all atrial and ventricular cells studied to date. ICaT is not detectable in most 

ventricular myocytes i.e. frog, calf, cat, rabbit, ferret, mouse, rat, human (Argibay et al., 1988; 

Bean, 1989; Nuss and Houser, 1993; Yuan and Bers, 1994; Yuan et al., 1996; Nascimento, 

1996; Li et al., 1999; Chen et al., 2002) but has been described in modest amounts in guinea-

pig (Mitra and Morad, 1986; Sipido et al., 1998a). ICaT is present in atrial myocytes from frog, 

dog, cat, rat and guinea pig (Wu and Lipsius, 1990; Romanin et al., 1992; Xu and Best, 1992; 

Alvarez et al., 1996; Yue et al., 1999), but not human (Ouadid et al., 1991), heart. 

Although ICaL is present on the sarcolemma of cardiac myocytes, it has become 

increasingly clear that ICaL is not uniformly distributed on the cardiac cell membrane. The 

sarcolemma of mammalian ventricular myocytes contains invaginations called transverse (t)-

tubules, whereas most mammalian atrial myocytes lack t-tubules (reviewed in Brette and 

Orchard, 2003). An early study used the properties of dihydropyridines (DHPs) to bind L-type 

Ca2+ channels (also named DHP receptors, DHPr) and showed that in the rabbit heart, the 

membrane fraction from the t-tubules had a higher density of DHPr than did membrane from 

the surface sarcolemma (Brandt, 1985). The same technique was used to show that in rat, 

DHPr are 3 times more concentrated in the t-tubules than on the surface sarcolemma (Wibo et 

al., 1991). Subsequently, the development of immunohistochemical techniques, coupling 

confocal microscopy and specific antibodies, has been widely used to investigate the location 

of proteins within cardiac myocytes. The first immunohistochemical study of Ca2+ channel 

distribution, in rabbit myocytes, showed that in ventricular cells immunostaining occurred 

primarily at the t-tubules (Carl et al., 1995) whereas in rabbit atrial myocytes, L type Ca2+ 

channel staining was observed in discrete spots along the sarcolemma but was absent from the 

interior of the fibers (Carl et al., 1995). Therefore, it appears that the L type Ca2+ channel is 

concentrated at the t-tubules; this has been confirmed in guinea pig (Gathercole et al., 2000) 

and rat (Scriven et al., 2000). Comparative studies suggest that the t-tubular concentration of 

the L-type Ca2+ channel is greater in rat ventricular myocytes than in those from the rabbit 

(Takagishi et al., 2000). 

Thus a high density of L-type Ca2+ channel at the t-tubules has been reported in all 

immunohistochemical studies; the channel has, however, also been reported to be present in 

appreciable amounts on the surface membrane (Gathercole et al., 2000; Musa et al., 2002). 

Contrary to binding studies, where a value of Ca2+ channel density is achieved (t-tubules vs 

surface membrane), to date no study has quantified the Ca2+ channel density using 
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immunohistochemical technique. However, images from confocal microscopy are clear 

enough to confirm the concentration of Ca2+ channel at the t-tubules compare to cell surface. 

Although binding studies and immunohistochemical data show preferential localization 

of the L type Ca2+ channel within the t-tubules of ventricular myocytes, this may not reflect the 

distribution of its function, which will also depend on local environment. This is particularly 

true for ICa since the number of channels activated when gating charge is being recorded is ~10 

times higher than the number of channels recorded when monitoring membrane current (Bean 

and Rios, 1989; Hadley and Lederer, 1989; Hadley and Lederer, 1991b). This can be explained 

if ~ 10x more channels respond to the change in membrane potential with intra-molecular 

movement, leading to gating charge, than switch to the open state, resulting in ionic movement 

and hence current (Hadley and Lederer, 1991b). 

Alternative approaches have therefore been used to study the functional localization of 

ICa on cardiac sarcolemma. The first study of localization of function, rather than protein, was 

made using a double barreled microperfusion system coupled to two patch-clamp pipettes 

(Jurevicius and Fischmeister, 1997), which showed that ICa is uniformly distributed on the 

sarcolemma membrane of frog ventricular myocytes. However these myocytes lack t-tubules 

and this technique do not have access to the t-tubules. An alternative approach has been to use 

the diffusion delay between changing the bulk extracellular solution and the change in the t-

tubules. In guinea pig ventricular myocytes, a rapid change of extracellular [Ca2+] leads to a 

biphasic change in ICa, 36% of ICa changing rapidly (~20 ms time constant) and 64% slowly 

(~200 ms) (Shepherd and McDonough, 1998). This indicates ~64% of functioning Ca2+ 

channels are in the t-tubules. In atrial myocytes, which lack t-tubules, changing the bathing 

Ca2+ produced a monophasic rapid changes of ICa (Shepherd and McDonough, 1998). 

Recently a new technique has been developed, derived from scanning ion-conductance 

microscopy (Hansma et al., 1989), in which a patch pipette is used to scan the cell surface and 

monitor membrane currents (Gorelik et al., 2002). It is unclear whether this technique can 

monitor current within the t-tubules, although currents at the t-tubule opening can be recorded. 

Using this technique it has been shown that ICa is not present on the cardiac cell surface 

membrane, but occurs only at the entrance of the t-tubules (Gu et al., 2002). This is surprising 

since cell-attached patches from cardiac cells routinely contain Ca2+ channels, suggesting that 

functional Ca2+ channels are present in the surface sarcolemma (e.g. the visualization of 

sparklets by Wang et al., 2001, described in section 2.2.1). 

Another approach developed recently has been to adapt the “osmotic shock” technique 

used previously to detubulate skeletal muscle to disrupt the t-tubules of rat ventricular 

myocytes (Kawai et al., 1999). T-tubules seal off within the cell and hence are physically and 
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electrically uncoupled from cell surface membrane. By comparing currents from detubulated 

and control myocytes it is possible to estimate the proportion of current within the t-tubules. 

Detubulation decreases cell capacitance by ~30% in good agreement with the proportion of 

cell membrane within the t-tubules (Page, 1978), while ICa decreases by 75% (Kawai et al., 

1999). After correction for the presence of non-detubulated myocytes, this suggests that ~90% 

of ICa is concentrated within the t-tubules. A further study using the same technique, but using 

solutions designed to better isolate ICaL, found ~80% of ICaL within the t-tubules i.e. L type 

Ca2+ channel 6 times more concentrated at the t-tubules than at the cell surface (Brette et al., 

2004b). 

Thus there is both structural and functional evidence that ICaL is concentrated at the t-

tubules in mammalian ventricular myocytes. Study of the localization of T-type channels has 

been hampered by the lack of specific toxins or drugs, precluding binding studies, and the lack 

of specific antibodies. Furthermore, no functional study has been performed to date, hence it is 

unknown whether ICaT is concentrated at the t-tubules or uniformly distributed. 

ICaT inactivates quickly (see section 3.1.1), consequently ICaL is responsible for the long 

duration (plateau phase) of cardiac action potential from ventricular and atrial myocytes. In a 

given species, the plateau phase is longer in ventricular myocytes than in atrial cells, although 

it is likely that this is due to differences in currents other than ICa (e.g. IK1 guinea pig, (Hume 

and Uehara, 1985)). 

The development of the patch clamp technique has led to a better understanding of the 

role of ICaL during the plateau phase, by using action potential voltage clamp command 

waveforms. ICa during the action potential differs significantly from that elicited using square 

pulses (Yuan et al., 1996; Linz and Meyer, 1998a; Li et al., 1999). Figure 2 shows the time 

course of ICaL in three different species widely used in cardiac physiology: ICa is more 

sustained during an action potential than during a square pulse, because the peak of the action 

potential occurs at positive potential (30-50 mV), hence Ca channels activate rapidly but the 

driving force for Ca2+ is low. As the membrane potential falls, ICa remains large since the 

membrane potential changes quicker than voltage dependent inactivation. This sustained ICaL, 

explaining the plateau phase, has been recorded in rat (Yuan et al., 1996), rabbit (Yuan et al., 

1996; Puglisi et al., 1999), guinea pig (Grantham and Cannell, 1996; Linz and Meyer, 1998a) 

and human (Li et al., 1999). Yuan et al., (1996) compared Ca2+ entry during step and action 

potential depolarizations in rat and rabbit myocytes. They showed that during square pulses the 

amount of Ca2+ entry is higher in rat than in rabbit. This reflects differences in ICa activation 

and inactivation. However when an action potential waveform was used Ca2+ entry was much 

higher in rabbit than in rat ventricular myocytes (21 vs 14 µmol/L cytosol respectively), 
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because of the short action potential in rat myocytes. The profile of ICa during an action 

potential is highly modulated by Ca dependent inactivation and this will be discussed in 

section 3.2.1  

 

2.1.2 Nodal cells 

Cardiac pacemaker cells exhibit automaticity as a result of gradual depolarization of the 

membrane potential during electrical diastole. Work from various laboratories has shown that 

multiple mechanisms contribute to pacemaker activity, although the relative contribution of 

each current to pacemaker function is controversial (reviewed in Lipsius et al., 2001). 

In atrioventricular nodal cells, both T and L type Ca2+ currents have been found (Liu et 

al., 1993; Munk et al., 1996), which play a crucial role in conduction through the node (Noma 

et al., 1980) (see also section 5.1.1). Since there is a paucity of data regarding the 

atrioventricular node, the following discussion will focus on sinoatrial node cells. 

A role for ICaT in the generation of cardiac automaticity has been proposed because of the 

electrophysiological properties of this channel (low threshold of activation) and its high 

expression in this cell type. Current-clamp studies of spontaneous action potentials have shown 

that 40µM Ni2+, which selectively blocks ICaT, slows the late phase of depolarization, hence 

slowing the firing of rabbit sinoatrial node cells (Hagiwara et al., 1988; Doerr et al., 1989; 

Zhou and Lipsius, 1994; Satoh, 1995). The contribution of ICaT is thought to result from the 

depolarizing effect of inward Ca2+ current. In addition, a window current (see section 3.1.2) 

from ICaT might participate in this process during the late phase of the pacemaker potential. 

Recently, it has been proposed that ICaT might also be involved in the generation of 

spontaneous activity by another mechanism: Huser et al., (2000) showed that ICaT could trigger 

local Ca2+ release events (Ca2+ sparks, see section 2.2.1). Local increases in Ca will increase 

inward Na/Ca exchange current which will further depolarize the cell (Huser et al., 2000). This 

might explain early work showing that ryanodine significantly reduced the rate of spontaneous 

beating of guinea pig sinoatrial node preparation (Rigg and Terrar, 1996). In contrast, there is 

evidence that ICaT might not be involved in sinus rhythm: a recent report showed that Ca sparks 

in sinoatrial pacemaker cells do not require membrane depolarization (Vinogradova et al., 

2004). This is consistent with a recent report showing that mice deficient in α1H T type Ca2+ 

channel (CaV3.2 see section 4.2) do not have a significantly different heart rate (Chen et al., 

2003). Since the Ni2+ sensitivity of CaV3.2 is similar to that of native ICaT it was thought that 

CaV3.2 was the major isoform in cardiac cells. However the mRNA of CaV3.1, another T type 

Ca2+ channel isoform, is present in abundance (Bohn et al., 2000) (see also section 4.2). This 

isoform recovers faster from inactivation (120 ms vs 400 ms for CaV3.2, Klockner et al., 1999) 
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which is more consistent with the kinetics of recovery of the native ICaT (e.g. 140 ms in rabbit, 

Hagiwara et al., 1988). However, to the best of our knowledge no cardiac anomalies have been 

reported in transgenic mice lacking CaV3.1 (-/-) (Kim et al., 2001). Thus the role and isoform 

of ICaT in pacemaking cells remains unclear. 

ICaL may also participate in pacemaker activity. However, given the relatively positive 

membrane potential for activation (-40 mV) ICaL is probably only relevant in the latter phase of 

pace making. ICaL is also essential for the rapid phase of depolarization (upstroke, depending 

on the presence or absence of INa in the preparation) and may explain the much slower action 

potential upstroke in nodal cells compared to ventricular myocytes (~2 V/sec, sinoatrial node 

and ~20 V/sec atrioventricular node vs 200 to 300 V/sec in ventricular myocytes, (Schram et 

al., 2002)). In sinoatrial node cells, ICaL appears to be modulated by Ca2+-calmodulin-

dependent protein kinase II (CaMKII) under basal condition. Vinogradova et al. (2000) 

showed that KN93, a CaMKII specific blocker, slows spontaneous excitation in the sinoatrial 

node of rabbit myocytes. This effect appeared to be due to a decrease in ICaL amplitude and a 

hyperpolarizing shift of the steady state inactivation curve, hence decreasing the ICaL window 

current (Vinogradova et al., 2000). 

Transgenic mice have provided new insights into the role of HVA in cardiac pacemaking. 

An early study of electrocardiogram recordings from α1D deficient mice revealed sinoatrial 

node dysfunction with bradycardia and arrhythmia (Platzer et al., 2000) indicating an essential 

role for pacemaking in mouse heart. At this time, cell isolation from mouse sinoatrial node 

cells was not established. However it has since been shown by two groups that sinoatrial node 

cells isolated from α1D deficient mice show decreases in spontaneous rate of firing (Zhang et 

al., 2002b; Mangoni et al., 2003) due to a significant depolarizing shift in the activation 

threshold and a decrease in the amplitude of ICaL (Zhang et al., 2002b; Mangoni et al., 2003). 

Indeed, α1D is characterized by a more negative activation threshold than α1C (see Figure 1), 

allowing α1D to mediate a substantial Ca influx in sinoatrial node cells (Zhang et al., 2002b). 

These studies provide functional evidence that ICaL in sinoatrial node cells is due, in part, 

to α1D subunit activity and that this channel plays a role in the generation of pacemaking in 

mouse. To date no pharmacological tools that are selective for CaV1.3 (α1D) L-type Ca2+ 

channels have been described, hence it is not possible to extend this finding to other species. 

Interestingly, it has been shown that in sinoatrial node from rabbit ICaL can be activated at more 

negative potentials (-60 mV) than the classic potential for α1C (-40 mV) (Verheijck et al., 

1999). 
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2.1.3 Conducting tissue 

Conducting tissues in the heart are Purkinje and His cells. Both L and T type Ca2+ current 

are present in conducting tissue, with T type Ca current being fairly large compared with other 

cardiac preparations (Hirano et al., 1989; Tseng and Boyden, 1989; Zhou and January, 1998). 

For example, in dog Purkinje cells, ICaT density is similar to ICaL (Zhou and January, 1998). 

ICaL density is smaller than in ventricular myocytes, consistent with the less positive plateau 

phase (Schram et al., 2002). ICaT inhibition does not affect Purkinje fibre automaticity 

suggesting that ICaT may not be important for conducting tissue pacemaking (Pinto et al., 

1999), but, L and T type Ca2+ channels are important in the conduction of the action potential. 

 

2.2 Excitation-contraction coupling 
Contraction of striated muscle cells is due to Ca2+ binding to troponin C (see Bers 2001 

for review). As described above, significant Ca2+ entry occurs during an action potential in 

cardiac myocytes and this Ca2+ might activate troponin C directly. However, in mammalian 

cardiac myocytes, the main mechanism is Ca2+ entry triggering Ca2+ release (CICR) from the 

sarcoplasmic reticulum. 

2.2.1 Triggering sarcoplasmic reticulum Ca release 

The phenomenon of CICR was initially demonstrated in skinned skeletal myocytes (Endo 

et al., 1970; Ford and Podolsky, 1970) and subsequently in skinned cardiac Purkinje cells 

(Fabiato and Fabiato, 1973; Fabiato and Fabiato, 1975), by abruptly increasing the bathing 

Ca2+ concentration. Fabiato extensively described CICR in cardiac preparations, demonstrating 

that CICR is graded both by the magnitude and the rate of change of the trigger Ca2+, and 

provided compelling evidence for the existence of this mechanism in cardiac myocytes 

(Fabiato and Fabiato, 1978; Fabiato, 1982; Fabiato, 1983; Fabiato, 1985). The next step was to 

determine whether CICR constituted the normal Ca2+ release process in intact cardiac 

myocytes, and if so, which source of Ca2+ provided the trigger for release. During the 1980’s it 

became clear that ICa provided the normal trigger for Ca2+ release via CICR in cardiac 

myocytes: several laboratories showed the similar bell shaped voltage dependence of Ca2+ 

release and ICa (Cannell et al., 1987; Beuckelmann and Wier, 1988; Callewaert et al., 1988). 

Further support came from the observation of tail currents and transients, due to ICa inducing 

Ca2+ release (Cannell et al., 1987; Beuckelmann and Wier, 1988): when voltage steps to +100 

mV are used to induce Ca channel opening, but no Ca influx because the membrane potential 

is near the Ca2+ equilibrium potential, no Ca transient is observed (Cannell et al., 1987). 

However when the membrane potential is stepped back to negative voltages, Ca2+ enters the 

cell before the Ca2+ channels close and a Ca transient is observed. Further evidence for ICa as 
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the main trigger for CICR is voltage-dependent reduction of the “gain” of EC coupling (Wier 

et al., 1994), which was first described as maximum sarcoplasmic reticulum Ca2+ flux/ ICa peak 

(Wier et al., 1994), although most investigators now use a simplification of this definition 

(Ca2+ transient amplitude/ ICa peak) (see Bers, 2001 for more details). Gain decreases with 

voltage; Wier et al., (1994) suggested that this reflected the link between CICR and the unitary 

current flowing through a single Ca2+ channel (iCa). 

By the end of the 1980’s, there was compelling evidence that CICR was the major 

mechanism of Ca2+ release in the heart and the L type Ca channel was the major trigger. 

However, this led to a paradox since it was unclear how such a positive feedback mechanism 

could be graded (Fabiato, 1985). Stern (1992) showed mathematically that global entry of Ca2+ 

leading to global Ca2+ release from the sarcoplasmic reticulum (common pool theory) is 

inherently unstable and should result in all or nothing behavior. Instead, Stern proposed a local 

control theory to explain Ca2+ release from the sarcoplasmic reticulum, in which RyRs are 

under the control of a single Ca2+ channel. He envisaged that this one Ca2+ channel could 

either regulate a single RyR (“Ca2+ synapse” model) or a group of RyRs (“cluster bomb” 

model) in a single Ca2+ release unit (Stern, 1992). Each Ca2+ release unit operates 

independently and the whole-cell Ca2+ transient is the temporal and spatial summation of these 

individual localized release events. 

Functional evidence supporting Stern’s theory was provided with the development of 

confocal microscopy and new fast Ca2+ indicators with high contrast (i.e. fluo-3). Cheng et al 

(1993) described small, local and brief increases of intracellular Ca2+. These discrete 

sarcoplasmic reticulum Ca2+ release events by RyRs were named Ca2+ sparks (Cheng et al., 

1993). It appears now that they are due a cluster (4-20) of RyRs operating in concert (Wang et 

al., 2004b). Ca2+ sparks occur in a stochastic and discrete manner and are predominantly 

generated at the t-tubules in ventricular myocytes (Shacklock et al., 1995; Parker et al., 1996). 

In atrial myocytes, which lack t-tubules, Ca2+ sparks occur predominately at the cell periphery 

(Kockskamper et al., 2001; Woo et al., 2003a). Structural studies also support the local control 

theory. Electron microscopy and immunocytochemistry show co-localization of the L type 

Ca2+ channel and RyRs at the junctional sarcoplasmic reticulum in several species (guinea-pig, 

rabbit, rat, mouse; Carl et al., 1995; Franzini-Armstrong et al., 1999; Gathercole et al., 2000; 

Scriven et al., 2000). In ventricular myocytes this co-localization occurs at the t-tubules and at 

the surface sarcolemma, with no obvious difference at the two sites (Carl et al., 1995; Franzini-

Armstrong et al., 1999). The junctional cleft between the sarcolemma and the sarcoplasmic 

reticulum membrane results in a restricted diffusion space, termed “fuzzy space” by Lederer et 

al., (1990). Interestingly, this gap is the same at the cell surface and the t-tubules (Page, 1978), 
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although junctional sarcoplasmic reticulum is more prominent at the t-tubules (Bers, 2001). In 

chick and atrial myocytes, which lack t-tubules, L type Ca2+ channel and RyR co-localization 

is seen only at cell surface membrane (Carl et al., 1995; Sun et al., 1995). 

The functional relationship between single Ca2+ channels and RyRs was initially 

investigated indirectly. Early work by Lopez-Lopez et al., (1995) provided indirect evidence 

that a single channel activates Ca2+ sparks. Using verapamil to decrease the open probability, 

but not the amplitude, of single L type Ca currents, they showed that the probability of evoking 

a local release followed the voltage dependence of iCa (Lopez-Lopez et al., 1995). Direct 

demonstration that a single Ca2+ channel can trigger a Ca2+ spark was a technical challenge. 

Gigaseal formation during patch clamp experiments leads to the formation of Ω-shaped 

membrane in the pipette (Sakmann and Neher, 1995), which will disrupt the delicate coupling 

of Ca2+ channel with RyR. Wang et al., (2001) overcame this drawback by using the loose-seal 

patch clamp technique, which allows formation of sufficient resistance between the cell 

membrane and the pipette without destroying the coupling of the two channels. Although the 

success rate was low, they succeeded in recording Ca2+ sparks directly activated by the 

opening of a single Ca2+ channel. They recorded low amplitude Ca2+ events that were 

insensitive to ryanodine (opening of iCa), which they named Ca2+ sparklet (Wang et al., 2001), 

and high amplitude Ca2+ events, representing Ca2+ sparks, rising from the shoulder of an 

ongoing Ca2+ sparklet (see Figure 3). It is noteworthy that the demonstration of 

communication between the L type Ca2+ channel and RyRs was demonstrated at the cell 

surface. Indeed, to date no technique allows recording of single Ca2+ channel activity within 

the t-tubules. 

Recently, a transgenic mouse overexpressing α1C has been generated (Muth et al., 1999). 

ICa density was increased compared with control mice but interestingly the gain function of 

sarcoplasmic reticulum Ca2+ release remained unchanged (Song et al., 2002). This suggests 

that the overexpressed L type Ca2+ channels are able to form functional couplings with the 

RyRs which are as effective as the native L type Ca2+ channels in triggering sarcoplasmic 

reticulum  Ca release. 

Although any increase in Ca2+ in the fuzzy space is able to induce CICR from the 

sarcoplasmic reticulum, as demonstrated by the use of flash photolysis and caged Ca2+ 

(Valdeolmillos et al., 1989; Niggli and Lederer, 1990; Nabauer and Morad, 1990), it is now 

generally accepted that ICa is the major trigger for sarcoplasmic reticulum Ca2+ release. 

Alternative pathways, such as Na/Ca exchange, have been shown to be weak trigger under 

physiological condition (reviewed in Wier and Balke 1999). 
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The possibility that T-type Ca current might participate in CICR remains uncertain due to 

its absence in most ventricular myocytes (see section 2.1.1). In ventricular guinea-pig 

myocytes, in which ICaT is present, it was found that sarcoplasmic reticulum Ca2+ release 

produced by ICaT is delayed and slower than ICaL (Sipido et al., 1998a). Similar results have 

been observed in Purkinje cells, where ICaT is more substantial (Zhou and January, 1998). It 

appears therefore that a given Ca2+ influx through ICaT is much less effective and slower than 

ICaL in triggering sarcoplasmic reticulum Ca2+ release. This suggests that ICaT does not belong 

to the junctional domain near the RyR. Specific antibodies against T-type Ca2+ channels are 

not available yet, but when available might confirm these functional studies. To the best of our 

knowledge, no functional investigation of ICaT in CICR in atrial myocytes has been performed. 

There is no information about the presence of α1D in working cells, and hence whether 

this subunit participates in EC coupling. Indirect support of non-involvement of α1D in EC 

coupling comes from Cav1.3 -/- transgenic mice, which show normal cardiac function except 

bradycardia (Seisenberger et al., 2000) (see also section 2.1.2). Similarly, no information is 

available about a potential role for α1E in EC coupling (see also section 4.3). 

Voltage activated Ca2+ released (VACR), as in skeletal muscle, has been proposed in the 

heart. Although in skeletal muscle, it is clear that the L type Ca2+ channel (α1S subunit, see 

section 4.1.1) is the voltage sensor for VACR, in the heart, it remain unclear if any Ca2+ 

channel acts as the voltage sensor (see for review Ferrier and Howlett 2001). Evidence for 

VACR in the heart has been provided mainly by one laboratory and many technical issues 

have been raised against this mechanism (Wier and Balke, 1999). Most of the studies showing 

VACR have used a double step protocol to separately activate VACR and CICR: a first step to 

–40 mV to activate VACR and a second step to 0 mV to activate CICR (Ferrier and Howlett, 

1995; Hobai et al., 1997; Ferrier et al., 1998; Howlett et al., 1998). However VACR requires 

internal cAMP, which will shifts the voltage dependence of activation of ICaL to below –40 mV 

(see section 3.3.1); VACR has therefore been explained by CICR due to ICaL in several studies 

(Piacentino, III et al., 2000; DelPrincipe et al., 2000; Griffiths and MacLeod, 2003; Trafford 

and Eisner, 2003; Brette et al., 2003b). 

 

2.2.2 Direct activation of contraction 

The role of Ca2+ influx in activating troponin C directly is difficult to investigate in 

cardiac myocytes since ICa also triggers Ca2+ release (above). Fabiato (1983) calculated that the 

role of Ca2+ influx in directly activating contraction is minor. Ryanodine, which blocks 

sarcoplasmic reticulum Ca2+ release, has frequently been used to investigate this issue. 

However, in the presence of ryanodine, Ca2+ dependent inactivation of ICa is smaller than 
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under normal conditions (see section 3.2.1), thus enhancing the possible role of ICa in directly 

activating contraction. Furthermore, most studies are performed at low stimulation frequency 

and room temperature, hence the value presented below might slightly differ from a more 

physiological context (higher stimulation rate and 37ºC). Ryanodine has no effect on frog 

ventricular myocytes, but reduces contraction of rabbit (by 30%) and rat (by 80%) ventricular 

myocytes (Bers, 2001). These results do not show that under physiological conditions 70% of 

contraction is activated by ICa in rabbit ventricular myocytes (20% in the rat), but suggest that 

when the sarcoplasmic reticulum is not functional ICa can provide a significant amount of Ca2+ 

for contraction (Bers, 2001). Closer analysis suggests that Ca from ICa can account for ~23% of 

contraction in rabbit and ~8% in rat ventricular myocytes (Delbridge et al., 1996; Delbridge et 

al., 1997). An approximate sequencing of cardiac muscle preparations, from most to least 

reliant on sarcoplasmic reticulum Ca2+ release: adult mouse ventricular > adult rat ventricular 

> dog ventricular ~ferret ventricular > cat ventricular > neonate rat ventricular ~ rabbit atrial > 

human ventricular > rabbit ventricular > guinea pig ventricular > neonate rabbit ventricular > 

fetal ventricular (human, cat and rabbit) > frog ventricular (see Bers 2001 for details). This 

sarcoplasmic reticulum dependence of contraction follows structural data. In frog ventricular 

myocytes, the sarcoplasmic reticulum is sparse, more developed in rabbit ventricular myocytes 

and even more so in rat myocytes. Such a change in sarcoplasmic reticulum structure also 

occurs during development. Ventricular myocytes from newborn animals shows little 

sarcoplasmic reticulum and enhanced ICa, hence contraction in these cells relies mainly on Ca2+ 

influx directly activating contraction (Fabiato and Fabiato, 1978; Cohen and Lederer, 1988; 

Haddock et al., 1999). Interestingly, in a given species, atrial muscle is more CICR dependent 

than ventricular muscle (Fabiato, 1982).  

 

2.2.3 Loading of the sarcoplasmic reticulum 

Fabiato suggested that the early part of ICa triggers sarcoplasmic reticulum Ca2+ release 

and that the late part of ICa loads the sarcoplasmic reticulum with Ca2+ for subsequent release 

(Fabiato, 1985). He proposed that the sarcoplasmic reticulum has two compartments, one for 

uptake, one for release with a lag for diffusion of Ca2+ between the two compartments 

(Fabiato, 1985). Indeed, the pioneering work of Beeler and Reuter (1970) showed that while 

ICa is fully activated and does not change during repetitive depolarization, the first contraction 

is very small and the force increases subsequently to reach a steady state (staircase 

phenomena). They proposed that ICa have to flow to fill intracellular stores from which Ca2+ 

can be released during subsequent depolarizations (Beeler and Reuter, 1970). More recently, 

the contribution of the late phase of ICa to sarcoplasmic reticulum Ca2+ loading has been 
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demonstrated in action potential clamp experiments in guinea-pig ventricular myocytes (Linz 

and Meyer, 1998b), and a series of papers from Eisner’s laboratory has shown that ICa 

participates substantially in sarcoplasmic reticulum Ca2+ loading (see for review Trafford et 

al., 2002). Trafford et al., (1997) demonstrated that during stimulation following sarcoplasmic 

reticulum Ca2+ depletion, integrated ICa was initially large but progressively become smaller 

(from ~14 µmol/L cell to 8 µmol/L cell). In parallel, Ca2+ efflux from the Na/Ca exchanger 

increased from ~3 µmol/L cell to 8 µmol/L cell (Trafford et al., 1997). This results to a net 

Ca2+ influx during the first few contractions until a steady state is reached where Ca2+ influx 

matches Ca2+ efflux (Eisner et al., 2000). 

 

2.3 Excitation-transcription coupling 
An emerging field in cellular physiology is the link between membrane ion channels and 

regulation of gene expression, namely excitation-transcription coupling (ET coupling). 

Genome-wide screens have identified over 300 different genes and approximately 30 

transcription factors that are regulated by intracellular Ca2+ (Feske et al., 2001). Studies over 

the past decade suggest that most Ca2+ activated transcription factors require a rise in nuclear 

Ca2+ for activation. Recent evidence, however, mainly in neuronal studies, indicates that a rise 

of Ca2+ in the vicinity of sarcolemmal Ca2+ channels also plays a key role in regulating 

transcription (see for review Dolmetsch 2003). 

One of the best studied transcription factors is the cAMP-responsive element binding 

protein (CREB). CREB binds to the cAMP response element (CRE) and to the Ca2+ response 

element (CARE), and is thus activated by both cAMP and Ca2+ via the calmodulin and 

CaMKII cascade. CREB is activated by phosphorylation of several serines, including Ser133, 

which recruits the coactivator CREB binding protein (CBP) (Shaywitz and Greenberg, 1999). 

In neurons, it has been shown that CREB phosphorylation on Ser133 can occur even in the 

presence of EGTA, a slow Ca2+ buffer that prevents nuclear Ca2+ elevation but allows 

intracellular Ca2+ elevation close to the plasma membrane (Deisseroth et al., 1996; 

Hardingham et al., 2001) (see also section 3.2.1). Calmodulin near the L-type Ca2+ channel 

appears to be the link between local Ca2+ influx and CREB activation, by translocation of 

calmodulin to the nucleus (Deisseroth et al., 1998). Whether Ca2+ or Calmodulin or CaMKII is 

translocated to the nucleus to activate CREB in cardiac cells has not yet been determined (see 

Figure 4). Another well characterized Ca2+-dependent transcription factor is the nuclear factor 

of activated T cells (NFAT). NFAT plays a critical role in the activation of cells in the immune 

system and also in the development of the cardiovascular system (Crabtree, 2001). For 

example, NFAT3 translocates from the cytoplasm into the nucleus in response to 
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dephosphorylation of several of its serines by the Ca2+-calmodulin activated phosphatase 

calcineurin (Clipstone and Crabtree, 1992). NFAT3 appears to be important also in the 

development of heart failure (see section 5.2.2). Ca2+ can also regulate transcription without 

the intermediate of kinases and phosphatases, as in the case of EF hand protein downstream 

regulatory element antagonistic modulator (DREAM) (Carrion et al., 1999). At resting nuclear 

Ca2+ levels, DREAM is bound to DNA and suppresses transcription, possibly by preventing 

the interaction of transcription factors and coactivators (Ledo et al., 2002). When a DREAM 

tetramer binds Ca2+ it disrupts the interaction between DREAM and other proteins relieving 

the transcriptional block. These events occur in the nucleus, suggesting that inactivation of 

DREAM requires a nuclear Ca2+ elevation. Interestingly, DREAM may also have a role 

outside the nucleus, because its sequence is nearly identical to that of a neuronal Ca2+ sensor 

acting on K+ channels (Carafoli, 2002). 

A central question in excitation-transcription coupling is how cardiac cells can 

distinguish changes of Ca2+ distinct from the cyclic variation of Ca2+ at each heartbeat and 

convert them into specific transcriptional response. One possible answer is that transcription 

factors have distinct response characteristics that may refine the message of intracellular Ca2+ 

oscillations; the time course, amplitude and spatial localization of a rise of Ca2+ conveys 

important information about the type and intensity of the stimulus. For example, in B 

lymphocytes, the transcriptional factor NFAT is differentially activated by brief Ca2+ signals of 

high magnitude compared with prolonged Ca2+ signals of lower amplitude (Dolmetsch et al., 

1997). Location is also important since regulatory proteins may be confined to distinct 

intracellular domains (e.g. nucleus) or anchored by specific binding proteins (Pawson and 

Scott, 1997). For example, the nucleus experiences very different Ca2+ signals than the 

cytoplasm: a preliminary study has shown prolonged discrete Ca2+ release events (~2 sec 

duration) in the nucleus of rat ventricular myocytes, clearly contrasting with Ca2+ spark 

characteristics in the cytosol (Yang and Steele, 2004). In addition, specific isoforms of 

CaMKII-δ might have different locations within the cell (i.e. cytosol vs nucleus) and can be 

linked to the expression of gene during the hypertrophic response (Ramirez et al., 1997; Hoch 

et al., 1999). Privileged avenues are also important. In cultured neurons, an early study showed 

that Ca2+ influx through L type Ca2+ channels activates early gene expression (Murphy et al., 

1991). In hippocampal slices, Ca2+ influx through L type Ca2+ channels leads to 

phosphorylation of CERB at Ser133 and activation of CERB-dependent transcription. It has 

been shown that the critical element in signaling from the L type Ca2+ channel is calmodulin 

since mutation of the calmodulin site of L type Ca2+ channels reduces their ability to activate 

CREB and mitogen-activated protein kinases (MAPK) pathway (Dolmetsch et al., 2001). A 
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very recent study estimated that the concentration of free calmodulin in the vicinity of L-type 

Ca2+ channel is 2.5 mM, i.e. ~5 times the calmodulin concentration in the bulk cytoplasm 

(Mori et al., 2004). This has clear implication in the transduction of Ca2+/calmodulin signal 

(e.g. activation of CREB, above), but also raises the question of how calmodulin is 

concentrated in the region of the L type Ca2+ channel. 

In the heart, there is an emerging picture about the importance of ET coupling however 

Ca2+-dependent transcription factors are only now beginning to be explored.  
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3 MODULATION OF CARDIAC Ca2+ CHANNELS 
Ca2+ channels play a major role in cardiac cell function; it is therefore not surprising that 

they can be modulated by a variety of physiological factors. In this section we will briefly 

describe how Ca2+ channels are modulated by voltage (for extensive review see McDonald et 

al., 1994). We will then focus on modulation by Ca2+: interestingly, Ca2+ itself modulates Ca2+ 

channel activity, causing important negative and positive feedback. We will also describe 

modulation by cyclic nucleotides which occur physiologically when hormones or 

neurotransmitters bind to seven span transmembrane receptors. In the majority of cases, 

phosphorylation pathways are used to affect Ca2+ channel activity, however interplay between 

cyclic nucleotides also modifies the effects on Ca2+ channels. 

 
3.1 Regulation by Voltage 

 
3.1.1 Activation 

Ca2+ channels are voltage-dependent with the open probability of the channel increases 

with depolarization. In cardiac myocytes, ICa reaches a peak in 2~7 ms depending on the 

temperature and holding potential (McDonald et al., 1994). Recently, new insights into Ca2+ 

channel activation have been provided using molecular biology techniques (see section 4). The 

threshold potential for activation of T type Ca2+ channels is more negative than for L-type Ca2+ 

channels. Thus L and T type ICa can be separated by using different holding potentials: positive 

to – 40 mV ICaT will inactivate, ICaL will remain mainly unchanged, although the recent 

discovery of another L type Ca2+ channel in cardiac myocytes (α1D), slightly alters this notion. 

Figure 1 shows the current voltage relations (I-V) of the 3 major Ca2+ channels in cardiac cells. 

The I-V curves are all bell-shaped, and T type Ca2+ current reaches a maximum ~30 mV 

negative to the L type Ca2+ channel (α1C). α1D Ca2+ channels show a more negative threshold 

and peak than α1C, which explains their potential physiological role in nodal cells (see section 

2.1.2). 

Ca2+ channels can also deactivate (closure of the channel before inactivation). This occurs 

mainly during short square voltage clamp pulse experiments and has been used by some 

investigators to investigate tail currents (see section 2.2.1). T type deactivation is slower than L 

type, but the physiological role of ICa deactivation during the action potential remains 

uncertain. 
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3.1.2 Inactivation 

ICa inactivation was described with the first recording, since inactivation by definition is a 

decrease of the current during a maintained depolarization. Both T-type and L-type Ca2+ 

current show voltage dependent inactivation. Using a double pulse protocol, it has been shown 

that steady state inactivation of ICaT occurs at more negative potential than ICaL (see for review 

McDonald et al., 1994). ICaT voltage dependent inactivation occurs quickly, which suggested 

the name “Transient” proposed by Tsien and collaborators (Nowycky et al., 1985). ICaL 

inactivation is less marked, which accounts for the role of ICa during the plateau phase of the 

cardiac action potential. Species differences exist in voltage dependent inactivation. Yuan et 

al., (1996) showed that steady state inactivation of rat ICaL occurs at more negative potentials 

than in rabbit. This has implications for window currents, when steady state activation and 

inactivation curves overlap. This defines a voltage window in which some Ca2+ channels will 

conduct (at ~ –25 mV). Since this window occurs during the plateau phase of the cardiac 

action potential it has been proposed as a mechanism for arrhythmias (January and Riddle, 

1989; Ming et al., 1994). A rough sequence of ICaL window currents from larger to smaller is:  

guinea pig > rat > rabbit (Josephson et al., 1984; Yuan et al., 1996).  

An “ultra slow” inactivation has also been described for ICaL because it occurs on a 

second time scale (Boyett et al., 1994; McMorn et al., 1996). The physiological role of this 

inactivation remains unclear.  

 
3.1.3 Facilitation 

Facilitation of a current is defined by an increase in the amplitude of the current. In 

cardiac myocytes, ICaL facilitation can occur when increasing simulation frequency or when 

first depolarizing the cell to a high positive potential. Rate dependent facilitation is linked to 

Ca and will therefore be discussed in the next paragraph. The voltage dependent facilitation 

described in cardiac myocytes (Pietrobon and Hess, 1990; Sculptoreanu et al., 1993a; Xiao et 

al., 1994a; Hirano et al., 1999; Kamp et al., 2000) is similar to that described in chromaffin 

cells (Artalejo et al., 1990; Artalejo et al., 1992) and skeletal myocytes (Sculptoreanu et al., 

1993b). This facilitation is observed when Ba2+ is used as the charge carrier (contrary to the 

frequency dependent facilitation, below). It appears to be mediated by cAMP dependent 

protein kinase and at the single channel level produces mode 2 gating behavior (long opening, 

Hirano et al., 1999) as does modulation by the cAMP/PKA pathway (see section 3.3.1). 

However, conflicting results exist: Dai et al (1999) reported that this facilitation is not affected 

by cAMP dependent phosphorylation. They also reported that the β2a subunit supports this 

facilitation, whereas the α2-δ subunit prevents it (Dai et al., 1999). The importance of the β 
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subunit in voltage-dependent facilitation has been confirmed by Kamp et al., (2000). However, 

this facilitation occurs only when β1, β3, β4, but not β2 are co expressed with α1C (Cens et al., 

1998). A similar voltage-dependent facilitation has been observed for ICaT in frog atrial cells 

(Alvarez et al., 1996). A G protein mechanism has been proposed to explain such facilitation 

in neuronal Ca channels (see for review Dolphin 2003). However another study suggests that 

voltage directly affects channel activity without the involvement of second messenger signals 

(Publicover et al., 1995). 

Clearly, the mechanism(s) behind voltage-dependent facilitation of both L and T type 

Ca2+ currents are not fully elucidated, and need further investigation. Furthermore, the 

unphysiological test pulses (to +100 mV) required to elicit such facilitation render a 

physiological role unlikely. 

Recently, ICa facilitation induced by a moderate depolarization of the diastolic membrane 

potential (in the range of –80 to – 40 mV) has also been described in guinea pig, rat, and 

human myocytes (Barrere-Lemaire et al., 2000; Brette et al., 2003a). Modest depolarization 

induces an increase in ICa amplitude and a slowing of ICa inactivation, which was blocked by 

ryanodine, suggesting a role for sarcoplasmic reticulum Ca release (Barrere-Lemaire et al., 

2000; Brette et al., 2003a). The mechanism and physiological role of this facilitation is not 

elucidated yet, although it has been suggested that it can regulate cardiac automaticity in 

sinoatrial node cells (Mangoni et al., 2000).  

 

3.2 Regulation by Calcium 
Ca2+-dependent inactivation of Ca2+ channels was first described in Paramecium (Brehm 

and Eckert, 1978) and shortly after in cardiac cells (Mentrard et al., 1984). Subsequent work 

showed that cardiac L type Ca2+ channels exhibit both voltage and Ca dependent inactivation 

(Kass and Sanguinetti, 1984; Lee et al., 1985; Hadley and Hume, 1987). Although an increase 

in intracellular Ca2+ can decrease ICa amplitude, a second Ca2+-dependent process has been 

shown to potentiate ICa in the heart: ouabain can stimulate ICa in ferret ventricular muscle 

(Marban and Tsien, 1982), and this effect is linked to an elevation of intracellular Ca2+. 

Subsequently, direct demonstration of Ca2+-dependent facilitation of L type Ca channels has 

come from studies using flash photolysis of caged Ca2+ (Gurney et al., 1989; Hadley and 

Lederer, 1991a). Molecular biology has provided evidence that the same molecular 

determinants are involved in this facilitation and Ca2+-dependent inactivation (see below). 

In contrast, T type Ca channels do not show modulation by Ca2+ (see Perez-Reyes 2003 

and section 4.2). The following discussion will focus on ICaL.  
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3.2.1 Inactivation 

Several studies have shown that Ca2+-dependent inactivation of ICaL is mediated by Ca2+ 

binding to calmodulin, which is tethered to the L type Ca channel (see 4.1.1 for details). A 

recent study showed that adenoviral expression of mutant calmodulin, deficient in Ca2+ 

binding, in cultured rat myocytes results in slowing of inactivation (by ~2x) of ICaL (Yang et 

al., 2003). Ca2+ entering the cell via the channel can inactivate the channel, as demonstrated in 

frog myocytes, which have sparse sarcoplasmic reticulum (Argibay et al., 1988). However in 

mammalian heart cells the sarcoplasmic reticulum is well developed and releases a 

considerable amount of Ca2+ (see section 2.2.1). An early study suggested that sarcoplasmic 

reticulum Ca2+ release modulates ICaL in rat ventricular myocytes (Cohen and Lederer, 1988). 

The participation of sarcoplasmic reticulum Ca2+ release in Ca2+-dependent inactivation of ICaL 

was demonstrated by two groups in 1995. Monitoring ICaL and intracellular Ca2+, Sipido et al., 

(1995) showed that global sarcoplasmic reticulum Ca2+ release inactivates ICaL in a reversible 

fashion in guinea pig ventricular myocytes. Using very long voltage pulses (2.4 sec), ICaL 

inactivated (due to Ca2+-dependent inactivation) and then recovered by the end of the pulse. 

Although the sarcoplasmic reticulum was extensively loaded with Ca2+ to record such 

reversible inactivation, it was the first demonstration that sarcoplasmic reticulum Ca2+ release 

modulates ICaL (Sipido et al., 1995). These authors also suggested the existence of Ca2+ 

gradients in the microdomain near the Ca2+ channel since early inhibition of ICaL exceeds 

intracellular Ca2+ measured using Fura-2. This was confirmed by Morad’s laboratory which 

provided striking evidence for discrete Ca2+ dependent inactivation of L type Ca2+ channel 

independent of bulk cytosolic Ca2+ concentration (Sham et al., 1995). They proposed the term 

“functional coupling” between the L-type Ca2+ channel and RyR and suggested that Ca2+ 

dependent inactivation of ICaL is due to local Ca2+ signaling rather than global Ca2+ signaling. 

This functional coupling was confirmed by structural data showing co-localization of the L-

type Ca2+ channel and RyR (see section 2.2.1). The “fuzzy space” between the L-type Ca2+ 

channel and RyR form a restricted ionic diffusion space. Sham et al (1995) showed that 

ryanodine significantly slowed ICaL inactivation and that this occured even in the presence of 

10 mM EGTA in the pipette solution. Sham (1997) extended this study showing that ICaL 

decay was not affected by the presence of 10 mM EGTA, despite abolition of the Ca2+ 

transient and cell contraction. However, 10 mM BAPTA significantly slowed ICaL decay 

(Sham, 1997). This is consistent with the existence of local Ca2+ signaling, occurring in a 

restricted space and exceeding global Ca2+. The inability of intracellular EGTA to prevent 

sarcoplasmic reticulum Ca2+ release in the fuzzy space is not surprising. Naraghi and Neher 

(1997) calculated that the length constant of 2 mM EGTA to chelate Ca2+ from the mouth of a 
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Ca2+ channel is 419 nm. This is clearly above the ~12 nm separating the Ca2+ channel and RyR 

at the dyadic junction (see section 2.2.1). Interestingly, the length constant of 2 mM BAPTA is 

28 nm (Naraghi and Neher, 1997). Such a difference is explained by the on rate of Ca2+ 

binding (kon (mol-1 sec-1) EGTA < BAPTA by two order of magnitude). Hence, EGTA is not 

fast enough to chelate Ca2+ released from the sarcoplasmic reticulum (even at 10 mM) whereas 

BAPTA is. This observation was subsequently confirmed by several laboratories showing that 

sarcoplasmic reticulum Ca2+ release occurs and modulates ICaL in the presence of EGTA 

(Masaki et al., 1997; Delgado et al., 1999; Barrere-Lemaire et al., 2000; Wu et al., 2001; Guo 

and Duff, 2003; Brette et al., 2003a; Brette et al., 2003b) whereas BAPTA prevents it (Sham et 

al., 1998; Brette et al., 2003a). The slow binding properties of EGTA have been used in 

conjunction with a fast, low-affinity indicator, (Oregon Green 488 BAPTA-5N) to directly 

measure local sarcoplasmic reticulum Ca2+ release flux named “Ca2+ spikes” (Song et al., 

1998). These Ca2+ spikes peaked in ~15 ms at 0 mV and decayed in ~50 ms. Interestingly, the 

difference in ICa in the absence and presence of ryanodine showed similar kinetics (Brette et 

al., 2003a), emphasizing that ICa is an excellent sensor of local Ca2+ in the cell. When 

sarcoplasmic reticulum Ca2+ release is enhanced (e.g. in the presence of PKA stimulation), ICa 

decay can show a notch during this inactivation phase (Brette et al., 2003a; Brette et al., 

2003b), indicating a recovery of Ca2+-dependent inactivation, as described by Sipido et al., 

(1995), but on a more physiological time scales (tens of msec). This also suggests that Ca2+-

dependent inactivation is not an absorptive state (Brette et al., 2003b; Findlay, 2004). 

Local Ca2+ modulation of ICaL has also been demonstrated in atrial myocytes in which the 

fuzzy space is restricted to the surface membrane (see section 2.2.1) (Sun et al., 1997; Hatem 

et al., 1997). In ventricular myocytes, dyadic junctions are found both at the t-tubule and the 

cell surface and a recent report showed that modulation of ICaL by sarcoplasmic reticulum Ca2+ 

release is more pronounced at the t-tubules (Brette et al., 2004b). 

Ca2+ dependent inactivation provides an important negative feedback to limit the amount 

of Ca2+ entry via ICaL, limiting the depolarizing current and further Ca2+ release from the 

sarcoplasmic reticulum. Using action potential waveform voltage clamp to record ICa, it has 

been shown that Ca2+ dependent inactivation resulting from sarcoplasmic reticulum Ca release 

reduced the influx of Ca during an action potential by 30% in guinea pig ventricular myocytes 

(Grantham and Cannell, 1996). Of course, this effect is species-dependent, however similar 

results have been found in rabbit (50%, Puglisi et al., 1999) and rat (~ 40%, Takamatsu et al., 

2003) ventricular myocytes. Thus if sarcoplasmic reticulum Ca2+ is reduced, the increase in ICa 

will help reload the sarcoplasmic reticulum Ca2+ store (as described in section 2.2.3 and 

reviewed in Eisner et al., 2000). Beyond considerations of EC coupling, Ca2+-dependent 
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inactivation is important in controlling cardiac excitation. Early studies showed that BAPTA, 

but not EGTA, inside a patch pipette, induced a significant prolongation of action potential 

duration, probably due to reduced Ca2+-dependent inactivation which suggested a negative 

feed back role played by this phenomena (White and Terrar, 1992; Le Guennec and Noble, 

1994). More recently, elimination of Ca2+-dependent inactivation of native Ca channels by 

adenoviral transfection of guinea-pig ventricular myocytes with engineered calmodulins, 

rendered Ca2+ insensitive by mutation, resulted in a 4-5 fold increases in action potential 

duration (Alseikhan et al., 2002) consistent with this process regulating action potential 

duration.  

 

3.2.2 Facilitation 

At the same time that direct Ca2+-dependent facilitation was being characterized (above) 

an intriguing phenomena was observed: an increase in stimulation frequency could increase 

ICaL amplitude and slow inactivation. This was described first in frog atrium (Noble and 

Shimoni, 1981), and then in rat (Richard et al., 1990; Richard et al., 1993), guinea-pig (Mitra 

and Morad, 1986; Lee, 1987; Fedida et al., 1988a; Fedida et al., 1988b; Zygmunt and Maylie, 

1990), rabbit (Hryshko and Bers, 1990), ferret (Yuan and Bers, 1994) dog (Tseng, 1988) and 

human (Piot et al., 1996) cardiomyocytes, although a pronounced decrease of ICa has been 

observed in mouse (Sipido et al., 1998b) in which the decrease might reflect insufficient time 

to recover from voltage dependent inactivation. 

Depolarization from near physiological potential (~ -80 mV) to near the peak of the ICa-V 

curve (~0 mV) produces a gradual increase and slowing of decay of ICa (Lee, 1987), whereas 

when the same protocol is applied from –40 mV a progressive decline is observed (Tseng, 

1988; Hryshko and Bers, 1990). Tseng (1988) characterized a holding potential threshold (-60 

mV) above which increasing the frequency of stimulation leads to a decrease of ICa amplitude. 

Ca2+ influx through the Ca2+ channel is the basis for this facilitation since facilitation is 

eliminated when Ba, Sr or Na are used as the charge carrier (Lee, 1987; Fedida et al., 1988a; 

Zygmunt and Maylie, 1990; Tiaho et al., 1994; Xiao et al., 1994a; Dzhura et al., 2000). 

It is striking that Ca2+ underlies frequency-dependent facilitation of ICa, as well as causing 

inactivation (above). However, the mechanism underlying this facilitation is still controversial 

although three hypotheses have been proposed. The first hypothesis is that this facilitation is 

due to calmodulin tethered to the Ca2+ channel at the IQ motif (calmodulin binding region, see 

section 4 for more details). Point mutations within the IQ motif results in marked effects on 

Ca-dependent facilitation. (Zuhlke et al., 1999; Zuhlke et al., 2000). The second hypothesis is 

phosphorylation of the L-type Ca channel by CaMKII (Yuan and Bers, 1994; Anderson et al., 
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1994; Xiao et al., 1994a). Evidence supporting this mechanism includes the observation that 

CaMKII inhibitors such as KN-62 (Yuan and Bers, 1994) inhibit facilitation. Facilitation is 

also eliminated by CaMKII inhibitory peptides including CamKII290-309, CaMKII273-302 

(Yuan and Bers, 1994) and ICK (Xiao et al., 1994a). Interestingly, a CaMKII inhibitory 

peptide (AC3-I) nearly abolished ICa facilitation but the facilitation was rescued by a peptide 

mimetic IQ domain, reinforcing the importance of IQ motif in Ca2+ channel modulation (Wu et 

al., 2001). At the single channel level, constitutively active CaMKII induced longer channel 

opening of the L type Ca2+ channel (Dzhura et al., 2000). The third hypothesis is that 

facilitation is related to reduced Ca2+ dependent inactivation due to sarcoplasmic reticulum 

Ca2+ release at high rates. This suggestion is based on the observation that sarcoplasmic 

reticulum Ca2+ release inhibitors blunt facilitation, highlighting the fact that facilitation and 

inactivation Ca2+ dependent share common properties. Facilitation occurs when EGTA is used 

as an intracellular Ca chelator but reduced by BAPTA (Tseng, 1988; Tiaho et al., 1994; Xiao 

et al., 1994a; Bates and Gurney, 1999) and sarcoplasmic reticulum Ca2+ release inhibitors 

(Ryanodine, thapsigargin, caffeine) (Tseng, 1988; Delgado et al., 1999; Wu et al., 2001; Guo 

and Duff, 2003). These observations emphasize the role of local Ca2+ signaling in Ca2+-

dependent modulation of ICaL, but do not provide a clue which of these mechanisms, which are 

not mutually exclusive, underlies ICaL facilitation. 

Finally, the physiological role of this facilitation remains unclear. The increase in Ca2+ 

entry might overcome the decrease in ICaL due to voltage dependent inactivation following an 

increase in stimulation frequency and offset Ca2+ dependent inactivation. In rat ventricular 

myocytes, it has been proposed that this facilitation may participate in the increase of action 

potential duration following an increase in pacing rate (Fauconnier et al., 2003).  

 

3.3 Regulation by cyclic nucleotides 
The most common cyclic nucleotides are cyclic adenosine monophosphate (cAMP) and 

cyclic guanosine monophosphate (cGMP). Although there is a consensus on the modulation of 

ICa by cAMP (via cAMP-dependent protein kinase A (PKA),) cGMP modulation of ICaL is 

more contraversial. 

 

3.3.1 cAMP 

It is well established that in cardiac myocytes, an elevation of cAMP activates cAMP 

protein kinase dependent (PKA), thus phosphorylating the L type Ca2+ channel (Bers 2001 and 

see also section 4.1). In contrast, the cAMP/PKA signal pathway has no effect on T-type Ca2+ 

currents recorded from canine atrial cells (Bean, 1985), rabbit sinoatrial node cells (Hagiwara 
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et al., 1988), canine Purkinje cells (Hirano et al., 1989; Tseng and Boyden, 1989) or guinea pig 

ventricular myocytes (Tytgat et al., 1988). 

In the heart, the major pathway to increase cAMP is catecholamine binding to a seven 

span transmembrane (β-adrenergic) receptor, which couples the stimulatory guanosine 

triphosphate (GTP) regulatory protein (Gs), stimulating adenylyl cyclase (AC) to produce 

(cAMP) (Bers, 2001). Other hormones can use the same pathway: for example, histamine, 

acting on the H2 receptor, can increase ICaL via the cAMP/PKA signal pathway (Hescheler et 

al., 1987), and serotonin, acting on the 5-HT4 receptor, which is present in human atrial 

myocytes (Ouadid et al., 1992) (see also section 5.1.2). 

PKA phosphorylation of the L-type Ca2+ channel causes a dramatic increase in global ICaL 

(~2-7 fold) and shifts activation and inactivation to more negative potentials (~10 mV) (Tsien 

et al., 1986; Hartzell et al., 1991). At the single channel level, PKA phosphorylation increases 

open probability (by switching to gating mode 2) and increases the number of channels 

available, although the unitary current remains the same (Yue et al., 1990). There is extensive 

evidence that the β-adrenergic/cAMP/PKA pathway upregulates ICaL via phosphorylation of 

the channel; this is reviewed elsewhere (Tsien et al., 1986; McDonald et al., 1994). 

Although an increase of intracellular cAMP leads to activation of PKA, evidence is 

accumulating that compartmentalization of cAMP is essential for intracellular signaling. Early 

work showed that PKA activation by prostaglandin E and isoprenaline exerted differential 

effects on glycogen phosphorylase phosphorylation in rat heart (Keely, 1979). Similarly, 

cAMP accumulation stimulated via the glucagon-like peptide receptor was recently found to be 

completely uncoupled from inotropic effects in cardiomyocytes (Vila Petroff et al., 2001), 

whereas glucagon can increase ICaL via the cAMP/PKA cascade in cardiac myocytes (Mery et 

al., 1990). The first direct evidence that cAMP signaling is spatially regulated in cardiac 

myocytes was obtained using the double barrelled microperfusion system described in section 

2 on frog myocytes. Localized β-adrenergic receptor activation by isoproterenol caused only 

local activation of ICa, suggesting localized elevation of intracellular cAMP (Jurevicius and 

Fischmeister, 1996). However, when AC was directly activated with forskolin, distant L-type 

Ca channels were also activated by PKA phosphorylation. Similar results were obtained if 

isoproterenol and IBMX (IsoButyMethylXanthine, a phosphodiesterase (PDE) inhibitor) were 

applied simultaneously. Hence the authors concluded that PDE activity around the L-type Ca 

channels restricted cAMP diffusion. In a subsequent study, they characterized the PDE 

isoforms involved by using specific inhibitors. They concluded that PDE3 and PDE4 

contribute equally to the functional coupling of β-adrenergic receptors to nearby Ca channels 

via local elevations of cAMP. Such local elevations of cAMP near the cell membrane and 
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restriction by PDE has also been demonstrated in HEK cells expressing cyclic nucleotide-

gated channels to monitor cAMP concentration (Rich et al., 2001). However cAMP 

compartmentalization in mammalian cardiac myocytes has only recently been demonstrated 

directly, using FRET. Imaging of cAMP in neonatal rat cardiomyocytes showed that the 

noradrenaline-induced cAMP signal diffused only ~1 µm, but phosphodiesterase inhibition led 

to generalized cAMP elevation (Zaccolo and Pozzan, 2002). Thus, in mammalian myocytes 

cAMP degradation by phosphodiesterase may also spatially limit cAMP signals. 

Other mechanisms have also been proposed to explain L-type Ca channel modulation by 

spatially compartmentalized cAMP signaling in mammalian cardiac myocytes. In mammalian 

heart, three different β-adrenoceptor subtypes have been cloned and identified 

pharmacologically to date: β1, β2, β3. However, only two types of β-adrenergic receptors have 

been reported to modulate ICaL; β1 and β2. β1 is the major receptor in mammalian myocytes 

(e.g. ~ 70% in human see for review Brodde and Michel 1999). Both β1- and β2- adrenergic 

receptors couple to Gs to activate adenylyl cyclase, and stimulation of both receptor subtypes 

increases the intracellular level of cAMP, hence ICaL. The activation of β1-adrenergic receptors 

produces a robust increase of ICaL and also leads to phosphorylation of phospholamban present 

on the sarcoplasmic reticulum and of troponin I (Bers, 2001). By contrast, β2-adrenergic 

receptor stimulation increases ICaL, but does not increase global cAMP levels or phosphorylate 

any non-sarcolemmal proteins. To explain this difference, Lakatta and colleagues proposed 

that in adult rat and dog ventricular cardiomyocytes, β2- adrenergic receptors also couple to Gi 

and that this will spatially restrict the increase in cAMP (Xiao and Lakatta, 1993; Xiao et al., 

1994b; Xiao et al., 1995; Kuschel et al., 1999; Xiao et al., 1999; Chen-Izu et al., 2000). 

Evidence that β2-adrenergic receptor stimulation leads to local signaling and phosphorylation 

of ICaL was obtained using the cell attached configuration of the patch clamp technique. β2-

adrenergic receptor agonists only activated ICa if it was included in the patch pipette (local 

signaling) whereas β1-adrenergic receptors agonists outside the patch can phosphorylate ICaL 

(diffusive signaling). This local signaling is achieved by the dual coupling of β2-adrenergic 

receptors to Gs and Gi since treatment with pertussis toxin (PTX, disrupting Gi regulation) 

allowed β2-adrenergic receptors to activate ICaL via a diffusing signal (reviewed in Xiao 2001). 

Comparable data were recently obtained in murine ventricular cardiomyocytes in which the β2-

adrenergic receptor agonist zinterol failed to increase force of contraction or [Ca2+]i transient 

amplitude. However, after treatment of the cardiomyocytes with PTX, zinterol, via β2-

adrenergic receptor stimulation, increased both parameters significantly (Xiao et al., 1999). 

Despite compelling evidences, the dual activation of Gs and Gi via β2-adrenergic receptors 
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stimulation remains controversial (Kuznetsov et al., 1995; Laflamme and Becker, 1998) and 

whether human cardiac β2-adrenoceptors also couple to Gi is unknown. In addition, recent 

studies identify compartmentalization of β2-adrenergic receptors and AC to caveolae in 

neonatal and adult rat cardiomyocytes (Rybin et al., 2000). Caveolae are small (70-90 nm in 

diameter) invaginated foldings of the sarcolemma that are enriched in cholesterol and 

glycosphingolipids (see for review Razani et al., 2002). On the contrary, β1-adrenergic 

receptors are more evenly distributed (Ostrom et al., 2001). Interestingly, M2 muscarinic 

receptors, which can inhibit cAMP production by the Gi modulation of AC, are exluded from 

caveolae (Feron et al., 1997). This might contribute to the differential effect of M2 muscarinic 

receptor activation on cAMP production from β1-adrenergic receptors (decrease) and β2-

adrenergic receptors (no change) (Aprigliano et al., 1997). Collectively, these studies indicate 

that components of the β2-adrenergic receptor signaling pathway lead to spatial 

compartmentalization of cAMP signaling by restriction of receptors to membrane 

microdomains and/or by dual stimulation of Gs/Gi. 

The idea that the receptors might not be evenly distributed on the cell surface membrane 

is supported by results obtained in neurons in which it has been shown that β2-adrenergic 

receptors co-assemble with the L type Ca channel, Gs, adenylyl cyclase, PKA and phosphatase 

2A (Davare et al., 2001). Whether the same co-assembly exists in cardiac myocytes is 

currently unknown, however some pieces of information support this idea. L type Ca2+ 

channels are concentrated at the t-tubules in mammalians cardiac myocytes (see section 2.1.1) 

and immunohistochemical data shows that many of the proteins in the cAMP/PKA pathway 

are also located predominantly at the t-tubules (Gs protein, (Laflamme and Becker, 1999); AC 

(Gao et al., 1997a), PKA, (Santana et al., 2002)). Interestingly, the protein phosphatase 

calcineurin (enzyme counter-balancing the cAMP/PKA phosphorylation) is also concentrated 

at the t-tubules and co-localized with the L type Ca2+ channel (Santana et al., 2002). 

Finally, PKA is spatially localized via binding to A-kinase anchoring proteins (AKAP). 

This might explain why most studies in mammalian expression systems have failed to 

reproduce the observation that ICa increases upon activation of the PKA pathway (see section 

3.3.1). An early study showed that mAKAP is concentrated at the t-tubules (Yang et al., 1998), 

however this now appears to belong to the RyR macromolecular complex (Marks, 2001). 

Recently, it has been shown that AKAP15 is anchored to the cardiac L-type Ca2+ channel 

(Hulme et al., 2003). Both AKAP15 and L type Ca2+ channel co-localize at t-tubules (Hulme et 

al., 2003). In mammalian cardiac myocytes, the cAMP microdomain might be different at the 

cell surface and the t-tubules. Using the detubulation technique, a recent study showed that L-

type Ca2+ channels are better coupled to the β-adrenergic pathway at the t-tubules than at the 

H
A

L author m
anuscript    inserm

-00141882, version 1



 29

surface membrane (Brette et al., 2004a). This indicates that β-adrenergic receptors are present 

on the surface membrane, however, to the best of our knowledge, no immunohistocemistry 

data are available concerning a possible β-adrenergic receptors sub-localization (t-tubules vs 

surface membrane) in cardiac myocytes. 

In summary, modulation of ICaL via cAMP appears to be highly regulated by 

compartmentalization, due to the existence of microdomains formed by PDE and/or receptor 

localization.  

 

3.3.2 cGMP 

cGMP is an important intracellular second messenger of various extracellular stimuli 

regulating L-type Ca current. cGMP is the product of guanylyl cyclase activity which is 

stimulated by nitric oxide (NO). In the heart, NO formation via NO synthase (NOS) can be 

activated via various factors (e.g. atrial natriuretic factor, cathecolamines acting on β3-

adrenergic receptors, stretch; see for review Hare and Stamler 1999). It has also been proposed 

that acetylcholine acting via M2-receptors can induce NO synthesis, although this is 

controversial, in addition to activation of the Gi pathway (reviewed in Harvey and Belevych 

2003, see also section 5.1.2). Classically, the regulation of L type Ca2+ channel activity in the 

heart is due to the activity of the NOS3 enzyme subtype (see for review Hare 2003), but a 

recent study using knockout mice also showed that NOS1 regulates L type Ca2+ channel 

activity (Ashley et al., 2002; Sears et al., 2003).  In addition to modulation of Ca2+ channels by 

the signaling pathway downstream of cGMP (below) it has also been suggested that NO may 

have a direct effect (cGMP independent) via either nitrosylation of the L type Ca2+ channel 

(Campbell et al., 1996; Hu et al., 1997) or by modulating the activity of G proteins (Abi-

Gerges et al., 2002). 

In cardiomyocytes, most studies agree that L-type Ca2+ current is modulated by cGMP 

and it is generally believed that cGMP plays a role antagonistic to that of cAMP: the “yin-

yang” hypothesis (Goldberg et al., 1975). However, both inhibition and stimulation of ICaL by 

cGMP mediated mechanisms have been reported (see table 1). The variety of results may be 

explained by: (i) the balance between synthesis and degradation of cGMP and cAMP; (ii) 

modulation of ICaL via PKG dependent phosphorylation or cross-talk with cAMP signaling via 

cGMP-sensitive PDE (PDE2 and PDE3); (iii) whether cGMP is able to modulate the three 

main target enzymes, namely PKG, PDE2 and PDE3 in a given species. The effects of each of 

these enzymes is discussed below and illustrated in figure 5. 

PKG dependent modulation of ICaL
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The activation of cGMP dependent protein kinase (PKG) is a function of intracellular 

concentration of cGMP. Direct intracellular dialysis of PKG from a patch pipette decreases 

ICa,L via phosphorylation of the L-type Ca2+ channel by PKG or an associated regulatory 

protein (Mery et al., 1991; Sumii and Sperelakis, 1995; Haddad et al., 1995) (see also table 1). 

The modulation of ICa,L by PKG has been associated with phosphorylation at serine 533 of the 

α1C
 subunit in Xenopus oocytes since replacement of serine by alanine at a consensus site 

(S533A) for PKG-dependent phosphorylation prevents inhibition by the PKG activator 8-Br-

cGMP (Jiang et al., 2000). Phosphorylation at serine 533 of the α1C
 subunit seems to be a 

sufficient condition since inhibition still occurs in the absence of either β- or α2δ subunits 

(Jiang et al., 2000, see also 4.1.1 and see Figure 6) 

However, since Ca2+ channel phosphorylation is a balance between kinase and 

phosphatase activity, an alternative mechanism has been proposed in which PKG stimulates 

phosphatase activity, hence decreasing ICaL. This hypothesis was proposed after it was shown 

that inhibition of ICaL induced by 8-Br-cGMP in guinea pig ventricular cells was antagonized 

by dialysis with okadaic acid (inhibitor of phosphatases 1 and 2A) (Sakai et al., 1999). In a 

subsequent study, Shen and Pappano (2002) failed to observe an 8-Br-cGMP induced 

inhibition of ICaL prestimulated by IBMX when ATPγS was included in the pipette. Since 

ATPγS is a kinase but not a phosphatase substrate, they concluded that, as the effect of 

thiophosphorylation by PKA on ICaL cannot be reversed by activation of PKG, the effect occurs 

by dephosphorylation of the site phosphorylated by PKA (Shen and Pappano, 2002). However, 

using a similar approach in rat ventricular myocytes, Méry et al., (1991) observed an 

irreversible effect of cGMP in cells perfused with ATPγS and suggested that PKG 

phosphorylation was directed to the Ca2+ channel or an auxiliary protein than to phosphatase. 

There is a third hypothesis to explain the effects of cGMP on ICaL. The NO donor 

DEANO is able to antagonize the stimulation of ICaL induced by low isoproterenol 

concentration, via PKG activation (Abi-Gerges et al., 2001). While these results can be 

interpreted as a PKG-dependent phosphorylation of the channel (above), surprisingly, the 

inhibitory effect of DEANO on ICaL was prevented by PTX, which inactivates Gi/Go proteins 

(Abi-Gerges et al., 2001). This suggests a PKG mediated phosphorylation of Gi protein, as 

reported in expression system (Pfeifer et al., 1995). 

Although PKG activation normally inhibits ICa, a PKG mediated increase in basal ICa 

caused by NO donors and 8-Br-cGMP has been described in rabbit newborn and juvenile 

ventricular and adult atrial myocytes but not in rabbit adult ventricular cells (Kumar et al., 

1997; Han et al., 1998; Wang et al., 2000). This PKG mediated increase of ICaL has been 

correlated with higher PKG expression, which could be responsible for differences in the 
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significance of cGMP in this species (Kumar et al., 1999; Wang et al., 2000). To answer this 

(and other) question, an alternative approach was used to investigate the specific effect of 

PKG. In transgenic mice in which PKG I is overexpressed in myocardium (Schroder et al., 

2003), basal Ca channel activity is decreased (table 1) by both the nitric oxide donor DEANO 

and 8-Br-cGMP in myocytes from transgenic mice but not from wild type mice. This supports 

the concept that the level of PKG expression is important for basal ICaL modulation and further 

demonstrates the inhibitory effect on Ca2+ channel activity induced by PKG (Schroder et al., 

2003). 

cGMP sensitive PDEs modulation of ICaL

ICaL is stimulated by cAMP-dependent protein kinase (see above) and the cAMP level is 

regulated in part by the rate of degradation by PDEs. At least four PDE subtypes are present in 

cardiomyocytes (for review Maurice et al.,, 2003). Among them, PDE2 and PDE3 are 

stimulated and inhibited respectively by cGMP. This dual regulation of PDE by cGMP may 

lead to the different cGMP-dependent responses of ICa observed in different species (Ono and 

Trautwein, 1991; Mery et al., 1993; Kirstein et al., 1995; Shirayama and Pappano, 1996; 

Vandecasteele et al., 1998) (see also table 1). For example, in human atrial cells, nanomolar 

concentrations of NO donors (SIN-1 and SNAP) stimulate basal ICaL (Kirstein et al., 1995; 

Vandecasteele et al., 1998), whereas at micromolar concentrations, the stimulatory effect of 

SIN-1 on ICa was strongly attenuated (Kirstein et al., 1995). Similar effects have been found 

with direct intracellular application of low and high cGMP concentrations (Rivet-Bastide et al., 

1997; Vandecasteele et al., 2001). These results suggest the development of a secondary 

inhibitory effect at higher concentrations of NO donors and cGMP and thus with a lower 

sensitivity to cGMP. The stimulatory effect of low cGMP concentration by activation of PKA 

results from inhibition of PDE3 (Kirstein et al., 1995; Vandecasteele et al., 2001). The 

inhibition at higher cGMP concentration occurs via stimulation of PDE2, thus decreasing PKA 

activity (Vandecasteele et al., 2001). The interplay between mechanisms is species dependent: 

in frog and human, PDE2 and 3 activation/inhibition is the major mechanism for cGMP 

modulation of ICaL (Mery et al., 1993; Vandecasteele et al., 2001). However in guinea-pig, 

PDE3 (but not PDE2) and PKG appear important. This explains the biphasic response of ICaL 

to cGMP, first an increase due to an inhibition of PDE3, then a decrease due to PKG 

phosphorylation (Ono and Trautwein, 1991; Shirayama and Pappano, 1996). 

In summary, cGMP appears to produce different effects upon ICaL depending on: (i) the 

presence and relative activities of PKG, PDE2, PDE3 in a given species; (ii) whether adenylyl 

and/or guanylyl cyclases are constitutively active; (iii) experimental conditions (i.e. the level to 

which the NO/cGMP/PKG cascade is stimulated, the nature and concentration of the agent 
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used to elicit a response, and whether the effect of cGMP on ICa is examined under basal 

conditions or after prestimulation by the cAMP cascade). This modulation can vary with 

development, and under pathophysiological conditions.  

Compared witth cAMP, little is known about compartmentalization of cGMP signaling. 

NOS3 localizes to caveolae (Feron et al., 1998), allowing spatial confinement of NO effects 

(Barouch et al., 2002). It is also tempting to speculate that if PDEs are localized with Ca2+ 

channels, cGMP might selectively activate PDE2 and thereby decrease cAMP modulation of 

ICaL. Some evidence to support this hypothesis has been reported, such as significant local 

depletion of cAMP near the L-type Ca2+ channels due to activation of PDE2 by stimulation of 

guanylyl cyclase in frog ventricular myocytes (Dittrich et al., 2001). 
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4 BIOPHYSICAL STRUCTURE-FUNCTION OF CARDIAC 
Ca2+ CHANNELS 

 
Pharmacological tools have led to the classification of L-type Ca2+ channels, which are 

highly sensitive to DHPs, expressed in different tissues and heart in particular (Nowycky et al., 

1985). Their high affinity for DHP agonists and antagonists made possible their biochemical 

characterization first in skeletal muscle (Tanabe et al., 1987) and subsequently in cardiac cells 

(Mikami et al., 1989). Identification of the α1 subunit which forms the pore of the DHP 

receptor and confers its sensitivity to voltage and pharmacological components on this Ca2+
 

channel was then possible (see for review Catterall 2000). Development of molecular biology 

over the last decades helped to clone these subunits and to start to elucidate how Ca2+ channels 

work and are regulated at a molecular level. Ten different α1 subunits for Ca2+ channels have 

been cloned with specialized biophysical and pharmacological properties and different patterns 

of expression. A new nomenclature, proposed in 2000, divided the Ca2+ channels into three 

sub-families (Ertel et al., 2000). The first subfamily of high voltage activated channels (HVA), 

CaV1, consists of the DHP sensitive L-type Ca2+
 channels. The second one, of HVA, DHP 

insensitive, CaV2 channels mainly expressed in brain and the last one, CaV3, corresponds to the 

T-type channels (low voltage activated channel, LVA). 

HVA Ca2+ channels are multimers of proteins and can be composed of five subunits 

unlike LVA where the α1 subunit would be enough to form a channel. HVA Ca2+ channels 

contain a principal transmembrane subunit α1 of about 190 kDa which forms the pore of the 

channels and auxiliary subunits such as an intracellular β of 50-70 kDa depending on β 

subtype, a disulfide-linked α2−δ subunit complex of 170 kDa (Catterall 2000; Peres-Reyes 

2003). Although, γ1, a protein of 33 kDa is well known to co-purify with the L-type Ca2+ 

channels of skeletal muscle (Takahashi et al., 1987), it is still controversial whether recently 

cloned γ-like subunits (γ2-8) are real auxiliary subunits for HVA Ca2+ channels (Black, III, 

2003; Qiao and Meng, 2003). 

 

4.1 Molecular Structure of the predominant L-type Ca2+ channel  

4.1.1 Structure-function of α1C  

Using homology with the skeletal muscle Ca2+ channel, the cardiac L type Ca2+ channel 

has been identified and cloned (Mikami et al., 1989). It is encoded by CACNA1C (Soldatov, 

1994) and has been mapped to the distal region of chromosome 12p13 (Schultz et al., 1993). 

α1C, like other α1 subunits of HVA and LVA Ca2+ channels, is a protein of about 190 kDa with 
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24 putative transmembrane segments according to its hydropathy profile. It is organized into 

four repeated domains (I to IV) of six transmembrane segments (S1 to S6) with intracellular N- 

and C- termini (Tanabe et al., 1987; Catterall, 2000) (see Figure 6). L type Ca2+ channels have 

complex permeation properties and exhibit various selectivities for divalent and monovalent 

cations (see Tsien et al., 1987 for review). Indeed, Ca2+ is both an effective permeator and a 

potent blocker of L type Ca2+ channel. A model for the mechanism of Ca2+ channel permeation 

has been proposed by Hess and Tsien (1984) and Almers and McCleskey (1984) which 

proposed that Ca2+ ions pass though two Ca2+ selective sites in single file pore. Divalent 

cations with low binding affinity can move quickly through the channel. Those with higher 

affinity will also move quickly but can stick in then interfere with the movement of less 

affinity divalent cations (anomalous mole fraction effect, Hess et al., 1986), and also block the 

permeation pathway for monovalent cations (Lansman et al., 1986). Analysis of the 

dependence of single channel conductance on divalent cations concentration has led Yue and 

Marban (1990) to propose that the pore contains at least three binding sites. Key determinant 

in the molecular site of the selectivity filter of these channels has been demonstrated later; the 

selectivity filter is formed by parts of the four S5-S6 linker segments (P loop). Four conserved 

glutamate residues in the putative pore-lining regions of repeats I-IV, form the selectivity filter 

that binds Ca2+ in the pore of α1C (Tang et al., 1993; Yang et al., 1993; Cibulsky and Sather, 

2000; Cibulsky and Sather, 2003). Recently, X-ray crystallographic analysis of the pore-

forming portions of the bacterial K+ channels (Doyle et al., 1998; Jiang et al., 2002a; Jiang et 

al., 2003a) allowed a model of the Ca2+ channel outer vestibule formed by the P loops to be 

built (Lipkind and Fozzard, 2001) and provided evidences for the gating of voltage gated 

channels (Bezanilla, 2000; Jiang et al., 2002b; Jiang et al., 2003b). Hodgkin and Huxley, in 

1952, hypothesized that a large flow of ions would be the result of displacement of a few 

charged particles whose distribution is modified by the membrane potential (Hodgkin and 

Huxley, 1952a). Development of electrophysiological techniques and cloning of voltage gated 

channels confirmed this hypothesis. The fourth transmembrane segment (S4) of voltage gated 

channels contains between four and eight basic residues (arginines or lysines) (see Figure 6). 

The S4 segments containing these positive charges were described as possibly involved in the 

gating structure of voltage gated channels in 1984 by Noda et al. and this has been confirmed 

by mutational analysis (Stuhmer et al., 1989; Papazian et al., 1991; Liman et al., 1991; Noceti 

et al., 1996). Because of their structural homologies, it is assumed that the gating of all 

voltage-gated channels, including Ca2+ channels, is similar (Bezanilla, 2000). When the 

membrane is hyperpolarized, the channel is closed and these segments lie deep in the 

membrane. During a depolarization, the electric field forces the positively charged S4 
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segments to move by a helical turn to an external position. Acidic residues in S2 and perhaps 

S3 seem to also be important in the change of protein conformation leading to the opening of 

the channel (Bezanilla, 2000; Jiang et al., 2003b). A recent study, using a mutational approach, 

suggests that the domains I, III and IV rather than domain II are critical for channel opening. 

By swapping CaV1.2 domains by similar CaV3.1 domains (LVA channel), the authors showed 

that these three domains contribute strongly to the voltage dependence of activation of Ca2+ 

channels but that the S4 segments did not account for their voltage dependence, suggesting 

roles for S1-S3 and S5-S6 segments to confer differences in voltage dependence of Ca2+ 

channels (Li et al., 2004). 

The α1 subunit of HVA Ca2+ channels presents, in its I-II linker, a highly conserved 

sequence that binds the β subunit named AID (Alpha Interacting Domain) (Dolphin, 2003a). 

The AID corresponds to the following consensus sequence QQLEEDL-GY--WITQ-E for L-

type channels and is absolutely essential for the binding of the auxiliary subunit (Pragnell et 

al., 1994). Although, it seems possible that α1 N- and C-termini of various Ca2+ channels also 

bind β (Dolphin, 2003a). Furthermore, it has been suggested that the I-II loop of Ca2+ channels 

contains an endoplasmic reticulum retention signal that restricts the plasma membrane 

incorporation of α1 and that β subunits binding to the I-II loop favors its plasma membrane 

expression (Bichet et al., 2000). Nevertheless, this hypothesis is controversial, since it has been 

proposed that β subunits regulate the biophysical properties of the channel without affecting 

the expression of α1C at the plasma membrane (Neely et al., 1993). A recent study shows that 

α1C surface expression, evaluated by gating currents, is not affected by co-expression of β 

subunits, suggesting that β binding to the I-II loop of α1 subunits only affects primarily 

channel activity (Neely et al., 2004). 

Drug binding domains have been investigated and we have now more information about 

molecular pharmacology of Ca2+ channels (Doering and Zamponi, 2003). Various compounds 

bind L-type Ca2+ channels, among them the DHPs. Mutational studies and creation of 

chimerical channels allowed the S5 and S6 and pore lining region S5-S6 of domains III and IV 

of L-type channels to be identified as the important regions responsible for DHP binding (Ito et 

al., 1997; Sinnegger et al., 1997; Yamaguchi et al., 2000b; Wappl et al., 2001; Lipkind and 

Fozzard, 2003; Yamaguchi et al., 2003) (see Figure 6).  

Phenylalkylamines (D888, verapamil, D600) also block CaV1.2 channels (as well as CaV1.3 

and CaV1.4 channels). Specific binding sites have been identified on the α1C IIIS6 and IVS6 

regions. Mutations in these regions attenuate Ca2+ current block by phenylalkylamines 

(Hockerman et al., 1995; Johnson et al., 1996; Hockerman et al., 1997). 
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Benzothiazepines (e.g. diltiazem) are used clinically for their antihypertensive and 

antiarrhythmic effects. Binding to α1C subunit of L-type Ca2+ channels involves domains III 

and IV (Cai et al., 1997) and more specifically the S6 segments of these domains (Kraus et al., 

1996).  

A depolarization from a negative to a more positive potential induces the opening of the 

Ca2+ channel. When the membrane is maintained depolarized, the channels enter a non-

conductive state, an “inactivated” state. As previously described, CaV1.2 presents two types of 

inactivation: a voltage-dependent inactivation and a Ca2+-dependent inactivation. Inactivation 

of HVA Ca2+ channel is not yet fully understood, but over the past years, some molecular 

determinants involved in this processes have been discovered. From studies of chimeras 

between the fast inactivating α1E and α1C and achieving point mutations in the S6 II, III, IV it 

was suggested that the S6 segments of each four domains of α1C are crucial for voltage-

dependent inactivation (Hering et al., 1996; Stotz et al., 2000; Berjukow et al., 2001; Stotz and 

Zamponi, 2001b) (see Figure 6). But transmembrane segments are not the only part of α1C 

involved in voltage-dependent inactivation since intracellular regions also appear to be 

implicated. The I-II loop (Stotz and Zamponi, 2001b) and the C-terminal part of α1C are also 

key determinants for voltage-dependent inactivation (Klockner et al., 1995; Soldatov et al., 

1998).  

Increase of intracellular Ca2+ concentration accelerates inactivation of most of the HVA 

Ca2+ channels (Zuhlke et al., 1999; Shirokov, 1999; Liang et al., 2003). The C-terminus of α1C 

contains not only important determinants for voltage-dependent inactivation, but also for Ca2+-

dependent inactivation. It contains a putative Ca2+ binding site, an EF-hand region located in 

the proximal part of the tail, which was first described as the crucial determinant for Ca2+-

dependent inactivation (de Leon et al., 1995). Following this study, subsequent work has 

concentrated on the C-terminal part of α1C. Zhou et al. (1997) identified a downstream region 

critical for Ca2+-dependent inactivation which does not contain the EF-hand. The major 

component of the C-terminus of α1C implicated in the Ca2+-dependent inactivation is an IQ 

motif located downstream of the EF-hand, which is a calmodulin-binding site, the critical Ca2+ 

sensor for Ca2+-dependent inactivation (Zuhlke and Reuter, 1998) (see Figure 6). Thereafter, it 

was suggested that the EF-hand region regulates the voltage-dependent inactivation 

(Bernatchez et al., 1998) and supports the transduction of Ca/Calmodulin binding into channel 

inactivation (Peterson et al., 2000). A region of more than 100 amino-acids starting from the 

EF-hand including the IQ motif is implicated in Ca2+-dependent inactivation. Two more 

regions are involved: the first one named LA (Romanin et al., 2000) or peptide A (Pitt et al., 

2001) can bind calmodulin in absence of Ca2+. The preassociation of the calmodulin free of 
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Ca2+ (apocalmodulin) with the L type Ca2+ channel has been confirmed by fluorescence 

resonance energy transfer (FRET) (Erickson et al., 2001). Hence, apocalmodulin is tethered to 

the channel facilitating the rapid triggering of Ca2+-dependent inactivation (Erickson et al., 

2003). A very recent report demonstrated that a single tethered calmodulin is both necessary 

and sufficient to produce Ca2+-dependent inactivation (Mori et al., 2004). 

The second region, peptide CB (Pate et al., 2000) or peptide C (Pitt et al., 2001) at high 

Ca2+ concentration can form a complex with the calmodulin bound to the IQ motif, which 

would constitute a minimal switch to induce  Ca2+-dependent inactivation (Mouton et al., 

2001a). 

Two models have been proposed for inactivation of Ca2+ channels according to these 

studies: (i) a constriction of the pore by the S6 segments, a C-type inactivation model (ii) and a 

hinged-lid mechanism involving intracellular gates.  

Soldatov’s group (Shi and Soldatov, 2002) proposed a model of a C-type/slow 

inactivation similar to the one proposed for K+ channels (Choi et al., 1991; Lopez et al., 1994) 

where a constriction of the pore occurs by the S6 segments lining the intracellular part of the 

pore. CaV1.2 channels reveals two inactivation components of the Ba2+ current decay. The 

authors showed that mutations in the S6 of the four domains I-IV impairs the slow voltage-

dependent inactivation and accelerate the fast inactivation of Ba2+ currents, suggesting that the 

two mechanisms are linked. These residues at the C-terminal region of each S6 form an 

annular determinant which mediates the slow inactivation component of L-type Ca2+ channels. 

The mutated channel does not exhibit Ca2+-dependent inactivation or sensitivity to β-subunit 

induced modulation of inactivation. The voltage dependence of these channels remains 

identical to a non-mutated channel suggesting that the voltage sensors are not affected (Shi and 

Soldatov, 2002). This is consistent with a C-type inactivation, where a constriction of the pore 

then reached by the Ca2+ sensors of the C-terminus of α1C would be the mechanism (Shi and 

Soldatov, 2002; Soldatov, 2003).  

In the second model, the conformational changes following a depolarization and channel 

opening would unmask docking sites and the C-terminus and the I-II loop would occlude the 

pore (Stotz et al., 2000). Two important facts are in favor of this hypothesis: the implication of 

the I-II loop of α1C which governs the voltage-dependent inactivation of CaV1.2 channels 

(Stotz and Zamponi, 2001b) and the modulation of the inactivation kinetics by β subunits 

bound to this intracellular loop (Dolphin, 2003a). 

It has also been suggested that voltage-dependent inactivation and Ca2+-dependent 

inactivation use the same determinants and confirmed that the I-II loop and the C-terminus of 

α1C interact with the pore to induce in the inactivated state (Cens et al., 1998; Kim et al., 
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2004). Furthermore, the gating currents recorded during depolarization (ON charges) are not 

impaired by intracellular Ca2+ while Ca2+-dependent inactivation affects the return (OFF 

charges) of the voltage sensors to their initial state (Leroy et al., 2002; Isaev et al., 2004), 

confirming that the docking sites are located in the internal cavity of the channel or formed 

after rearrangement during a depolarization. 

The molecular site responsible for the cardiac EC coupling in α1C (CICR, see section 2.2, 

vs voltage activated coupling of α1S) has been investigated using chimeric cDNA (Tanabe et 

al., 1990a; Tanabe et al., 1990b). Using a preparation lacking L-type Ca2+ channel (skeletal 

muscle from Murine Muscular Dysgenesis, mdg), a skeletal coupling can be restored when 

myotubes are injected with α1S and a cardiac one when α1C is injected. They found that 

replacing the cytoplasmic loop between domains II and III of the cardiac L type Ca2+ channel 

(see Figure 6) with the skeletal counterpart was sufficient to cause the EC coupling to be 

skeletal type (voltage-activated coupling). This suggests that contrary to the skeletal α1S, the 

cardiac isoform does not interact directly with ryanodine receptors (RyRs) via the loop II-III. 

However, a possible interaction between α1C and RyRs has been suggested by a 

functional study showing that BayK 8644 (a DHPs agonist) increased the frequency of local 

Ca2+ release events (Ca2+ sparks, see section 2.2.1) in ferret ventricular myocytes (Katoh et al., 

2000). These experiments were performed in the absence of external Ca2+, ruling out a 

possible enhancement of Ca2+ sparks frequency due to Ca2+ entry. They proposed that binding 

of BayK 8644 to α1C reveals a weak link with RyRs, which may be due to an unknown 

intermediate protein (Katoh et al., 2000). Interestingly, a possible interaction between the C-

terminus of α1C and particularly of the CB and IQ motifs, with ryanodine receptors has been 

described (Mouton et al., 2001b). Recently, Woo et al. (2003) showed a possible functional 

role for this peptide from the C-terminal tail of α1C (LA peptide, 1571-1599, Romanin et al. 

2000) using atrial myocytes. In these cells, Ca2+ spark frequency is high near the cell surface 

membrane and low in the cell center. Infusion of the peptide via a patch pipette increased four 

fold the Ca2+ spark frequency in the center (where RyRs are not in close contact with the L 

type Ca2+ channel, see section 2.2.1). They proposed that a possible interaction between the C-

terminal tail of α1C and RyRs might sensitize RyRs, thereby increasing their open probability; 

although further investigations are required to explore this novel finding. 

CaV1.2 channels are modulated by phosphorylation by various kinases (see Figure 6). α1C 

presents numerous putative phosphorylation sites for protein kinases in its N- and C-terminal 

regions and in the S4-S5 loop of domain II (Soldatov, 1994). Despite the fact that α1C is a 

substrate for phosphorylation by PKA in vitro (De Jongh et al., 1996; Puri et al., 1997), several 
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attempts to mimic the adrenergic stimulation of CaV1.2 channels in expression systems have 

failed (Perez-Reyes et al., 1994; Singer-Lahat et al., 1994; Zong et al., 1995; Perets et al., 

1996). Nevertheless, a few cases, the expected stimulation of Ca2+ currents after cAMP 

increases did occur (Yoshida et al., 1992; Yatani et al., 1995). A possible missing link has been 

then identified as AKAPs (A kinase–anchoring proteins), which bind to the C-terminus of α1C 

(Gao et al., 1997b; Hulme et al., 2003) (see Figure 6). Furthermore, AKAPs bind PKA and 

would allow it to phosphorylate the ser1928 located in the C-terminus of α1C and to enhance 

channel activity (De Jongh et al., 1996; Mitterdorfer et al., 1996; Perets et al., 1996; Gao et al., 

1997a; Hulme et al., 2003).  

Moreover, cardiac L-type channels can be modulated by other kinases and by PKC and 

PKG in particular. In heterologous systems, PKC has been reported to enhance currents 

induced by expression of CaV1.2 channels (Singer-Lahat et al., 1992; Bourinet et al., 1992; 

Shistik et al., 1998) but there are exceptions (McHugh et al., 2000). Nevertheless, the N-

terminus of the α1C subunit seems crucial for the modulation of CaV1.2 by this kinase (Shistik 

et al., 1998; McHugh et al., 2000). 

A direct phosphorylation of α1C by PKG has been demonstrated from a functional study 

performed in oocytes. In this study, activation of PKG by 8-Br-cGMP inhibits the Ca2+ 

currents and this effect does not depend on co-expression of β subunits. The authors showed 

that this effect is prevented by the PKG inhibitor KT5823 and they identified the serine 533 in 

the I-II intracellular linker as the phosphorylated amino acid (Jiang et al., 2000). 

Alternative pre-RNA splicing generates functional and structural diversity of α1 subunits 

of Ca2+ channels (Jurkat-Rott and Lehmann-Horn, 2004). To obtain an mRNA from the pre-

RNA that can be translated into a protein, the non-coding introns and alternative exons must be 

removed. Different isoforms of α1C subunits following this process have been identified. These 

display dissimilar biophysical and pharmacological properties. The IVS3 and the S3-S4 loop 

of domain IV of α1C are subject to alternative splicing, resulting in different subunits whose 

expression is tissues dependent or regulated during development (Perez-Reyes et al., 1990; 

Diebold et al., 1992; Feron et al., 1994; Abernethy and Soldatov, 2002). The C-terminus and 

the S6 segment of domain I are also subject to alternative splicing affecting current density and 

inactivation (Soldatov et al., 1997; Klockner et al., 1997; Goodwin et al., 1999). Sensitivity to 

DHPs is also modified by alternative splicing of these regions (Welling et al., 1997) and some 

modifications occur in IIIS2 (Soldatov et al., 1995) and IVS3 (Safa et al., 2001). 

Understanding of the function and regulation of splicing isoforms would present opportunities 

for the design of more selective therapeutic agents in the future (Jurkat-Rott and Lehmann-

Horn, 2004). 
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4.1.2 Structure-function of β subunit 

Four intracellular β (β1−β4) subunits of about 50-70 kDa have been identified and 

diversity is extended by alternative splicing. The first one, β1a has been co-purified with the 

DHPs receptor in skeletal muscle (Tanabe et al., 1987) and then cloned (Ruth et al., 1989). 

Three more genes encoding for β2, β3, β4 have been cloned (Perez-Reyes et al., 1992; Hullin et 

al., 1992; Castellano et al., 1993a; Castellano et al., 1993b), located  in different chromosomes 

in humans: 17q21 for β1 (Gregg et al., 1993), 10p12 for β2 (Taviaux et al., 1997), 12q13 for β3 

(Collin et al., 1993) and 2q22 for β4 (Taviaux et al., 1997). In human myocardium, the 

expression of three genes, β1, β2, β3 has been demonstrated at the mRNA and protein level 

(Collin et al., 1993; Haase et al., 1996; Freise et al., 1999). Moreover, a more recent study 

shows that different splice variants for β2 (β2a-β2e) and β3 (full length and a truncated β3) are 

also expressed in human heart cells (Takahashi et al., 2003; Hullin et al., 2003). 

Co-expression of β subunits with α1 subunits in heterologous expression systems, affects 

the HVA targeting to the plasma membrane as well as HVA biophysical properties (Walker 

and De Waard, 1998; Herlitze et al., 2003; Dolphin, 2003a). A model for the structure of β that 

describes the auxiliary subunits as composed of five domains (D1-D5) has been proposed 

(Dolphin, 2003a). D2 and D4 are highly conserved between the four β subunits but the three 

other domains are subject to alternative splicing. In many aspects, β subunits contain 

homologies with members of the MAGUK, a characteristic that has been confirmed by recent 

crystallographic analysis of the core domains of β2 (Van Petegem et al., 2004; Opatowsky et 

al., 2004). D2 is a Src Homology-3 (SH3) (Hanlon et al., 1999) frequently found to bind to 

proline-rich motifs(McPherson, 1999). This domain is followed by a linker corresponding to 

D3. D4 has been identified as a Guanylate Kinase (GK) domain (Hanlon et al., 1999) which 

was said to contain a very important molecular determinant for the binding of the β subunit to 

the I-II loop of α1 subunits of HVA (Pragnell et al., 1994; De Waard and Campbell, 1995). 

This Beta Interaction Domain (BID) is composed of 41 amino acids highly conserved in the 

four β subunits. The consensus sequence for the BID is : 

K - - E - - - PYDVVPSMRP - - LVGPSLKGYEVTDMMQKALFDF (De Waard et 

al., 1994).  

However, according to a recent crystallographic analysis of the core domains of β2, this 

region is largely buried and therefore, is unavailable for protein-protein interactions (Van 

Petegem et al., 2004). Previous mutations in the BID might have disrupted the folded structure 

and abolished AID interaction. 
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The N-terminal part of β1b also presents low homology with a PDZ (Post-Synaptic 

Density protein 95 (PSD-95) , Discs large protein (dlg) and Zona Occludens-1 (ZO-1)) domain 

present also in MAGUK (Hanlon et al., 1999) although it is not present in other β subunits . 

Proteins presenting a PDZ domain are known to traffic and cluster ion channels and receptors 

(Nourry et al., 2003). This suggests that the β subunits could be involved in trafficking of the 

α1 subunit to the plasma membrane and would play a role in its localization with other 

intracellular proteins (Dolphin, 2003a). This requires further investigation since two recent 

studies present contradictory results. McGee et al. (2004) showed that the major property of 

the SH3-GK module of β subunits is to regulate their inactivation kinetics. On the contrary, 

Takahashi et al. (2004) showed, using point mutation in this module, the role in Ca2+ channels 

trafficking.  

Nevertheless, their implication in Ca2+ channel targeting has been suggested by studies 

realized in polarized epithelial cells, showing a selective and differential trafficking of Ca2+ 

channels to basolateral or apical membranes allowed by different β subunits (Brice and 

Dolphin, 1999; Bogdanov et al., 2000). The location also depends on α1 subunits co-expressed, 

since the same β1b subunit traffics the neuronal Ca2+ channels, CaV2.1, to the apical membrane 

and CaV1.2 to the basolateral membrane (Brice and Dolphin, 1999). When expressed alone, β2a 

and β1b are associated with the membrane (Chien et al., 1995; Brice et al., 1997; Bogdanov et 

al., 2000), suggesting that trafficking Ca2+ channels to the membrane is a property of β 

subunits. However, this is not linked to its membrane association or its palmitoylation, since β3 

and β4 which are not associated with the membrane are able to traffic channels (Takahashi et 

al., 2003). Furthermore, only β2a is palmitoylated at its N-terminal part (Chien et al., 1996) and 

mutation of its palmitoylation sites does not prevent the trafficking of CaV1.2 to the membrane 

(Birnbaumer et al., 1998). Moreover, β2e, a splice variant of β2 which is not palmitoylated, is 

still associated to the plasma membrane (Takahashi et al., 2003).  

Additionally, it has been proposed that the I-II linker of α1 subunit contains an 

endoplasmic reticulum retention signal and that the binding of β to the AID would allow the 

traffic of α1 from the reticulum endoplasmic to the plasma membrane (Bichet et al., 2000). 

Some electrophysiological studies agreed with this finding, showing that co-expression of β 

subunits increases gating currents of CaV1.2 channels (Josephson and Varadi, 1996; Colecraft 

et al., 2002). These conclusions are still controversial since this was not observed in Xenopus 

oocytes (Neely et al., 1993; Olcese et al., 1996; Neely et al., 2004), but it is unclear whether 

this difference is due to the expression of endogenous β subunits expressed by oocytes (Canti 

et al., 2001) which would be responsible for the trafficking of over-expressed Ca2+ channels. 
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Previously, it has been shown that a single point mutation in the β interaction domain of α1C 

disrupts the co-localization and plasma membrane targeting of both subunits, without affecting 

modulation of single channel properties or whole cell currents (Gerster et al., 1999). This 

suggests two independent effects of β subunits: β subunits are involved in the trafficking of 

Ca2+ channels to the plasma membrane with the α1 subunits and modulate their biophysical 

properties (Gerster et al., 1999). 

The increase of current density can be attributed to the effect of β subunits on channel 

trafficking as well as to an increase in the open probability of the channels (Wakamori et al., 

1993; Neely et al., 1995; Costantin et al., 1998; Dzhura et al., 2000). An extensive amount of 

work has been published concerning the effects of β on Ca2+ channel properties and several 

reviews summarize these studies (Walker and De Waard, 1998; Birnbaumer et al., 1998; 

Dolphin, 2003a). These effects are more or less pronounced according to the α1 or the β 

subunits co-expressed. However, to summarize the effects of β subunits on Ca2+ channels, it is 

generally agreed that these auxiliary subunits affect their voltage dependence, hyperpolarizing 

their activation by increasing the coupling between the charge movement and the pore opening 

(Olcese et al., 1996) and hyperpolarize their steady-state inactivation. They accelerate channel 

activation, modify channels inactivation kinetics (either acceleration or slowing) (Walker and 

De Waard, 1998; Dolphin, 2003a). β1b, and β2 (especially β2a and β2e) decrease the inactivation 

rate (Cens et al., 1999; Takahashi et al., 2003) whereas β3 accelerates the inactivation decay of 

CaV1.2 (Castellano et al., 1993b). β subunits modulate inactivation kinetics because they 

interact with I-II loop of the α1 subunit, on a crucial part which could work as an inactivation 

ball (Cens et al., 1999). The retardation in inactivation kinetics of Ca2+ channels by β2a has 

been shown to be due to its palmitoylation (Qin et al., 1998b). Palmitoylation induces 

immobilization of the channel inactivation gate constituted by the I-II loop of the α1 subunit, 

through a membrane-anchoring site constituted of two palmitic acids bound to cysteines 

present in the N-terminus of the auxiliary subunit (Restituito et al., 2000). This work is in 

agreement with the model for voltage-dependent inactivation presenting the I-II loop as crucial 

for the voltage-dependent inactivation of Ca2+ channels. 

Phosphorylation of β subunits has been suggested as a possible pathway for regulation of 

Ca2+ channels. β1b contains a motif that can be phosphorylated by PKA (De Jongh et al., 1989) 

and that β2a is phosphorylated by the same kinase (Gerhardstein et al., 1999). It has been also 

suggested that β-adrenergic stimulation of L-type Ca2+ current in cardiomyocytes was due to a 

phosphorylation of β subunits by PKA (Haase et al., 1993). Even if the mechanism for this 

regulation remains unclear, it seems more likely that the α1C subunit is the target of this kinase 
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to modulate the channel (Gao et al., 1997b). β subunits in the BID also contain as well 

predicted phosphorylation sites by PKC whose functional role remains unknown (Walker and 

De Waard, 1998), but the structure recently proposed of β subunits suggests that they are 

buried within the molecule, so their phosphorylation is unlikely to occur (Van Petegem et al., 

2004). 

A role for β subunits in other types of regulation has recently been demonstrated. 

Members of Ras-related GTPase subfamily (RGK family), Kir/Gem, Rem, Rem2, Rad, 

expressed in striated muscle cells, such as cardiac cells have been identified as interacting 

proteins of Ca2+ channel β subunits (Beguin et al., 2001; Finlin et al., 2003). This interaction is 

stronger in the presence of GTPγs and antagonized by Ca2+/Calmodulin (Beguin et al., 2001). 

Co-expression of Rad, Rem or Kir/Gem with L-type (CaV1.2 and CaV1.3) Ca2+ channels 

inhibits their plasma membrane functional expression (Beguin et al., 2001; Finlin et al., 2003). 

This property is inherent to β subunits and does not affect T-type Ca2+ channels (Finlin et al., 

2003). 

These ancillary subunits are very important because they not only regulate biophysical 

properties of HVA Ca2+ channels but also their expression at the membrane. A possible 

regulation of gene silencing by a truncated β subunit splice variant through nuclear 

relocalization has been recently proposed (Hibino et al., 2003), which suggests the possible 

involvement of these auxiliary subunits to a new pathway of transcription, adding one more 

fascinating property to these subunits. 

According to all these studies, it is easy to speculate that new studies about β subunits 

will reveal a specific functional role of β subunits in cardiac cells. For example, using the 

technology of adenoviral transfection in cultured myocytes, Yue’s laboratory showed that 

overexpression of exogenous β subunits (β1b, β2a, β3 and β4) enhance ICa density in adult rat 

ventricular myocytes. This suggests that β subunits are the limiting factor for expression of L-

type Ca2+ channels in the heart (Wei et al., 2000). They also showed that β2a is not the main 

β subunit in ventricular rat myocytes since the reconstituted currents have markedly different 

inactivation kinetics than in control (Colecraft et al., 2002). Such diversity of β subunits in the 

rat myocytes has been confirmed by RT PCR recently (Chu et al., 2004) and might have clear 

impact on electrophysiological properties of ICaL.  

 

4.1.3 Structure-function of α2δ 

The α2δ subunit was initially co-purified with α1  from skeletal muscle (Nakayama et al., 

1987; Catterall et al., 1988), its cDNA sequence has been then described (Ellis et al., 1988). 
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Our knowledge about the function of these auxiliary subunits (~175 kDa), is not as extensive 

as for the β subunits. Structurally, they are post-translationaly cleaved to yield disulphide-

linked α2 and δ proteins (De Jongh et al., 1990; Jay et al., 1991) (see Figure 6). The 

transmembrane δ part anchors the α2 protein to the membrane via a single putative 

transmembrane segment and both proteins are highly glycosylate (Klugbauer et al., 2003; 

Canti et al., 2003). Four genetically distinct α2δ subunits have been described so far. The gene 

encoding for the more characterized α2δ−1 has been located to the human chromosomal region 

7q21-q22 (Arikkath and Campbell, 2003). Three more genes have been described which 

encode for α2δ−2, α2δ−3, α2δ−4 located respectively to the human chromosomal regions 

3p21.3, 3p21.1 and 12p13.3 (Arikkath and Campbell, 2003). α2δ−1 demonstrates alternative 

splicing, resulting in five isoforms, α2δ−1a, b, c, d, e expressed in a tissue-specific manner 

(Angelotti and Hofmann, 1996). Similarly, three splice variants for α2δ−2 (a, b, c) have been 

described (Hobom et al., 2000). α2δ−1 is expressed in heart (Gong et al., 2001) and it has been 

shown that the five splice variants for α2δ−1 are found in cardiovascular system, but α2δ−1c 

and α2δ−1d are the main isoforms expressed in mouse heart (Angelotti and Hofmann, 1996). 

While α2δ−2 and α2δ−4 are present in heart (Gao et al., 2000; Qin et al., 2002), α2δ−3 is only 

found in brain (Klugbauer et al., 1999a; Gong et al., 2001). Like the β subunits, α2δ subunits 

are also known to exhibit two major regulatory roles. They modulate the targeting of Ca2+ 

channels to the plasma membrane as well as their biophysical properties (Klugbauer et al., 

2003; Herlitze et al., 2003). The role of α2δ for Ca2+ channels targeting to the plasma 

membrane is still controversial. Gao et al. (1999) suggested that its co-expression did not 

target α1C to the plasma membrane. But more studies in different heterologous expression 

systems demonstrated that α2δ increases the current density of HVA Ca2+ channels such as 

CaV1.2 channels (Singer et al., 1991; Bangalore et al., 1996; Felix et al., 1997; Klugbauer et 

al., 1999a) or CaV2.3 (Jones et al., 1998; Klugbauer et al., 1999a) and possibly of T-type 

channels (Dolphin et al., 1999; Dubel et al., 2004). This increase of the current density would 

be due to an increase of targeting of the channels to the plasma membrane (Shistik et al., 1995; 

Dolphin et al., 1999; Yamaguchi et al., 2000a) or to a stabilization of the channels in the 

membrane (Dolphin et al., 1999). Co-expression of α2δ also modulates the biophysical 

properties of HVA (Klugbauer et al., 2003). These auxiliary subunits shift their voltage 

dependence of activation and inactivation to more negative potentials (Felix et al., 1997; 

Shirokov et al., 1998; Hobom et al., 2000) and promote inactivation of gating currents 

(Shirokov et al., 1998). The region of the α2δ subunit involved in the modulation of the gating 

properties of the HVA Ca2+ channels is localized in the δ domain of the protein (Felix et al., 
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1997). They increase the gating current size for CaV1.2 (Bangalore et al., 1996) and CaV2.3 

(Jones et al., 1998). This increase is correlated to the enhancement of whole cell ionic current, 

suggesting that these subunits induce Ca2+ channel targeting to the plasma membrane. They 

also accelerate their activation and inactivation rate (Bangalore et al., 1996; Shirokov et al., 

1998; Qin et al., 1998a). A possible role of modulation of T-type channels by α2δ has been 

also suggested. Its co-expression with α1G hyperpolarizes its voltage dependence and 

accelerates the decay of the currents and shifts the steady-state inactivation curve (Hobom et 

al., 2000). 

Even if its modulatory role is still controversial, α2δ (Klugbauer et al., 2003; Herlitze et 

al., 2003) might play a major role to lead to the correct targeting of Ca2+ channels to the 

plasma membrane and modulate, in cooperation with β subunits, the Ca2+ entry in cardiac 

cells. 

 

4.1.4 Structure-function of γ. 

γ subunit was originally thought only to be associated with L-type Ca2+ channels in 

skeletal muscle where it was first identified (Glossmann et al., 1987). Its primary structure was 

then described (Jay et al., 1990). This first member of γ subunits, γ1, due to low level of 

expression of α1S, has been co-expressed with CaV1.2 channels in heterologous systems. It 

shifts the voltage dependence of inactivation to more negative potentials and also accelerates 

inactivation kinetics (Singer et al., 1991; Eberst et al., 1997). So far, 8 γ subunit (γ1-8) 

isoforms have been identified (Kang and Campbell, 2003). γ1 and γ6 are expressed in skeletal 

muscle and γ2-5 and γ7-8 are mainly expressed in brain (Burgess et al., 1999; Chu et al., 

2001). The presence of γ4, γ6 and γ7 has been reported in heart cells (Chu et al., 2001). More 

recently, a new γ7 has been cloned, and found to exhibit a longer C-terminus than previously 

predicted and shows striking properties (Moss et al., 2002). Co-expression of this neuronal 

protein with Ca2+ channels reduces expression of channel proteins, specifically abolishes N-

type currents but also affects CaV1.2 channels (Moss et al., 2002). This suggests that this γ-like 

protein would not be associated with a functional channel at the plasma membrane but 

regulates their expression by a mechanism which remains to be elucidated. Accordingly, a 

recent study of the three-dimensional structure of cardiac L-type channels determined by 

single particle electron microscopy reveals differences in the putative transmembrane region 

with the structure of skeletal L-type channels (Wang et al., 2004a). This is consistent with the 

lack of an associated γ subunit (Wang et al., 2004a). So far, the expression of γ subunits in 

heart cell is not well established and their possible physiological role is not clear. 
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4.2 T-type Ca2+ channels 
To date, three T-type Ca2+ channels have been cloned (Perez-Reyes, 2003). After many 

unsuccessful attempts to clone T-type channels by PCR, progress in the sequencing of human, 

yeast and C. elegans genomes provided a novel library that could be screened with a computer 

(i.e. in silico). This led to the cloning of the first T-type channel, CaV3.1, by Perez-Reyes et al. 

(1998) which exhibited similar biophysical properties to T-type currents recorded in neurons. 

The full length human CaV3.1 was subsequently cloned (Monteil et al., 2000a). The gene 

encoding this channel, CACNA1G has been mapped in the human to chromosome 17q22 

(Perez-Reyes, 1998). The screening of a human heart library allowed the cloning of CaV3.2, 

whose gene, CACNA1H, has been mapped to human chromosome 16p13.3 (Cribbs et al., 

1998). Screening of rat brain led to identification of the rat version of CaV3.1, CaV3.2 and of 

CaV3.3 (Lee et al., 1999a). The gene encoding for CaV3.3, CACNA1I, has been located in the 

human on chromosome 22q12.3-13.2 (Mittman et al., 1999b). The structure of the α1 subunit 

for T-type channels is similar to those of HVA Ca2+ channels. They are proteins of 24 

transmembrane segments arranged in four domains of six segments with a positively charged 

S4. The S4 segments confer to the channels, their sensitivity to variation of the membrane 

potential (Perez-Reyes, 2003). In HVA Ca2+ channels, four glutamate residues in each P-

region form the selectivity filter that binds Ca2+ (Tang et al., 1993; Yang et al., 1993; Cibulsky 

and Sather, 2000; Cibulsky and Sather, 2003). For LVA Ca2+ channels, the selectivity filter 

consists of an arrangement of two glutamate and two aspartate residues in the P-loops of 

domains I-IV of the α1 subunit (Talavera et al., 2001). Point mutations of these divergent 

residues led to the conclusion that they are critical for the selectivity and the permeation 

properties of CaV3.1 (Talavera et al., 2001). The activation kinetics and their sensitivity to 

protonation is also dependent on these residues (Talavera et al., 2003a; Talavera et al., 2003b). 

Of course, as with CaV1.2, S4 segments in domains I, III, IV are critical for CaV3.1 opening 

(Li et al., 2004). Furthermore, S6 segments are implicated in the voltage-dependent 

inactivation (Marksteiner et al., 2001) as well as the carboxy-terminus (Staes et al., 2001; Park 

et al., 2004), the I-II and II-III intracellular loops (Park et al., 2004). A recent study on CaV3.2 

Ca2+ channels underlined the importance of several domains, IS2-S3, IS5-S6 and IIS2, in the 

activation processes of these channels (Khosravani et al., 2004). Point mutations in the IS2-S3 

and IS5-S6 hyperpolarized the activation and a mutation in the IIS2 slowed their activation. 

The S2 of domain II is also implicated in the voltage dependent inactivation of LVA Ca2+ 

channels (Khosravani et al., 2004). 
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The currents mediated by rat and human isoforms of the three CaV3.x channels exhibit 

different sensitivity to nickel. Nickel is ten fold more potent to inhibit T-type currents 

conducted through CaV3.2 channels than currents conducted through CaV3.1 or CaV3.3 (Lee et 

al., 1999b). These three channels begin to activate at very negative potentials, around –70 mV 

(Perez-Reyes, 2003) (see Figure 1). Currents mediated by CaV3.1 show the fastest activation 

and inactivation kinetics (Klockner et al., 1999; Monteil et al., 2000a; Chemin et al., 2002). 

The three channels exhibit no differences in the voltage dependence of their steady-state 

inactivation or their activation (Klockner et al., 1999). Nevertheless, a study comparing the 

three human variants of T-type channels showed that these properties are slightly 

hyperpolarized for CaV3.1 and CaV3.2 in comparison to CaV3.3 (Chemin et al., 2002). CaV3.3 

deactivates faster than the other two channels and recovery from short term inactivation is 

three-fold slower for currents mediated by CaV3.3 and CaV3.2 than for CaV3.1 (Klockner et al., 

1999). In contrast, reactivation after a long prepulse is faster for CaV3.3 and slowest for CaV3.2 

(Klockner et al., 1999; Chemin et al., 2002). Furthermore, CaV3.3 is the only channel 

exhibiting voltage-dependent facilitation (Klockner et al., 1999; Chemin et al., 2002). These 

LVA Ca2+ channels, unlike the L-type channels have been reported to lack Ca2+ binding 

domains in their C-terminal region so they do not exhibit Ca2+-dependent inactivation (Perez-

Reyes, 1998). Nevertheless, CaV3.2 but not CaV3.1 or CaV3.3 exhibits slower activation and 

inactivation kinetics when Ca2+ is the charge carrier, suggesting a possible modulation by Ca2+ 

of this channel (Klockner et al., 1999). They differ also from HVA Ca2+ channels in what their 

intracellular I-II loop does not contain an AID responsible for binding β subunits (Dolphin, 

2003a). Co-expression of cloned β subunits has little or no effect on cloned T-type channel 

activity, unlike α2δ which can induce an increase of the current density (Dolphin et al., 1999; 

Hobom et al., 2000; Gao et al., 2000; Dubel et al., 2004). γ subunits have very little effect on 

T-type channels. γ2 but not γ3 or γ4 slows the decay of the tail currents recorded after co-

expression with CaV3.3 (Green et al., 2001). It has also been reported that γ2, γ4 and γ5 

accelerate inactivation of CaV3.1 and hyperpolarize its steady-state inactivation (Klugbauer et 

al., 2000). More recently, it has been proposed that α2δ−2a and γ5 improve the coupling 

between the charge movement and the opening of CaV3.1 expressed in HEK293 cells, 

supporting the hypothesis that T-type channels may interact with auxiliary subunits (Lacinova 

and Klugbauer, 2004). 

Heart cells express CaV3.1 channels as well as CaV3.2 (Cribbs et al., 1998; Monteil et al., 

2000b), while CaV3.3 is mainly expressed in brain (Lee et al., 1999a). Based on nickel 

sensitivity, it has been proposed that the T-type Ca2+ current in cardiac cells is mainly carried 

through CaV3.2 channels (Hagiwara et al., 1988; Pascarel et al., 2001). However, this issue 
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remains controversial and recent reports present evidence supporting CaV3.1 as the functional 

cardiac T-type Ca2+ channel during murine embryonic period (Cribbs et al., 2001) whereas 

another one suggests this role for CaV3.2 (Niwa et al., 2004). As for HVA Ca2+ channels, 

alternative splicing increases functional and structural diversity of LVA Ca2+ channels (Jurkat-

Rott and Lehmann-Horn, 2004). Splice variants of CaV3.1 channels differ in their II-III loop 

which modifies their inactivation kinetics and steady-state inactivation (Mittman et al., 1999a; 

Chemin et al., 2001). Deletion of seven amino acids residues in the linker between domain III 

and IV of CaV3.1, by alternative splicing, induces a positive shift of its activation and 

inactivation and slows its activation kinetics (Monteil et al., 2000a; Chemin et al., 2002). The 

C-terminus of CaV3.3 is also modified by alternative splicing, leading to channels with 

truncated C-termini and with altered inactivation properties (Murbartian et al., 2002).  

It is clear that endogenous T-type currents are subject to hormonal regulation and are 

modulated by guanine nucleotides and protein kinases in various type of cells (Perez-Reyes, 

2003; Yunker, 2003). However, less is known about the molecular determinants involved in 

their modulation. Cloned T-type Ca2+ channels harbor many consensus phosphorylation sites 

for different kinases (Cribbs et al., 1998; Lee et al., 1999a; Mittman et al., 1999a; Klugbauer et 

al., 1999b; Mittman et al., 1999b; Chemin et al., 2001). So far, only the CaV3.2 channels have 

been identified as subject to modulation by intracellular messengers when expressed in 

heterologous systems. They are modulated by CAMKII which phosphorylates a serine present 

in their II-III intracellular loop, which is absent from unregulated CaV3.1 channels (Wolfe et 

al., 2002; Welsby et al., 2003). Phosphorylation by CAMKII increases activity of CaV3.2 

channels at negative potentials, hyperpolarizing their activation (Wolfe et al., 2002; Welsby et 

al., 2003). These T-type channels are also modulated by PKC which leads to a three-fold 

increase in the amplitude of barium currents recorded in oocytes (Park et al., 2003). They are 

also inhibited by G-protein βγ subunits that bind to their II-III loop (Wolfe et al., 2003). Future 

studies on cloned LVA Ca2+ channels will certainly reveal more ways to regulate T-type 

channels and therefore, the activity of pace-maker cells and cardiac function. 

 

4.3 Molecular structure of others Ca2+ channels (α1D, α1E) 
CaV1.2 channels are known to be predominantly expressed in heart cells, although, α1C is 

not the only α1 subunit present in cardiomyocytes, since two more subunits, α1D (CaV1.3) and 

α1E (CaV2.3) have been detected in heart tissues. RNA encoding α1D has been detected in these 

cells and expression of CaV1.3 channels at the plasma membrane was confirmed using 

antibodies (Takimoto et al., 1997; Wyatt et al., 1997; Xu et al., 2003). It has been suggested 

that they play a role in cardiac pacemaker activity (see section 2.1.2) and during development 
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of embryonic hearts (Xu et al., 2003). CaV2.3 channels, have also been detected at RNA and 

protein levels by RT-PCR and immunodetection in rat atrial and ventricular myocytes 

(Weiergraber et al., 2000; Mitchell et al., 2002). The functional significance in cardiac 

myocytes (if any) of this Ca2+ channels remains undeterminated. Transgenic mice lacking 

CaV2.3 (-/-) did not show heart defects at the adult stage (e.g. bradychardia), although an 

increase in the variation of beating frequency lead to the suggestion that CaV2.3 might be 

implicated in stabilizing the heart beat of prenatal murine hearts (Lu et al., 2004). 

Like α1 subunits from other Ca2+ channels, α1D and α1E are proteins of about 2000 amino 

acid residues organized into four domains of six transmembrane segments, with the positively 

charged S4 conferring sensitivity to potential changes.  

Only a few studies describing the biophysical properties and modulation of CaV1.3 

channels have been published. These channels activates at relatively hyperpolarized potentials, 

depending on the studies. The use of different extracellular concentrations of divalent ions, the 

expression of different cloned channels from different types of cells could explain these 

differences as well as the co-expression of different or no auxiliary subunits (Xu and 

Lipscombe, 2001; Koschak et al., 2001; Bell et al., 2001; Scholze et al., 2001; Xu et al., 2003). 

But several groups confirmed that they activate at more negative potentials than CaV1.2 (Xu 

and Lipscombe, 2001; Koschak et al., 2001; Zhang et al., 2002b; Kasielke et al., 2003) (see 

Figure 1). A hyperpolarizing shift of the steady-state inactivation curve for Cav1.3 compared 

with Cav1.2 currents has also been observed (Koschak et al., 2001; Scholze et al., 2001). The 

inactivation kinetics of barium currents induced by expression of CaV1.3 channels are slower 

when Ca2+ was used as charge carrier, so these channels exhibit a Ca2+ dependent inactivation 

(Xu and Lipscombe, 2001; Bell et al., 2001; Koschak et al., 2003). Not much is known about 

the molecular determinants implicated in inactivation of these channels. Nevertheless, it is 

easy to speculate that the mechanism leading to Ca2+-dependent inactivation is similar to that 

for CaV1.2 channels since the α1D C-terminus is highly homologous to the one for CaV1.2 

channels (Koschak et al., 2001). 

Like other L-type channels, α1D has an AID in its I-II loop (Dolphin, 2003a) and co-

expression of a β and α2-δ subunits increases the current density but does not modify the 

biophysical properties of the channel (Williams et al., 1992; Xu and Lipscombe, 2001).  

These L-type channels exhibit sensitivity to DHPs antagonists. They are blocked by 

nimodipine (Safa et al., 2001) and nitrendipine, but the neuronal isoform is less sensitive than 

CaV1.2 channels (Xu and Lipscombe, 2001). They are also blocked by nifedipine and activated 

by the DHPs agonist BayK8644 (Koschak et al., 2001; Bell et al., 2001). Isradipine block of a 

pancreatic human CaV1.3 is 8.5-fold lower than that for CaV1.2, which can be attributed to 
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differences in the voltage-dependent interaction of DHPs antagonists (Koschak et al., 2001). 

Different sensitivity to DHPs has also been described for two splice variants cloned from 

embryonic cardiomyocytes (Xu et al., 2003).  

Expression of CaV2.3 in heterologous systems produces current activating and 

inactivating at more negative potentials than CaV1.2 channels (Berrou et al., 2001). The 

biophysical properties of CaV2.3 channels are intermediate between those of T-type and L-type 

channels. They activate at more positive potentials than T-type channels and their steady-state 

inactivation occurs at more positive potentials than for CaV3.2 but more negative than for 

CaV3.1 and CaV3.3 (Lee et al., 1999a). Inactivation kinetics of barium currents induced by 

CaV2.3 expression is faster than for CaV1.2 or CaV3.1 but slower than for CaV3.2 and CaV3.3 

(Lee et al., 1999a; Berrou et al., 2001). As for α1C-containing channels, multiple sites within 

α1E are implicated in the voltage-dependent inactivation of CaV2.3 channels. The voltage-

dependent inactivation involves the I-II loop of α1E (Stotz et al., 2000; Berrou et al., 2001) as 

well as the S6 segments of the domain II and III suggesting that as for L-type currents, the I-II 

linker forms a hinged lid that may dock to the S6 segments of the pore forming subunit (Stotz 

et al., 2000; Stotz and Zamponi, 2001a). Co-expression of auxiliary subunits modulates CaV2.3 

channels. Like other HVA Ca2+ channels, they contain an AID which binds β subunits 

(Dolphin, 2003a). The main effect of α2δ subunit is to increase current density and β subunits 

also increase the number of channels expressed at the plasma membrane, hyperpolarize the 

voltage-dependence of their activation and inactivation and slows their inactivation kinetics 

(Olcese et al., 1996; Parent et al., 1997; Jones et al., 1998). Mutations of the AID of α1E affects 

the kinetics and the voltage-dependence of inactivation of CaV2.3, reinforcing the hypothesis 

of involvement of the I-II loop and beta subunits as crucial determinants for inactivation of 

Ca2+ channels (Berrou et al., 2001; Berrou et al., 2002). Since it was first cloned (Schneider et 

al., 1994; Williams et al., 1994), it has been suggested that the inactivation of CaV2.3 is not 

modulated by intracellular Ca2+. Therefore, α1E has been used to generate α1C-α1E chimera to 

study the Ca2+-dependent inactivation of L-type channels (de Leon et al., 1995; Parent et al., 

1997; Zhou et al., 1997). However, more recently, different studies describe opposite effects of 

Ca2+ on CaV2.3 activity. At concentrations between 0.1 and 1 μmol/L, Ca2+ increases the 

current density and slows inactivation kinetics by activating a PKC (Leroy et al., 2003; 

Klockner et al., 2004). This modulation occurs only for neuronal splice variants that contain an 

arginine-rich region in their intracellular II-III loop, while neuroendocrine/heart isoforms are 

not regulated by Ca2+ or PKC (Pereverzev et al., 2002; Klockner et al., 2004). Another group 

showed that calmodulin binds to the IQ motif present in the C-terminus of CaV2.3 (Erickson et 

al., 2001) and that these channels undergo Ca2+-dependent inactivation, which is mediated by 
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the calmodulin N-terminal lobe, when a low concentration of Ca2+ chelator is present (Liang et 

al., 2003). Activity of CaV2.3 channels, at low Ca2+ concentration (between 0.1 and 1 μmol/L) 

are potentiated by activation of a PKC by Ca2+ while Ca2+-dependent inactivation occurs at 

higher internal Ca2+ concentrations. 

Unlike the other HVA Ca2+ channels, no pharmacological compounds have been 

identified as specific blockers of the CaV2.3 channels. Expression of α1E appears to correlate in 

part to that which has been described as R-type currents (“R” for resistant to known 

pharmacological tools) (Soong et al., 1993; Schneider et al., 1994; Williams et al., 1994). More 

recently, a toxin has been isolated from the tarantula Hysterocrates gigas, named SNX482, 

described as a selective blocker for α1E containing Ca2+ channels (Newcomb et al., 1998). This 

toxin blocks the channel by interacting with the domains III and IV of α1E but seems to block 

L-type channels as well (Bourinet et al., 2001). 
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5 CARDIAC Ca2+ CHANNELS AND PHYSIO-
PATHOLOGICAL CONDITIONS 
Although several of human genetic disease associated with mutations in ionic channels 

(channelopathies) exist in the heart and has been linked to the long Q-T syndrome (mutations 

in Na+ or K+ channels, see for review (Marban, 2002)) and inherited channelopathies exist for 

Ca2+ channels (e.g. hemiplegic migraine, point mutation in α1A, hypokalaemic periodic 

paralysis mutation in α1S, see for review (Lorenzon and Beam, 2000)), so far no cardiac 

disease is known to be linked to mutations in the cardiac α1 or β subunits. However, change of 

ICa expression and function has been described in disease and ICa can be linked to cardiac 

pathology. For example, it is well kwown that arrhythmogenic EADs are potentiated by ICaL 

agonist (Bay K8644) whereas ICaL blocker (Nitrendipine) abolished EADs in ferret ventricular 

muscle (Marban et al., 1986). We will now describe several cardiac diseases where ICa has 

been implicated.  

 

5.1 Diseases with auto-immune components 
 

5.1.1 Congenital heart block 

Congenital heart block in a structurally normal heart is strongly associated with auto-

antibodies reactive with ribonucleoproteins SSA/Ro and SSB/La. This is presumed to be due 

to the trans-placental passage of auto-antibodies from the mother into the fetal circulation, 

which can be asymptomatic or exhibit rheumatologic disease such as systemic lupus 

erythematosus (for review see Boutjdir 2000). 

An early study demonstrated that these antibodies inhibit ICaL in rabbit ventricular 

myocytes (Garcia et al., 1994). Subsequently, Boutjdir and colleagues provided compelling 

evidence that these autoimmune antibodies can block ICaL. They found that positive IgG 

fraction (whole IgG containing anti-SSA/Ro and SSB/La antibodies purified from sera) and/or 

affinity purified anti-52 kD SSA/Ro antibodies, from mothers with CHB children, were able to 

decrease ICaL amplitude in human fetal myocytes (Boutjdir et al., 1997). At the single channel 

level, the open probability of L-type Ca2+ channels was decreased (Boutjdir et al., 1997). 

These auto-antibodies produced a similar decrease in ICaL amplitude in rat ventricular 

cardiomyocytes (Boutjdir et al., 1998), canine Purkinje myocytes (Qu et al., 2001), and rabbit 

sinoatrial cells (Hu et al., 2004). Interestingly, ICaT from rabbit sinoatrial cells is also blocked 

by these antibodies (Hu et al., 2004). Inhibition of ICa was confirmed in expression system 

(Xenopus oocytes expressing α1C or α1H, (Xiao et al., 2001a)). These data provide compelling 
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evidence that auto-antibodies can block ICa, and may thus play a role in the pathogenesis of 

bradycardia and atrioventricular block in congenital heart block.  

An intriguing question is how intracellular antibodies can recognize an extracellular Ca2+ 

channel epitope. Numerous homologous epitopes were found in 3D representations of human 

α1C, especially with the S5-S6 linker of domain VI (Qu et al., 2001). Furthermore, α1C binding 

by positive maternal IgG has been confirmed by immunoprecipitation and 

immunohistochemical study in human fetal cardiomyocytes (Qu et al., 2001). However, the 

exact site(s) of interaction is not yet determined. 

Although an acute effect of these antibodies has been shown on ICaL, a chronic effect is 

also suspected. ICaL density is decreased in ventricular cells from mice and rabbit pups born 

from mothers immunized with recombinant 52kD-SSA/Ro protein suggesting that prolonged 

exposure of pups’ heart to maternal antibodies during pregnancy could lead to reduced channel 

expression (Qu et al., 2001; Xiao et al., 2001b). This hypothesis is supported by a lower 

amount of L-type Ca2+ channel protein assessed by ELISA and Western blot in pup hearts 

from immunized mothers. A down-regulation by internalization of L-type Ca2+ channel 

induced by anti-52kD-SSA/Ro antibodies has also been suggested (Xiao et al., 2001b). 

There is striking evidence that auto-antibodies can directly affect ICa, but an alternative 

mechanism has also been described. The L-type Ca2+ channel may not be the only target for 

maternal anti-SSA/Ro and/or SSB/La antibodies, because a specific cross-reaction between the 

recombinant 52kDa SSA/Ro protein and the second extracellular loop of serotoninergic 5-HT4 

receptor expressed in human atrial cells has been identified (sequence G21V) (Eftekhari et al., 

2000). In contrast to the results describe above, anti-G21V affinity-purified autoantibodies 

from lupus patients or from rabbits immunized with the G21V peptide do not inhibit basal ICaL 

in adult human atrial myocytes. However, these antibodies antagonize serotonin-induced 

activation of ICaL (Eftekhari et al., 2000; Salle et al., 2001); the authors hypothesized that 

during the early phase of fetal development the serotoninic pathway is more prominent than 

the β-adrenergic pathway so that 5-HT4 receptor block leads to a reduction of ICa which could 

in turn induce bradycardia and atrioventricular block (Eftekhari et al., 2001). 

Taken together, these results suggest that a mother’s antibodies can either directly 

interact with Ca2+ channels, or can alter channel function indirectly via receptor modulation, 

and thus contribute to sinus bradycardia and atrioventricular block of their children. But an 

intriguing question remains: why do autoantibodies have deleterious effects on children while 

most mothers do not exhibit cardiac symptoms? 
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5.1.2 Cardiomyopathies 

A number of antibodies have been identified in sera from patients with 

myocarditis/dilated cardiomyopathy (for reviews see Malkiel et al., 1996; Caforio et al., 2002) 

and myocarditis/Chagas’ cardiomyopathy (reviewed by Kierszenbaum, 2003). 

Myocarditis is an inflammatory disease of the myocardium, and idiopathic, autoimmune, 

and infectious forms of inflammatory cardiomyopathy are recognized. Inflammatory 

myocardial disease is involved in the pathogenesis of dilated cardiomyopathy and Chagas’ 

cardiomyopathy (Richardson et al., 1996). Thus, myocarditis and dilated cardiomyopathy 

DCM and Chagas’ cardiomyopathy are thought to represent the acute and chronic phases of an 

inflammatory process of the myocardium that can be viral, post-infectious immune or organ-

specific autoimmune. The infectious agent in Chagas’ disease is the protozoan Trypanosoma 

cruzi. According to the Word Health Organization, 16–18 million people are infected by the 

parasite in South America, and another 90 million are at risk of becoming infected. Chagas’ 

disease is a complex, multifaceted and widespread disease in which, during the chronic phase, 

a slowly evolving cardiomyopathy affecting about a third of infected people can be observed 

that leads to severe cardiac dilatation, congestive heart failure, arrhythmias, and death (Higuchi 

et al., 2003). 

The sera of patients with myocarditis and dilated cardiomyopathy shows high frequencies 

of antibodies directed against the adenine nucleotide translocator (ANT) of the inner 

mitochondrial membrane (Kuhl et al., 1991), and specific binding by cross-reaction to the L 

type Ca2+ channel has been demonstrated (Schultheiss et al., 1988). Furthermore, it has been 

shown that anti-ANT antibody increases ICa amplitude in frog and rat myocytes (Morad et al., 

1988; Schultheiss et al., 1988), which will contribute to increased intracellular Ca2+ and thus 

could impair cardiac function (see section 5.2.2).  

The sera of patients with idiopathic dilated cardiomyopathy and Chagas’ disease also 

contains autoantibodies directed against the β1-, β2-adrenoceptor (Borda et al., 1984; Wallukat 

and Wollenberger, 1987; Limas et al., 1989; Magnusson et al., 1994; Wallukat et al., 1995; 

Elies et al., 1996) and/or the muscarinic M2-receptor (Fu et al., 1993; Goin et al., 1994; Elies et 

al., 1996). Immunoglobulins purified from sera of mice experimentally infected with T. cruzi 

during the acute or chronic phase of chagasic cardiopathy can respectively enhance or reduce 

L-type Ca2+ current in myocytes isolated from guinea-pig control hearts (Mijares et al., 1996a). 

These effects were inhibited by propranolol and atropine respectively, suggesting a preferential 

activation of β-adrenoceptors by antibodies during the acute phase and of M2-receptors during 

the chronic one (Mijares et al., 1996a). These experiments functionally demonstrated the 

agonist-like activity of Chagasic antibodies on ß-adrenergic and muscarinic receptors. 
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The second extracellular loop of cardiovascular G-protein coupled receptor (GPCR) 

appears to be one of the main targets of these antibodies (see for review see Hoebeke 2001). 

Hence an alternative approach to investigate the functional role of these anti-GPCR antibodies 

is to investigate the effect of antibodies raised against a peptide corresponding to this loop 

(Magnusson et al., 1994; Fu, 1995; Mijares et al., 1996b; Matsui et al., 1997; Elies et al., 1998; 

Lebesgue et al., 1998). 

Monoclonal anti-β2 adrenoceptor antibodies raised against the second extracellular loop 

increase ICaL in guinea-pig ventricular cardiomyocytes (Mijares et al., 1996b; Lebesgue et al., 

1998). Monoclonal or polyclonal antibodies generated against the second extracellular loop of 

the human muscarinic receptor mimic those found in Chagas' disease, decreasing the 

amplitude of ICaL that has been prestimulated by isoproterenol (Zhao et al., 1996; Nascimento 

et al., 2001; Hernandez et al., 2003). In addition to β-adrenergic and muscarinic stimulation 

acting via the cAMP pathway (Wallukat et al., 1995; Fu, 1995; Borda and Sterin-Borda, 1996; 

Wallukat et al., 1999b; Chiale et al., 2001), it has been shown that antibodies directed against 

the second extracellular loop of the M2-muscarinic receptor are also able to activate the 

NO/cGMP pathway (Sterin-Borda et al., 1997; Nascimento et al., 2001; Sterin-Borda et al., 

2003) (see also section 3.3.2). 

Importantly, in contrast to the classical agonists isoproterenol and carbachol, these 

antibodies fail to produce desensitization of the reaction cascade within 6 hours in cultured 

neonatal myocytes, inducing chronic stimulation of the GPCR (Magnusson et al., 1994; 

Wallukat et al., 1995; Wallukat et al., 1999a; Wallukat et al., 1999b). Such chronic stimulation 

of β-adrenergic and/or muscarinic cascades may have profound consequence on Ca2+ 

signaling, which may impair cardiac function (see section 5.2.2) and be pro-arrhythmic. For 

example, it has been shown that overexpression of ß2-adrenergic receptors in mice accelerates 

the progression of myocardial fibrosis and heart failure (Liggett et al., 2000). More recently, 

Jahns et al.,, (2004) have demonstrated that agonistic anti-β1-adrenoceptor antibodies alone are 

sufficient to engender myocardial dysfunction characteristic of heart failure. 

Thus data are emerging that suggest physiopathologic roles for antibodies, mediated by 

direct and/or indirect modulation of ICa. However it is unclear whether autoreactivity to cardiac 

antigens initiates heart injury, amplifies ongoing disease, or is merely a sign of prior myocyte 

damage. 
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5.2 Cardiac remodeling 
The diseased heart undergoes biochemical, electrophysiological and structural changes 

globally defined as remodeling (Swynghedauw, 1999). In this section we will review three 

types of remodeling in which modification of ICa has been implicated. 

 

5.2.1 Cardiac memory 

Memory is a form of remodeling common to many organ and cell systems. In the heart, 

cardiac memory is characterized by an altered T-wave on the electrocardiogram during sinus 

rhythm, induced by a preceding period of abnormal ventricular activation (Chatterjee et al., 

1969). The direction of the change in the T-wave is in that of the vector of the inciting and 

abnormally activated QRS complex, hence the term “cardiac memory” was suggested: the T-

wave “remembered” the ectopic QRS (Rosenbaum et al., 1982). Importantly, this occurs in 

hearts that have no demonstrable hemodynamic or structural abnormalities or ischemia. A 

variety of pathologies that alter ventricular activation pattern induce cardiac memory in 

humans including intermittent left bundle branch block, post-tachycardia syndrome, 

ventricular pre-excitation and extrasystoles (reviewed in (Patberg and Rosen, 2004)). Rosen’s 

laboratory developed a canine model of ventricular pacing to induce cardiac memory and 

showed that cardiac memory was associated with altered action potential characteristics 

(smaller notch and longer action potential). They first showed that the transient outward 

current density was reduced and that this was associated a decrease at the mRNA level, 

possibly accounting for the change observed in the action potential (Yu et al., 1999). Further 

investigation showed that cardiac memory was attenuated by ICaL blockade (nifidipine), 

suggesting that ICaL is important in the development of cardiac memory (Plotnikov et al., 

2003). Indeed, a short-term memory protocol (2 hours ventricular pacing) showed a significant 

decrease in nuclear CREB, that did not occur in control dogs or dogs treated with nifidipine 

(Patberg et al., 2003). These changes implicate effects of ICaL at the transcription level (see 

section 2.3). At the electrophysiological level, no difference was found in the peak density of 

ICaL in cardiac memory myocytes compared to control, although activation was more positive 

and ICaL inactivation slower (Plotnikov et al., 2003), which may contribute to the longer action 

potential. Although the process leading to cardiac memory is far from being completely 

understood, there is a clear implication of ICaL at the electrophysiological and transcriptional 

levels. 
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5.2.2 Heart failure 

Heart failure is the leading heart disease in the Occidental world. It is characterized by a 

decrease in ejection fraction, and can result in death in two main ways: a progressive decline in 

contractile function or sudden death due to arrhythmias. At the cellular level, ventricular 

myocytes from failing hearts are hypertrophied and show an increase in action potential 

duration, a decrease in contractility and a blunted β–adrenergic responsiveness (for review see 

(Tomaselli and Marban, 1999; Towbin and Bowles, 2002)). The mechanisms behind these 

observations are still unclear although the decrease in contractility might be linked to a 

decrease in the amplitude and the rate of decline of the systolic Ca2+ transient (Houser and 

Margulies, 2003). 

Animal models provide useful tools to gain insight into the mechanisms of heart failure, 

which can be induced by a variety of means (e.g. rapid pacing, aortic constriction, infusion of 

angiotensin II or catecholamines). Over the past 15 years, investigations of ICaL in animal 

models of hypertrophy or heart failure have led to a profusion of data with either decreased, 

increased, or unchanged ICaL. This variety of results might reflect the different degree of heart 

failure, species, and experimental conditions. However, in the majority of studies ICaL 

amplitude, expressed as density, is unchanged (see (Tomaselli and Marban, 1999) for 

extensive review); this has been shown in ventricular myocytes from failing rat (Gomez et al., 

2001), dog (O'Rourke et al., 1999), rabbit (Pogwizd et al., 1999) and guinea pig (Ahmmed et 

al., 2000) hearts: although cell surface area approximately doubles, ICa density is unchanged  

Less data are available from human ventricular myocytes because of the obvious problem 

of obtaining “healthy” controls. However, several groups have studied myocytes from donor 

hearts unsuitable for transplantation, and in human studies peak ICa density is also unchanged 

in myocytes from failing heart (Beuckelmann et al., 1991; Schroder et al., 1998; Chen et al., 

2002; Piacentino, III et al., 2003). At the single channel level, failing human myocytes show 

increased open probability and availability of L-type Ca2+ channels compared to non-failing 

myocytes (Schroder et al., 1998). This resembles the effect of β-adrenergic stimulation on the 

L-type Ca2+ channel (see section 3.3.1), and it has been proposed that channel phosphorylation 

is increased in the failing heart because of impaired dephosphorylation (Schroder et al., 1998). 

This idea has recently been supported by the observation that although global ICa amplitude is 

the same in failing and non-failing heart, the activation curve of ICa is shifted to the left, 

suggesting β–adrenergic stimulation (Chen et al., 2002), and ICa from failing heart shows less 

response to isoproterenol (β–adrenergic agonist). Conversely, PP2A decreases ICa density in 

the failing heart but not in normal heart, suggesting an increase in basal phosphorylation. 

Interestingly, these authors also showed that support using a left ventricular assist device 
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restored Ca2+ channel density and regulation (Chen et al., 2002), consistent with a recent 

clinical study showing that such support also induces clinical recovery of heart failure by 

modification of sarcoplasmic reticulum Ca2+ handling (Terracciano et al., 2004). Ca2+ channel 

density, assessed using Bay K8644, is decreased in myocytes from failing heart (Chen et al., 

2002); this agrees with a recent study in an animal model, which showed a reduction in Ca2+ 

channel density (assessed by recording charge movement, Balijepalli et al., 2003) in failure, 

although the density of ICa was unaltered, suggesting upregulation of existing channel function. 

Studies at the protein expression level show conflicting results, one showing unchanged 

mRNA levels for α1C and α2-δ in heart failure, but with β subunit expression reduced by ~75% 

(Hullin et al., 1999), and another showing that α1C and β subunit expression are unchanged 

(Schroder et al., 1998). 

These alterations in the density and regulation of the L type Ca2+ channel might 

contribute to the abnormal contractility and blunted adrenergic responsiveness of the failing 

heart. The mechanisms underlying the altered density and regulation of the L type Ca2+ 

channel are not yet known. Intriguingly, 4 isoforms of α1C of the L-type Ca2+ channel are 

expressed in the human heart, and isoform switching occurs in failing human myocytes (Yang 

et al., 2000). This may also contribute to the observed change in L type Ca2+ channel density 

during heart failure. An alternative possibility to explain the reduction in L type Ca2+ channel 

density is a reduction in the density of the t-tubules, where the L-type Ca2+ channel and current 

are concentrated (see section 2.1.1). It has been shown in the canine pacing model of heart 

failure that t-tubule density decreases, leading to a decrease in peak ICa density (Balijepalli et 

al., 2003). A similar decrease in t-tubule density has been observed in failing rabbit heart 

(Quinn et al., 2003). To date, only preliminary reports of t-tubule structure in failing human 

myocytes have appeared, and show conflicting results, one study showing a decrease in density 

(Wong et al., 2002) and the other no change (Ohler et al., 2002). Clearly, this issue requires a 

full investigation. 

In summary, in ventricular myocytes from failing heart, L type Ca2+ channel density 

appears to be reduced, although other changes, for example increased basal phosphorylation 

and isoform switching, may help to maintain ICa density.  

Given the absence of changes in ICaL amplitude but a decrease in sarcoplasmic reticulum  

Ca2+ release, it is tempting to speculate that a decrease in EC coupling gain (see section 2.2.1) 

can explain Ca2+ dysfunction in heart failure. However, no changes in EC coupling gain have 

been shown in heart failure in rabbit (Pogwizd et al., 2001), dog (Hobai and O'Rourke, 2001) 

or human (Piacentino, III et al., 2003). In these cases, a decrease in sarcoplasmic reticulum 

Ca2+ content appears to be responsible for defective EC coupling. In contrast, in rat a reduction 
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in the ability of ICaL to trigger sarcoplasmic reticulum Ca2+ release was found (reduced EC 

coupling gain), without altered sarcoplasmic reticulum  Ca2+ load (Gomez et al., 1997; Gomez 

et al., 2001). Three hypothesis has been proposed to explain this altered EC coupling gain 

during heart failure: (i) a change in the co-localization of L type Ca2+ channels and RyRs; (ii) 

an increase in the gap between the t-tubule and sarcoplasmic reticulum  membranes; (iii) t-

tubule remodeling (Gomez et al., 2001).  

Given the reduction in sarcoplasmic reticulum Ca2+ release (either by reduced 

sarcoplasmic reticulum Ca2+ load or change in EC coupling), it might be expected that ICaL 

inactivation would be slowed because of less Ca2+-dependent inactivation. This has been 

observed in some (e.g. (Ahmmed et al., 2000; Gomez et al., 2001)), but not all, studies, 

although contaminating currents (e.g. Na/Ca exchanger) might explain this discrepancy. Such 

slowing of ICaL inactivation will lead to greater Ca2+ entry during the action potential (see 

section 2.1.1) and will promote the occurrence of arrhythmias (EADs).  

It is also noteworthy that frequency-dependent facilitation of ICa is blunted in myocytes 

from failing human heart (Piot et al., 1996; Sipido et al., 1998b; Barrere-Lemaire et al., 2000). 

Thus increasing stimulation rate induces a decrease of ICaL which is associated with a decrease 

in action potential duration (Sipido et al., 1998b; Li et al., 1999). This might help explain the 

negative staircase (decrease of contraction with increase in rate stimulation) and the beneficial 

effects of slowing heart rate observed in heart failure. 

Although ICaL amplitude is unchanged in ventricular myocytes from failing hearts 

(above), a decrease has been described in atrial myocytes from two animal models (Li et al., 

2000; Boixel et al., 2001), although heart failure induces a smaller decrease of ICa amplitude 

(~30%) than atrial fibrillation (~65%) and does not change action potential duration (Li et al., 

2000) (see also section 5.2.3). However, in human failing atrial myocytes, ICaL density appears 

unchanged (Mewes and Ravens, 1994). 

No change in ICaL and ICaT density has been observed in sinoatrial node myocytes from a 

rabbit model of heart failure (Verkerk et al., 2003). However, ICaT density has been reported to 

be increased in ventricular cells isolated from animal models of heart failure (e.g. cat (Nuss 

and Houser, 1993); hamster (Sen and Smith, 1994), rat (Martinez et al., 1999; Izumi et al., 

2003; Ferron et al., 2003)) This increase is reminiscent of the electrophysiological phenotype 

observed in fetal cells and may therefore represent a reversion to the fetal phenotype: the 

balance between ICaL and ICaT density changes during development, with a progressive 

decrease of ICaT density which is not detectable in most adult ventricular myocytes (e.g. 

ventricle (Cohen and Lederer, 1988); rabbit (Wetzel et al., 1993)). Interestingly, ICaT can be 
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reexpressed when ventricular adult rat myocytes dedifferentiate during cell culture (Fares et 

al., 1996). 

In contrast with animal models, no significant ICaT has been detected in atrial or 

ventricular myocytes isolated from human hearts showing hypertrophy or dilated 

cardiomyopathy; e.g. (Beuckelmann et al., 1991; Le Grand et al., 1991; Chen et al., 2002; 

Piacentino, III et al., 2003). Therefore, a role for ICaT in human heart failure and associated 

arrhythmogenesis appears unlikely. 

The development of heart failure is poorly understood. It arises after cardiac hypertrophy, 

which is an adaptive response that helps the heart deal with an increase in workload. If this 

increase in workload has a pathophysiological origin (hemodynamic load, neurohormonal 

stimulus e.g. renin-angiotensin II, endothelin1, catecholamines), the hypertrophic response 

may progress from compensated (heart meets the need of the body) to decompensated 

hypertrophy, which leads to cardiac dysfunction and overt failure. 

Work in transgenic mice suggests that Ca2+ signaling is a likely contributor to this 

process. Transgenic mice overexpressing the L type Ca2+ channel develop cardiac hypertrophy 

and cardiomyopathy and die of congestive heart failure (Muth et al., 2001). In contrast, the L 

type Ca2+ channel inhibitor diltiazem has been reported to blunt cardiac hypertrophy in a 

mouse model of familial hypertrophic cardiomyopathy (Semsarian et al., 2002). Ca2+ signaling 

can occur at different levels, and transgenic mice overexpressing calmodulin also show severe 

cardiac hypertrophy (Gruver et al., 1993). Similarly, transgenic mice overexpressing nuclear 

CaMKII-δB show cardiac hypertrophy and dilatation (Zhang et al., 2002a), and cardiac specific 

activation of calcineurin in transgenic mice induces a robust hypertrophic response that 

progresses to dilated heart failure (Molkentin et al., 1998). Conversely, calcineurin null mice 

fail to undergo cardiac hypertrophy in response to pressure overload, isoproterenol infusion or 

angiotensin II infusion (Bueno et al., 2002). Interestingly, NFAT3 null mice showed similar 

resistance to hypertrophy, establishing the critical downstream role of NFAT3 in mediating 

calcineurin-regulated hypertrophy (Wilkins et al., 2002) (see also section 2.3 and Figure 4). 

In summary, it seems unlikely that ICaL contributes to the defects in EC coupling 

observed in heart failure in large mammals (rabbit, dog, human). However, it may contribute 

to the development of arrhythmias (EADs) and to the negative staircase observed in heart 

failure. The role of ICaL in the processes leading to heart failure via ET coupling requires 

further investigation. 
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5.2.3 Atrial fibrillation 

Atrial fibrillation is the most frequently encountered arrhythmia in clinical practice 

(Kannel et al., 1982). Chronic atrial fibrillation is characterized by a disorganized high rate 

(atrial cells fire at 400-600 times per minutes) instead of the normal heart rate (~60 beats per 

minutes in human). An important advance in the understanding of atrial fibrillation was made 

with the recognition that atrial fibrillation, once initiated, alters electrophysiological properties 

in a manner that favours the ease of inducing and maintaining the arrhythmia: “atrial 

fibrillation begets atrial fibrillation” (Wijffels et al., 1995). This process is called “electrical 

remodeling”. Sustained atrial fibrillation can cause heart failure after several weeks or months 

(Fenelon et al., 1996). Conversely, heart failure promotes atrial fibrillation and produces atrial 

ionic remodeling (Li et al., 2000). 

At the cellular level, atrial fibrillation is characterized by a depolarized resting potential, 

a decrease of the action potential plateau, decreased action potential duration and loss of 

effective atrial contraction (see for review (Nattel, 2002)). Involvement of Ca2+ channels was 

suggested by an early study showing that the Ca2+ channel antagonist verapamil depresses the 

AP plateau of normal atria but not in atria from patients with atrial fibrillation (Hordof et al., 

1976). 

Animal models for atrial fibrillation have confirmed this suggestion. In a rapid pacing 

dog model of atrial fibrillation, ICaL density was reduced without concomitant change in its 

kinetics or voltage dependence, compared with sham-operated dogs (Yue et al., 1997). In 

contrast, ICaT density was not altered in this model. Rapid pacing also decreased action 

potential duration and action potential adaptation to rate. In contrast to to sham operated 

animals, nifedipine did not alter the action potential duration in the paced dog model 

suggesting that ICaL depression was responsible for the action potential shortening in these 

dogs (Yue et al., 1997). Recognition that reduction of ICaL is an important factor in atrial 

fibrillation was strengthened by the observation that ICaL current density is decreased by ~ 65% 

in myocytes from patients with chronic atrial fibrillation (Van Wagoner et al., 1999). In 

contrast to heart failure, β–adrenergic responsiveness of atrial myocytes from patients with 

chronic atrial fibrillation is not impaired. Indeed, the relative response to a maximal dose of 

isoproterenol was greater in myocytes from patients with chronic atrial fibrillation (~4 fold) 

compared with patients with normal sinus rhythm (~3 fold) (Van Wagoner et al., 1999). 

Although a decrease in ICaL amplitude is assumed to be the most important factor in 

altering the duration of the action potential and its loss of adaptation to rate in atrial 

fibrillation, a decrease in the amplitude of the transient outward potassium current (Ito) has also 

been observed (Van Wagoner et al., 1999). The decrease in density of both currents has been 
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linked to transcriptional down regulation of α and β subunits of these channels (Bosch et al., 

2003), although the molecular events leading to such ionic remodeling remain incompletely 

understood. 

Thus although it is clear that the properties of ICaL change during atrial fibrillation, it 

remains to determine whether ICaL change is a cause or consequence of this pathology. 
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6 CONCLUSIONS AND FUTURES DIRECTIONS  
The story of Ca2+ currents in cardiac myocytes is not over yet. The translation research, 

where the use of transgenic mice addresses integrative normal and pathological questions 

provides a helpful tool for a better understanding of Ca2+ current’s function but also leads to 

conflicting results. The observation that knock out mice for CaV1.3, CaV2.3, CaV3.1, CaV3.2 

are healthy, however CaV1.2 -/- transgenic mice die at the embryonic stage clearly emphasizes 

the crucial role of ICaL in the heart. This is consistent with the observation that no cardiac 

diseases are linked to mutations of Ca2+ channels. It appears clear that we have to think in 

terms of microdomains for studying Ca2+ channels. This concept of microdomain is clear in 

neurons, and requires further investigation in cardiac cells. We described that ET coupling due 

to Ca2+ microdomain is important in neurons, however in cardiac myocytes it is still unclear 

how cells distinguish between regular global dynamic Ca2+ signals involved in EC coupling 

and Ca2+ involved in ET coupling. Furthermore, it is well established that ICa participates in the 

excitation-secretion coupling in neuronal cells, e.g. the release mechanism of neurotransmitter 

vesicles at the synapse, due to Ca2+ microdomains (See for review Neher, 1998). In cardiac 

myocytes excitation-secretion coupling concept has not yet emerged and to date only one 

report shows the importance of ICaT in the secretion of atrial natriuretic factor by atrial cells 

(Leuranguer et al., 2000). The development of new microscopic techniques such as FRET, 

should provide new information regarding inter- and intra-molecular arrangements and 

compartmentalization. Hence, it appears that the term “Ca2+ currents story” in the heart is not 

so appropriate and perhaps should be renamed “the Ca2+ currents saga”. 
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Table 1: Nomenclature of Ca2+ channels. This table shows all Ca2+ channels described to date, for 
further information about non-cardiac Ca2+ channels see Catterall, 2000. 
L: long lasting; T: tiny and Transient; N: Neither T nor L and Neuron; P: Purkinje; Q: After P; R: 
Resistant. HVA: High Voltage Activated; LVA: Low Voltage Activated. DHP: dihydropyridine. 
 
 
 

Ca2+ 
channel 

Ca2+ 
current 

Previous 
nomenclature Localization 

Electrophysiological 
and pharmacological 

phenotype 

CaV1.1 L α1S Skeletal muscle 

CaV1.2 L α1C
Heart, Endocrine cells, 
Neurons, smooth muscle 

CaV1.3 L α1D Endocrine cells, Neurons, Heart 

CaV1.4 L α1F Retina 

HVA 
DHP sensitive 

CaV2.1 P/Q α1A Neurons 

CaV2.2 N α1B Neurons 

CaV2.3 R α1E Neurons, Heart 

HVA 
DHP insensitive 

CaV3.1 T α1G Heart, Neurons 

CaV3.2 T α1H Heart, Neurons 

CaV3.3 T α1I Neurons 

LVA 
DHP insensitive 
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Table 2: Summary of the effects of NO/cGMP/PKG cascade modulation on basal ICa and 
prestimulated ICa. All these studies were performed with the whole cell configuration of the patch-
clamp technique (otherwise stated). (WT: wild-type; TG: transgenic). 
 

Modultion of cGMP dpt-
pathway Preparations Tissu Basal ΔICa

ΔICa
prestimulated cAMP-elevating agents Refs 

NOS inhibitors/NO 
scavengers       

L-NMMA 1 mM 
L-NNA 1 mM Guinea pig ventricle    1 

PTIO 0.5 mM Guinea pig ventricle    2 
L-NMMA 1mM Human atrium ↔   3 
NO donors       

SIN-1 0.1-10 nM 
SIN-1 0.1-100 µM Frog ventricle ↔ 

↔ 

 
 

↔ 

Fsk 0.3 µM / ISO 0.1-1 µM / cAMP 10 µM 
Fsk 0.3 µM / ISO 0.1-1 µM / cAMP 10 µM 
8-Br-cAMP 10 µM 

4 

nitroprusside 10 µM Guinea pig ventricle ↔  IBMX 0.1 mM 5 
SIN-1 10 µM Guinea pig ventricle ↔  IBMX 0.1 mM 6 
SIN-1 10-100µM 
SIN-1 10µM 
SIN-1 100µM 
SIN-1 1-100 µM 
 

Guinea pig ventricle 

± ↔ 
 
 
 
 

 
 or  
 
 

 

 
ISO 10 nM 
ISO 10 nM 
ISO 1µM / IBMX 0.1 mM / cAMP 10 µM  
or 8-Br-cAMP 10 µM 

7 

DEANO 100 µM 
GSNO 1 mM 
SNAP 1µM-1 mM 
SNP 5-500 µM 
SIN-1 0.1-1 mM 
SPNO 0.1 µM 
DEANO 10-100 µM 
DEANO 100 µM 

Rat ventricle 

↔ 
↔ 
↔ 
↔ 
↔ 
 

 
 
↔ 
↔ 
↔ 
↔ 
↔ 

 

ISO 1-10 nM 
 
ISO 1-10 nM / cAMP 10-100 µM 
cAMP 10-100-µM 
ISO 1-10 nM 
ISO 1-10 nM 
cAMP 10-100 µM 
IBMX 10 80 µM 

8 

SNAP 1 pM-1µM 
DEANO 1 pM-1 nM 
SNAP 1 pM-1µM 

Rat ventricle 
↔ 
 
 

 
 

↔ 

ISO 0.1-0.5 nM 
ISO 0.01pM-0.5 nM 
L858051 0.1-0.3 µM 

9 

DEANO 0.1 µM 
overexpressed PKG 1 

TG vs WT 
mice 

ventricle 
(cell-
attached) 

  ISO 1µM 10 

GSNO 10 µM Newborn 
Rabbit ventricle   IBMX  50µM 11 

GSNO 10 µM Adult Rabbit ventricle ↔   11 
SIN-1 1 pM-10 nM 
SIN-1-100 µM 
SIN-1 0.1-1 nM 

Human atrium 
 

moderate
 

 
 
↔ 

 
 
milrinone 10 µM 

12 

SNAP 100 mM Human atrium    3 

GSNO 10-100 µM Rabbit atrium   
↔ 

ISO 1 nM / IBMX 10 µM 
ISO 100 nM 13 

cGMP intrapipette       

0.3-20 µM 
 
Frog 
 

ventricle ↔ 
 

moderate  
↔ 

ISO 0.3 µM cAMP intra 5-20 µM 
IBMX 0.1 mM 
8-Br-cAMP 1µM 

14 

0.1-20µM Frog ventricle ↔ 
 

↔ 
± ↔ 

ISO 0.3-2 µM/ cAMP intra 5-30 µM 
8-Br-cAMP 5 µM 
cAMP 5 µM + IBMX 100 µM 

15 

5 µM Guinea-pig ventricle ↔  cAMP intra 50 µM / 8-Br-cAMP 50 µM 
IBMX 0.1 mM 16 

 
1-10 µM 
 
1 mM 

Guinea pig ventricle ↔ 
 

 
↔ 

 
 

ISO 1-100nM / Fsk 0.5-1µM / cAMP 50-100 µM 
8-CPT-cAMP / 8-Br-cAMP (both 50µM) 
IBMX 40 µM 
ISO 30 nM 

17 

30 µM 
30-300 µM 
1 mM 
1 mM 
100 µM 

Guinea pig ventricle 

  
 
 

↔ 
 

 
ISO 3-nM 
ISO 3-nM 
ISO 30 nM 
IBMX 0.1 mM 

18 

10 µM Guinea pig ventricle ↔  IBMX 0.1 mM 5 

0.1-100µM Rat ventricle ↔  cAMP intra / 8-Br-cAMP intra / IBMX 
(all at 0.1mM) 19 

100 µM Young rabbit ventricle   cAMP 100 µM 20 
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Modultion of cGMP dpt-
pathway Preparations  Tissu  Basal ΔICa 

ΔICa
prestimulated cAMP-elevating agents Refs 

0.5 µM 
50 µM Human atrium  

moderate   22 

0.5 µM Human atrium     
PKG activators       
8-Br-cGMP 20 µM Frog ventricle  ↔ cAMP intra 5 µM 14/15 
8-Br-cGMP 100 µM Guinea-pig ventricle   IBMX 0.1 mM 16 
8-Br-cGMP 10 µM Guinea pig ventricle ↔ ±  cAMP intra 50µM 17 
8-Br-cGMP 0.1mM Guinea pig ventricle ↔  ISO 10 nM / IBMX 0.1 mM 6 

8-Br-cGMP 1mM Guinea pig ventricle  ↔ 
(ATPγSpip) IBMX 0.1 mM 23 

8-Br-cGMP 10-30 µM Guinea pig ventricle  ±  ISO 30 nM 18 

8-Br-cGMP 100 µM Guinea pig ventricle  ↔ 
 

cAMP 100µM 
IBMX 100 µM 24 

8-Br-cGMP 0.1-10 µM Young Rat ventricle    25 

8-Br-cGMP 0.1-10µM Rat ventricle   cAMP intra / 8-Br-cAMP intra 
(all at 0.1mM) 19 

8-p-CPT-cGMP 100 µM Rat ventricle   ISO 1 nM 8 
8-Br-cGMP 30-100 µM 
8-p-CPT-cGMP 30 µM 

Newborn 
Rabbit ventricle  

   11 

8-Br-cGMP 100 µM 
8-p-CPT-cGMP 400 µM 
8-p-CPT-cGMP 400 µM 

Young rabbit ventricle 
 
 

 

 
 

 

 
 
IBMX 0.1 mM 

20 

8-Br-cGMP 30-100 µM Adult Rabbit ventricle ↔   11 
8-Br-cGMP 30 µM Rabbit atrium    13 
8-Br-cGMP 300 µM Rabbit ventricle   IBMX 0.1 mM 26 
8-bromo-cGMP 0.5-5 µM 
8-bromo-cGMP 100 µM Human atrium ↔ 

   22 

8-Br-cGMP 0.1-1 mM Cultured chick embryonic 
cells (cell-attached)    27 

8-Br-cGMP 1 mM Cultured chick  
embryonic cells   PKA 1.5 µM 28 

8-Br-cGMP 1 mM Xenopus 
oocyte 

α1c (double 
microelectrode)    29 

8-Br-cGMP 1 mM 
overexpressed PKG 1 

TG vs WT 
mice 

ventricle 
(cell-
attached) 

  ISO 1µM 10 

8-Br-cGMP 1 mM Mice 
Ventricle 
(cell-
attached) 

↔  ISO 1µM / 8-Br-cAMP 1 mM 30 

PKG       
Active fragment 0.8 µM Guinea pig ventricle  ± ↔ ISO 0.1 µM 17 

Pre-activated PKG 50 nM Young Rat ventricle ±  

 
 
 
 

ISO 2 µM 
Bay K 8644 1 µM 
IBMX 0.1-0.3 mM 
subsequent ISO 2 µM 

25 

Active fragment  
10 nM-1µM Rat ventricle ↔  cAMP intra / 8-Br-cAMP intra (all at 0.1mM) 19 

Pre-activated PKG 25 nM Cultured chick  
embryonic cells  ↔ Subsequent ISO 1-10 µM 28 

Overexpressed PKG 1 TG vs WT 
mice 

ventricle 
(cell-
attached) 

↔   10 

 
References: (1) Gallo et al., 1998; (2) Gallo et al., 2001; (3) Vandecasteele et al., 1998; (4) Méry et al., 1993; (5) Levi 
et al., 1994; (6) Imai et al., 2001; (7) Wahler and Dollinger 1995; (8) Abi-Gerges et al., 2001; (9) Abi-Gerges et al., 
2002; (10) Schröder et al., 2003; (11) Kumar et al., 1997; (12) Kirstein et al., 1995; (13) Wang et al., 2000; (14) Hartzell 
and Fischmeister, 1986; (15) Fischmeister and Hartzell, 1987; (16) Levi et al., 1989; (17) Ono and Trauwein 1991; (18) 
Shirayama and Pappano 1996; (19) Méry et al., 1991; (20) Han et al., 1998; (21) Rivet-Bastide et al., 1997; (22) 
Vandecasteele et al., 2001; (23) Shen and Pappano, 2002; (24) Sakai et al., 1999; (25) Sumii and Sperelakis, 1995; (26) 
Tohse et al., 1995; (27) Tohse and Sperelakis, 1991; (28) Haddad et al., 1995; (29) Jiang et al., 2000; (30) Klein et al., 
2000. 
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Figures legends: 
 

Figure 1: 
Comparison of cardiac Ca2+ channels electrophysiological properties. Peak current-voltage 

relationships for L-type CaV1.2 (α1C) and CaV1.3 (α1D), and T-type CaV3.1 (α1G) channels are 

normalized. L-type CaV1.3 channels activate at negative membrane potentials similar to T-

type CaV3.1 channels. Activation midpoints (V1/2) are approximately -5 mV for L-type 

CaV1.2, -30 mV for L-type CaV1.3 and T-type CaV3.1. Curves were generated by a 

Boltzmann-GHK function using parameters obtained from recombinant channels expressed in 

Xenopus oocytes recorded under similar conditions (10 mmol/L extracellular Ba2+). 

Reproduced with permission from “L-Type Calcium Channels Highs and New Lows, 2002, 

Lipscombe D, Circ Res, 90, 933-2002”. 

 

Figure 2:  

Time course of ICaLin guinea-pig, rabbit, and rat myocytes voltage-clamped with a guinea-

pig action potential waveform. Top panel: command voltage. Bottom panel: recordings of ICaL 

normalised to cell capacitance averaged from 12 (guinea-pig), 10 (rabbit) and 10 (rat) cells. 

Reproduced with permission from “Profile and kinetics of L-type calcium current during the 

cardiac ventricular action potential compared in guinea-pigs, rats and rabbits, 2000, Linz 

K.W., Meyer R., Pflügers Archiv, 439, 588-599”. 

 

Figure 3:  

Sparklet-spark coupling in heart cells. Data were obtained in the loose-seal patch-clamp 

conditions. A. Triggering Ca2+ spark by single L-type Ca2+ channel opening. B. Representative 

example showing that a Ca2+ sparklet directly triggers a Ca2+ spark. Reproduced with 

permission from “Imaging Microdomain Ca2+ in Muscle, 2004, Cells Wang, SQ, Wei, C, 

Zhao, G, Brochet, DXP, Shen, J, Song, LS, Wang, W, Yang, D, Cheng, H. Circ Res, 2004, 94, 

1011-1022”. 

 

Figure 4:  

Possible excitation-transcription coupling in cardiac myocytes. CaM, calmodulin; CamKII, 

Ca2+-calmodulin-dependent protein kinase II; NFAT, nuclear factor of activated T cells; 

DREAM, downstream regulatory element antagonistic modulator; CREB, cAMP-responsive 

element binding protein. Sources for the interaction between the molecules listed above are 

cited in the text. 

H
A

L author m
anuscript    inserm

-00141882, version 1



 112

Figure 5:  

Schematic diagram of L type Ca2+ channel modulation by cGMP pathway in cardiac 

myocytes. NOS, nitric oxide synthase; NO, nitric oxide; GC, guanylyl cyclase; AC, Adenylyl 

Cyclase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; 

PDE, phosphodiesterase; PKG, cGMP-dependent protein kinase; PKA, cAMP-dependent 

protein kinase; β1R, type 1 β-adrenoceptor; AKAP, A-kinase anchoring protein; PPases, 

Protein phosphatases; CaV1.2, L type Ca2+ channel. Sources for the interaction between the 

proteins listed above are cited in the text. 

  

Figure 6:  

Schematic representation of cardiac L-type Ca2+ channel CaV1.2 (α1C) subunit with 

accessory subunits (β and α2δ). AID, Alpha Interacting Domain; PKA, cAMP-dependent 

protein kinase; PKC, protein kinase C, PKG, cGMP-dependent protein kinase; CaM, 

calmodulin, AKAP, A-kinase anchoring protein; see text for details. 
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Figure 3 
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Figure 5 
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Figure 6 
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(Isenberg and Klockner, 1982) (Rougier et al., 1969)  (Lederer et al., 1990)  (Fabiato, 1983) (Xiao, 

2001) (Razani et al., 2002) (Harvey and Belevych, 2003) (Abi-Gerges et al., 2002) (Maurice et al., 

2003) (Vandecasteele et al., 1998) (Razani et al., 2002) (Mery et al., 1993) (Imai et al., 2001) (Abi-

Gerges et al., 2002) (Abi-Gerges et al., 2002) (Schroder et al., 2003) 

(Kumar et al., 1997) (Wang et al., 2000)  (Sumii and Sperelakis, 1995; Rivet-Bastide et al., 1997; 

Jiang et al., 2000; Klein et al., 2000; Shen and Pappano, 2002) (Malkiel et al., 1996; Brodde and 

Michel, 1999; Caforio et al., 2002; Kierszenbaum, 2003) 

(Mijares et al., 1996b; Jahns et al., 2004) 

(Hirano et al., 1999) (Brette and Orchard, 2003) (Lipsius et al., 2001) (Klockner et al., 1999) (Fabiato, 

1983) (Trafford et al., 2002) 

(Carl et al., 1995; Franzini-Armstrong et al., 1999; Scriven et al., 2000; Gathercole et al., 2000)   

(Ferrier and Howlett, 2001) (Dolmetsch, 2003) (Dolphin, 2003b) (Puglisi et al., 1999)) and rat (~ 40%, 

Takamatsu et al., 2003 (Takamatsu et al., 2003) (Hare and Stamler, 1999) (Harvey and Belevych, 

2003) (Hare, 2003) (Eisner et al., 2000) (Levi et al., 1994; Gallo et al., 1998; Gallo et al., 2001) 

(Hartzell and Fischmeister, 1986; Fischmeister and Hartzell, 1987; Levi et al., 1989; Tohse and 

Sperelakis, 1991; Wahler and Dollinger, 1995; Tohse et al., 1995) (Hoebeke, 2001) (Magnusson et al., 

1994; Catterall, 2000) (Perez-Reyes et al., 1998) (Woo et al., 2003b) (Romanin et al., 2000) (Zhou et 

al., 1997) (Gao et al., 1999) (Takahashi et al., 2004) (McGee et al., 2004) (Boutjdir, 2000) (Neher, 

1998) (Lipscombe, 2002) (Linz and Meyer, 2000)  (Balijepalli et al., 2003) (Bers, 2001). 

(Tsien, 1973; Hess et al., 1984; Hess and Tsien, 1984; Almers and McCleskey, 1984; Tsien et al., 

1986; Lansman et al., 1986; Hess et al., 1986; Tsien et al., 1987; Yue and Marban, 1990) 
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