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Abstract

In this paper we propose a new motion estimator for image sequences depicting fluid

flows. The proposed estimator is based on the Helmholtz decomposition of vector fields.

This decomposition consists in representing the velocity field as a sum of a divergence free

component and a vorticity free component. The objective is to provide a low-dimensional

parametric representation of optical flows by depicting them as deformations generated by

a reduced number of vortex and source particles. Both components are approximated using

a discretization of the vorticity and divergence maps through regularized Dirac measures.

The resulting so called irrotational and solenoidal fields consist of linear combinations of

basis functions obtained through a convolution product of the Green kernel gradient and

the vorticity map or the divergence map respectively. The coefficient values and the basis

function parameters are obtained by minimization of a functional relying on an integrated

version of mass conservation principle of fluid mechanics. Results are provided on synthet-

ic examples and real world sequences.

1 Introduction

The observation, understanding and control of complex fluid flows is a major scientific issue.

For instance, in environmental sciences such as oceanography, meteorology and climatology,

the monitoring and the forecasting of the atmosphere or the ocean is becoming more and more

crucial for our everyday life. The physical understanding of these flows is poorly known because

of (a) their complex nature and (b) unknown or inaccurate border conditions. Accurate and dense

measurements can hardly be recovered by probes or by numerical evaluation of current physical

1

The original publication is available at www.springerlink.com

H
A

L author m
anuscript    inserm

-00140892, version 1

HAL author manuscript
International Journal of Computer Vision 26/01/2007; epub ahead of print

H
A

L author m
anuscript    inserm

-00140892, version 1

HAL author manuscript
International Journal of Computer Vision 2007;75(3):329-349



models. In that prospect, imaging sensors are very attractive as they provide multi-modal data

at high spatio-temporal resolution. Besides, we can point out the fact that in numerous domains

of applications imaging sensors are almost the only practical means to get some information on

the flow of interest. This is the case for instance in meteorology where some parts of the globe

are not well covered by meteorological stations. This is all the more problematic when one aims

at studying global atmospheric circulation or climate evolution. The same situation appears for

large scale experiments in fluid mechanics or for blood flow analysis, as in situ measurements

are difficult.

The analysis of dynamic structures and the estimation of velocities for fluid image sequences

have received great attention from the computer vision community for several years [19, 21, 28,

34, 43, 45]. Application domains range from experimental visualization in fluid mechanics,

environmental sciences (oceanography, meteorology, ...), to medical imagery. Recently, several

dedicated approaches have been proposed for fluid flow velocity estimation [13, 26, 44]. Unlike

most of the motion estimators based on the brightness consistency assumption and a first order

smoothness function, these techniques rely on a data-model derived from the continuity equation

of fluid mechanics and second order div-curl regularizers. A first order regularizer (eventually

associated to a robust cost function) favors piecewise translational motion fields by penalizing

high gradients of the solution. In the same way, second order div-curl penalizers encourage

solutions with blobs of piecewise constant divergence and curl. These methods are conceptually

much more satisfying as they comply with the brightness variations and the motion observed

in fluid image sequences. However, these estimators are dense estimators and the solutions

associated belong to spaces of great dimension. It is desirable for some applications such as

tracking to provide low dimensional solutions. This is the purpose of this paper.

Such a low dimensional description of fluid flows allows a characterization of meaningful

areas of the flow in terms of vorticity and divergence. These areas are the centers of kinematical

events of great interest to describe the observed flow. In this document, we propose a tech-

nique to estimate a low dimensional representation of fluid motion fields. This method relies on

the Helmholtz decomposition of a motion field (also used by other fluid flow analysis methods

[14, 26, 44]) which consists in decoupling the vector field into a divergence free component and

a vorticity free component. The method is based on a discrete representation of the vorticity

(also called curl) and divergence maps. This discretization enables to define implicitly adapted

regularizers for fluid motion estimation problems. Such a technique is related to motion esti-

mators based on radial basis functions [3]. Nevertheless, contrary to techniques that operate

directly a regularized discretization of the motion field, the proposed method relies on the dis-
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cretization of the curl and the divergence of the motion field. It provides a simplified description

of the vorticity and divergence maps of a flow observed through an image sequence. It enables

therefore to provide at the end a kind of motion segmentation map. The fact that this estimator

provides as a by-product a simplified vorticity/divergence map of the flow is also a very inter-

esting point of the method we propose. As a matter of fact, this latter point allows to provide a

reduced system of descriptors to analyse the main characteristics of the flow.

The paper is organized as follows. After a review of the properties of vector fields in section

2 and a presentation of the parametric model we use in section 3, we present in section 4 a

way to construct the fluid motion estimation problem from such a modelization. The estimation

method of the low dimensional representation is then further described. The proposition of a flu-

id motion estimator based on such a parametric representation constitutes the main contribution

of this paper. Section 6 shows results for synthetic and real examples. Results on fluid motion

analysis are shown for applications in meteorology and fluid mechanics. Results on medical

images are also presented.

This paper is an extended version of [16] and [18], respectively dedicated to the estimation

of fluid motions and to a non-rigid registration problem in medical imaging.

2 Definitions and properties of vector fields

In this section, known analytic results on planar vector fields are recalled. We shall rely on them

to develop an original method for fluid motion estimation.

A two-dimensional vector field � is a R
�
-valued map defined on a bounded set

�
of R

�
.

We denote it w �����	�
����������
������������ , where ���
����
���� and � and � are the spatial coordinates.

Each component of the vector field will be supposed twice continuously differentiable: ��
����� � � � 
 R � .
Noting �����!  #" 
$  #%'& the operator whose components are the partial derivatives with re-

spect to the coordinates � and � , we define the divergence and the scalar vorticity of the vector

field: ()* )+ div � �-, �, ��. , �, � �/�10 � 

curl � � , �, �32 , �, � �4�10 �65 
 (1)

where � 5 �7� 2 �8
��9� is the orthogonal counterpart of � .

The vorticity accounts for the presence of a rotating motion, while the divergence is related

to the presence of sinks or sources in the flow. A vector field whose divergence is null at every
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point is called solenoidal. Similarly, a field with zero vorticity will be called irrotational. It

is well known that for irrotational fields there exists a scalar function � , called the velocity

potential, such that � � ��� . Similarly, for solenoidal fields (whose orthogonal component

is an irrotational field) there exists a scalar function � called the stream function such that� 5 �/��� .

Any continuous vector field that vanishes at infinity can be decomposed into a sum of an

irrotational component with null vorticity and a solenoidal component with null divergence.

This is called the Helmholtz decomposition: � � ������� . �
	���
 . When the null border condition

can not be imposed, an additional component ������� , named transportation component, which

is both irrotational and solenoidal, has to be included. The decomposition reads then: � �������� . ��	���
 . ������� . This last component can be approximated using the Horn and Schunck

estimator with a strong regularization coefficient [14]. In the sequel, we will assume that the

transportation component has been previously computed and that its associated motion has been

removed from the image sequence. We will consequently assume a null border condition at

infinity knowing that the image sequence, � ��� 
���� , is related to the original image sequence,

� � ��� 
���� , by � ��� 
���� ��� � ��� . ������� ��� 
�����
���� .
Substituting the two components �
����� and �
	���
 by their expressions in terms of potential

functions, the Helmholtz decomposition reads:� �4��� . � 5 � 0 (2)

Considering the divergence and the curl of the motion field yields to two so-called Poisson

equations:

� �6� div � and
� � � 2 curl � 
 (3)

where
�

denotes the Laplacian operator and whose solutions are the potential functions � and

� . These solutions may be expressed as convolution products:

������� � ��� ��� 2�� � div � � � �� � � �"!
div � ������
 (4)

� ����� � 2 � � ��� 2�� � curl � � � �� � � 2 �"!
curl � ������
 (5)

where
�

is the Green’s function associated to the two-dimensional Laplacian:� ����� � #$&%('*) �,+ �-+ ��0 (6)
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As the vector fields � ����� and �
	���
 are respectively the gradient and the orthogonal gradient

of the potential functions � and � , equations (4) and (5) may be rewritten as:� ����� ����� ��� !
div � ����� and �
	���
 ����� � 2 � 5 ! curl � ������
 (7)

where � denotes the gradient of the Green kernel:

� ����� � �$&% + �-+ � 0 (8)

The second equation of (7) is known as the Biot-Savart integral. These two equations state that

the solenoidal and the irrotational components (and consequently the whole vector field) may

be recovered through a convolution product knowing the vorticity and the divergence of the

velocity field.

3 Vortex particles

The idea of vortex particles methods [9, 29] consists in representing the vorticity distribution

of a field by a set of discrete amounts of vorticity (vortices). Using these vortices, the vorticity

distribution is mathematically approximated by:

curl � ������� �
��� ��� ��� 2
	 � ��
 (9)

where 	
� is the location of the vortex � , � � the strength of the vortex and � the Dirac delta

function. The vortices are called point vortices since they are represented by delta functions.

The discretization of the vorticity into a limited number of elements enables to evaluate

the velocity field directly from the Biot-Savart integral (equ. 7). However, because of the

singularity of the Green kernel gradient � , the velocity field becomes unbounded if any two

vortices come very close to each other. In fact, the induced field develops �� -type singularities,

where 
 is the distance to the point vortices. These singularities can be removed by smoothing

the Dirac measure with a cutt-off or blob function, leading to a smoothed version of � and to

new methods called vortex blob methods. A vortex blob is obtained by spreading the vorticity

of a point vortex over a small chosen area. The blob function describes the vorticity distribution

in this area.

There are many ways to define the blob function. A trade off between smoothing and es-

timation accuracy must be found. Let ��� be such a blob function scaled by a parameter � :
��� ����� � ���� ����� ��� . The smoothed kernel is defined as ������� !

��� . The amount of smoothing is
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determined by the value of � . If � goes to zero, � � tends to the Dirac function and � � tends to � .

The error induced by the smoothing can be reduced by choosing a function with some moment

properties. In fact, if the blob function satisfies:�
� ������ � � # 
� � � � ������ � ��� ��� 
 2 # 
� + �-+ � + � ����� +� ����� 
 (10)

its order is 
 and it has the same moment properties as the Dirac measure, up to the power 
 2 # .
A starting point to construct a smoothing function is to choose a radially symmetric function

� with infinite support, whose mass is essentially concentrated on a disc of radius � . Then, for

some proper choices of � , the property of radial symmetry leads to an explicit form for � � . In

fact we can write [15]:

� � ����� � �+ �-+ � ��� � �	 
 ��� � 
 �� 
 
 (11)

and consequently, if an analytic expression of the integral is available, the entire expression for

� � is known.

Rectangle basis function and Rankine vortex model As a first example let us consider a

centered radial rectangle basis function defined as:

� � ����� � #$&% � � 1I � � �
� � 
 (12)

where the function 1I � � �
� � � # if ��������� and is null otherwise. The expression of the associat-

ed centered smoothed kernel � � , associated to a constant vorticity of strength � inside the disc

of radius � (respectively a divergence of strength � ), leads to the well known Rankine vortex

model [10]. The velocity for such a vortex model is then defined as:��	���
 ����� � 2 � 5 ! � 1I � � �
� �� 2 � 5 �$&% � � 1I � � � � � 2 � 5 �$&% ����� � 1I � � � � � 0 (13)

This model which states that the velocity is linear inside a disc of radius � and decreases

in # � ����� � outside of the circular domain has been already used in image analysis studies

[14, 34, 36]. That kind of model has been used to segment fluid motion fields in oder to charac-

terize vortex or sink/source areas. Such a simple radial basis function can be used when centered

6

H
A

L author m
anuscript    inserm

-00140892, version 1
H

A
L author m

anuscript    inserm
-00140892, version 1



on critical points of the velocity field. The estimation of the critical points of the velocity field

requires nevertheless the complete knowledge of the motion field. The motion field being known

the parameters of the Rankine model can be estimated through an iterative process [14]. Other-

wise, techniques based on alternating dense motion estimation and Rankine’s model parameters

estimation must be settled [34].

Gaussian smoothing function A Gaussian function constitutes a trade off between a con-

venient analytical use and the smoothness properties of the corresponding smoothed kernel (a

Gaussian is of second order following the classification given above). The choice of the Gaus-

sian function � ����� � �� ����� � 2 + �-+ � � leads to the following expression for the smoothed kernel

� � :
� � ����� � �$&% + �-+ � � #$2 ����� � 2 + �-+ �� ���	� 0 (14)

Figure 1 shows the effect of the smoothing by this Gaussian cutt-off and illustrates the fact that

� ��
 � as ��
 � .

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

|x|

 

 
|K|
|Kε| for ε=0.1

|Kε| for ε=0.2

|Kε| for ε=0.5

|Kε| for ε=1

Figure 1: Comparison between the modulus of the original kernel � and the Gaussian-smoothed

version � � for some values of � .

The vorticity distribution of the field � is finally represented by a linear combination of

basis functions called vortex particles:

curl � ������� � � � � ����
���� 2
	 � ��0 (15)
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The same idea can be applied to equation (4). This leads to a representation of the divergence

distribution in term of a linear combination of functions that we call source particles. For the

divergence map, the smoothed source particles representation then reads:

div � ������� �
� � � � ��
 ��� 2
	 � ��
 (16)

where 	
� denotes the center of each basis function ����
 , the coefficient � � is the strength associated

to the particle � , and � � represents its influence domain. These parameters are free to vary from

a function to another.

4 Fluid motion estimation from image sequences

In this section, we present how a vortex and source particles representation may be used in

conjunction with an appropriate cost function to devise a motion estimator for image sequences

depicting fluid flows.

4.1 Motion representation

As presented above, discretizing the vorticity map with � vortex particles associated with a

Gaussian smoothing of the Dirac measure enables to recover the solenoidal component. The

Biot-Savart integration leads to the following analytic representation of the solenoidal motion

field: ��	���
 ������� ��
��� 	 �

	���
� � 5 ! � �������
 � 	 	���
� 2 � & � ��
�	� 	 �

	���
� � 5� �����
 � 	 	���
� 2 � & 
 (17)

where � 5� �����
 is a new kernel function obtained by convolving the orthogonal gradient of the

Green kernel with the blob function. In the following, we will index all the parameters to

distinguish the solenoidal part from the irrotational one.

We obtain a similar representation of the irrotational component using 
 source particles and

the Biot-Savart integral associated to the divergence map (equ.7):������� ������� �� ��� 	 �
������ �

!
� � 

���
 � � 2
	 ������ � � �� �	� 	 �

� ���� � � 
����
 � � 2
	 ������ � 0 (18)

As a result, we exhibit an approximation of the complete motion field as weighted sums of

basis functions of two types. The basis functions, also called particles, are totally defined by

their center location and respective spatial influence (varying with the parameter � � ). A strength
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coefficient � � is associated to each particle. A Gaussian smoothing function allows to obtain an

analytical expression of the associated smoothed kernel � � (equ.14). The final expressions of

the motion field components are:��	���
 ������� ��
��� 	 �

	���
� � 	 	���
� 2 ��� 5$&%��� � 2
	 	���
� �� � � #	2 ����� � 2 �� � 2 	 	���
� �� �
� 	���
� � ��� 
 (19)

and ������� ����� � ��
�	� 	 �

� ���� � 2 	 ������$&%��� � 2
	 ������ �� � � #$2 ����� � 2 �� � 2
	 ������ �� �
� ������ � ��� 0 (20)

Figure 2 depicts an example of a complex motion field representation obtained with 15

vortex particles and 5 source particles (that is to say, 80 parameters). In order to judge the

complexity of the motion we also show the corresponding vorticity and divergence maps.

(a) (b) (c)

Figure 2: Fluid motion example. (a) Vector field expressed as a combination of vortex and

source particles; (b) Corresponding vorticity map; (c) Corresponding divergence map.

In the next section, this representation is incorporated within a spatio-temporal variation

model of the luminance function. The fluid motion recovery then becomes an estimation prob-

lem from the image sequence data.

4.2 Integrated continuity equation as a brightness variation model

Standard motion estimators rely on the hypothesis of the luminance conservation of a point

along its trajectory ���	�� � ��� � . Assuming this so-called optical flow constraint (OFC) is respected

almost everywhere on the whole image domain
�

comes to find the minimizer of the following

data cost function: ��
 �
� � ��������� � ����� . , �������, ���  � 0 (21)
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The penalty function � involved here is usually the � � norm but any robust function attenuating

the effect of data that deviate significantly from the OFC-based data-model [5, 33] may be used

instead. Without further specification on the motion field, the problem is ill-posed as we have to

recover a vector function from a scalar constraint. In order to solve the problem a smoothness

of the solution is generally imposed by considering an appropriate polynomial parameterization

of the velocity field, or introducing various additional smoothing terms in the cost function

[13, 25, 42].

For image sequences showing evolving fluid phenomena, the usual brightness consistency

assumption � �	�� � ��� � does not allow to model temporal distortions of luminance patterns caused

by 3D matter transportation. For these sequences, it has been shown that a data model based

on mass conservation (also known as the continuity equation) constitutes a better modeling

[2, 4, 13, 38, 39, 43]. The continuity equation links the variation of mass density, � , within an

infinitesimal enclosing volume to the flux of matter through the volume boundary surface:, �, � . div ����� � ��� 0 (22)

Let us not that the vector � denotes a 3D velocity. Assuming strong hypothesis, it is possible to

write a similar equation for a 2D representations of fluids:, �, � . div � � � � ��� 0 (23)

The hypothesis on which such a formulation relies are the following. First, the luminance func-

tion is assumed to be directly related to a passive quantity transported by the fluid (“density”

images). Secondly, the continuity equation which holds in 3D is assumed to hold as well for the

bidimensional motion field captured by the image sequence. This latter assumption has been

theoretically established in the case of transmittance imaging by Fitzpatrick [20].

These two hypotheses cannot be easily justified for all types of images. Nevertheless, this

continuity equation constitutes an interesting alternative to the brightness constancy equation.

As a matter of fact, rewriting (23) as:

 � � . � div � ��� 
 (24)

shows that such a constraint relates the effect of a divergent motion to a brightness change. By

this way it is possible to modelize the effect of the apparent disappearance/appearance of matter

caused by 3D motions which are not in the visualization plane. For compressible fluids, this

data model relates directly temporal variations of the brightness function to the diverging nature
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of the velocity field. For a null divergence this data model reduces exactly to the brightness

consistency equation.

For long range displacements (i.e. fast flows or long time latency between two images as in

meteorology) an integrated form of this constraint can be obtained [13]:

� ��� . � ������
�� . # � ��� � � div � ������� 2 � ��� 
���� ��� 0 (25)

According to this constraint, the displaced image at time � . # is related to the image at time � by

a scale factor which depends on the motion divergence. This constraint comes to the standard

displaced frame formulation of brightness consistency for a null divergence.

Finally, considering this constraint holds almost everywhere on the whole image plane and

choosing the � � norm as penalty function leads to seek a motion field minimizing the following

cost function:

� � �8
 � � � �
�� � ��� . � ������
�� . # � ����� � div � ������� 2 � ��� 
������ �  � 0 (26)

4.3 General minimization problem

Considering the previous cost function for an unknown motion field approximated through vor-

tex and source particles representations comes down to solve the following minimization prob-

lem:

�
�����	��

���*)� � � � 
 � � ������
 (27)

with � � ��� 	 	���
� 
 � 	���
� 
 � 	���
��� ��� ��� � 
 � 	 ������ 
 � � ���� 
 � �������� ��� ��� � & . The variable 	 refers to the parti-

cle location, whereas � and � represent respectively the strength coefficient and the influence

domain.

One seeks therefore the minimizer of the cost function
�

in terms of particles locations,

strength coefficients and influence domains. Due to the peculiar form of the data model, this

minimization problem is highly non linear. In order to face up this difficult optimization problem

we have chosen to rely on a non linear least square process embedded in a multiresolution

framework and associated to a generalized conjugated gradient optimization known as Fletcher-

Reeves method.

We present more precisely in the next section how this difficult global optimization issue is

handled.
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5 Estimation

The non linear cost function can be seen as a weighted displaced frame differences cost func-

tion. As most of the standard motion estimators based on such a non linear formulation, we will

consider an incremental minimization framework to remove the non linearity of the displaced

image brightness function [1, 5, 6, 35]. This scheme consists in applying successive lineariza-

tions around previous estimates. This technique, similar to the Gauss-Newton non linear least

squares, is in most cases embedded within a multiresolution framework. We will also rely on

such a data representation.

5.1 Incremental estimation scheme

We first assume that a previous estimate of the set of unknown variables is available. All these

unknowns interact with respect to our modelization to give a motion field �� . Considering a

linearization around ��� . �� 
�� . # � and dropping the time index of the intensity function for

sake of clarity, we end up with the following functional, which should be minimized according

to an unknown correction motion field denoted
�

:

� � �8
 � � � �
 � ��� � � div �� � � � �� � div �� . � �� & � � . ���� 2 � � �  � 0 (28)

In this equation we have introduced a compact notation �� ����� for the backward registered image

����� . �� 
�� . # � . The correction field
�

is a combination of a solenoidal component
� 	���
 and an

irrotational component
� ����� according to the Helmholtz decomposition. In the same way as �� ,

the correction field
�

is parameterized on the basis of a set of vortex and source particles.

In practice, this kind of scheme is embedded into a pyramidal multiresolution data repre-

sentation scheme [7]. Such a representation is obtained through low-pass filtering and sub-

sampling. At a given level, the known motion estimate �� is fixed to be the projected estimate

obtained at the previous level. At the first level the initial field is a null field.

5.2 Resulting minimization problem

The incremental estimation scheme transforms the original non linear optimization problem (27)

into a succession of simpler minimization problems with respect to some of the unknowns. As a

matter of fact, considering the derivatives with respect to the different types of unknowns gives:, � � � �, � � � �
 � �% + � � + � � #$2 ��� � � 2 + � � + �� � � � ���
	�� � � � � � � .
���  � 
 (29)
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, � � � �, � � ���� � 
 ���� 
 � �
 $
� �% � � � �+ � � + � ����� � 2 + � � + �� � � � � 	 � � � ��� � � .
� �  � 
 (30)

��� 
 � � � � � ��
� , � � � �, � �, � � � �, � �

	�

� 
 (31)

where:

, � � � �, � � � �
 2 �� � 
 
�� ��� � � �� �
 + � � + � 
 �� ��� � . � + � � + � . 
 �� ���9� � � #$2 ����� � 2 � 
 
�� ��� � �� �
 & &�
	 � � � ��� � � .
���  � 0 (32)

In these expressions � � , � and � are respectively vectors and function of � which are defined as:())* ))+ � � ����� � ��
 � ���9��
 
 � ������� � � � 2
	 � � irr. part � or � 	 � 2 ��� 5 � sol. part ��
� ����� � ����� � div �� ������� � �������� � div �� ����� . � �������� & 
� ����� � ����� � div �� ������� �������� 2 ����� 
�����0 (33)

Equations (29), (30) and (31) lead to three different kinds of systems. The first one is linear

in terms of coefficient strengths, whereas the second one is non linear in terms of particles

influence domains. Nevertheless, as no constrained minimization is required for both of them, a

gradient descent process can be devised for this set of unknowns. For the third one an additional

constraint must be added in order to keep the particles into the image plane. Such a constrained

minimization problem, combined with the non linearity we have to face, would lead to a very

tough minimization. Besides, if the initial particles locations are unknown, particles must be

able to move far away from their initial positions. A gradient descent would not cope efficiently

with such long moves.

As a consequence, we have splitted the resolution of these three kinds of unknowns. The

two first types of variables (the strength coefficients and the influence domains of the particles)

will be solved with a generalized conjugated gradient process described in section 5.3 while the

third kind of unknowns (the particles locations) is kept fixed. The particles locations will be

updated in turn through a mean shift process that is described in section 5.4.
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5.3 Fletcher-Reeves optimization

The Fletcher-Reeves method consists in a non linear extension of conjugate gradient algorithms.

This method has shown its efficiency to solve general unconstrained minimization problems of

large scale.

Given an iterate ��� ��� � 	���
� 
 � 	���
� 
 � ������ 
 � �������� and a descent direction ��� , a line search (w.r.t.

�	� ) is performed along �
� :
� ����� . �	�
�	� � ��� �*)� � 	 � ����� . �	��� ��
 (34)

and leads to ����� � ����� . �����	� . The descent direction ����� � is generated with the recursive

form:

�	��� � � 2 � � ������� � � .�� �
���'
 (35)

with:

� � �
()* )+ � for � � # 
� � � � ������� � � � �� � � ����� � � � � � for ��� $ 
 (36)

where � � is a scalar, corresponding to the Fletcher-Reeves variant of the non linear conjugate

gradient algorithm. Various forms of this coefficient exist (see for example [23]) leading to

different versions of the algorithm. Different implementation schemes may be chosen, based on

exact or inexact line searches, or on the possibility to restart the iteration (35) every � steps by

setting � � to zero (i.e. imposing a steepest descent strategy). We rely here on a method based

on an exact line search, without restarting. The global convergence of such a method is studied

in [23].

Let us note that for the linear part of our system, the method comes to the standard conjugate

gradient method. To start the optimization, we consider, as said before, that initial particle

locations are known. The initial strength coefficients are set to zero and we choose an adaptive

ad hoc strategy for the initialization of the influence domains. We fix their values to the value of

the distance to the nearest particle. At convergence, we obtain a representation of the unknown

correction field for fixed particle locations. Let us now describe how we propose to adjust these

locations.

5.4 Adjustment of particles location

The estimation method we have described in the previous section requires to fix particles lo-

cations on the image domain for the solenoidal and irrotational components. We now propose
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a way to move each particle according to a characteristic surface defined from the image data.

The method we propose is based on the mean shift procedure.

5.4.1 Definition of the error function

Considering that estimates of the strength coefficients and influence domains are available for

both irrotational and solenoidal components, we consider two different error surfaces. For each

component, the surface corresponds to the registration discrepancy, considering the other or-

thogonal component fixed. For the solenoidal component the error surface is thus defined at

each point of the image domain as:

� 	���
� ����� �"� � � � � � . �� ����� . �� ������ ����� & 2 � � ������
 (37)

where �� ������ is an estimate of the irrotational increment at step � . This error surface gathers

the main reconstruction errors due to the solenoidal component. Similarly the error surface

corresponding to the irrotational component is defined as:

� ������ ����� ��� � � � � � . �� ����� . �� 	���
� ����� & 2 � � ������0 (38)

5.4.2 Extension to a characteristic surface

The quality of the modelization depends on the accuracy of the discrete approximation of the

divergence and curl maps. To achieve the best approximation with a limited number of particles,

many particles should be used to describe areas with strong divergence or vorticity and only few

of them for the rest of the image. The surface error, as defined by (37) or (38), can help to

guide a particle toward a new location in accordance with its nature (vortex or source). However

a given particle can be guided toward an inappropriate location when the error surface reveals

errors associated to the two irrotational and solenoidal components and not only to one of them.

In order to overcome this problem, we have an additional term for each error surface. This term

takes into account the amount of estimated vorticity or divergence. Particles are then encouraged

to go toward locations of high error magnitude associated to high concentration of vorticity or

divergence. These two kinds of surfaces are normalized and combined to create two global error

surfaces for the solenoidal and the irrotational parts:

� 	���
� ����� � � � 	���
� ����� & � . � curl � � � ����� & � 
 (39)

and

� ������ ����� � � � � ���� ����� � � . � div �� � ����� & � 0 (40)
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Finally, in order to restrict the displacements of the different particles to localized areas, we

combine these functions with an a priori on the particles location.

5.4.3 A priori probability distribution for particles locations

Considering 	
� � �� the vector denoting the location of particle � at step � , we propose to fix a

distribution of 	
� � ���� � , knowing 	 � , where 	 � represents the set of the � positions � 	 � � �� 
#0 0 0 
 	 ��� �� �

(where � equals � or 
 ) at step � . We will assume that the associated probability density function

is Gaussian, defined as follows:

	
� � ���� � + 	 ���

� � 	 � � �� 
�� � � �� ��0 (41)

The standard deviation � � � �� is set to the distance between 	
� � �� and the closest center among

� 	
��� �� � � � �
	�����	 � 	 �
�� � . Let us note that this distribution takes into account the previous location of

the particle through a Gaussian prior of mean 	
� � �� but also the dependency between 	

� � ���� � and all

the other particles through � � � �� .

5.4.4 Conditional version of the probability distribution

Combining the a priori distribution � ��� 
����� � � � � defined above with the surface described before,

denoted
� � in the general case and characterized by (39) or (40), we can define a conditional

probability distribution function of a particle 	
� � ���� � given the others:

� ��� 
����� � � � � 	 � � ������� � � ������0 � ��� 
����� � � � � ����� �� � � � � ������0 (42)

This pdf balances an a priori for the location of one given particle (whose role is to confine the

particle to stay in a certain area between two iterates) and the information brought by the char-

acteristic surface (associated to all the particles locations) in the neighborhood of this position.

In order to adjust optimally the particles positions we propose to shift each center 	
� � �� toward

the nearest mode of the surface � � � � . We present in the next section the methodology used to

shift each center.

5.4.5 Shifting the particles toward the pdf modes

Mean shift procedure The mean shift procedure was first presented by [22], extended by

[8] and popularized in image processing by [11]. It describes how to shift iteratively a point

toward the nearest mode of a probability distribution function. This procedure relies on a non

parametric estimate of the gradient of the underlying density function.
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The value of a density function can be estimated at a point using the sample observations

that fall within a small region around this point. In fact, given a sample � � 
#0 0 0 
�� � , a kernel

density estimate can be used to represent the density as follows:

�� � ����� � #� � � �� �	� �
� � � 2 � �� � 0 (43)

A kernel function
�

is an R � 
 R application which is generally symmetric, bounded and such

that � ���� � � ������ �
� # . The kernels considered here are radial functions such that
� �����6�

� � ����� � � .
From expression (43) the gradient of the estimated density reads:

�� � � ����� � � �� � ����� � #� � � �� ��� �
� � � � 2 � �� �

� $
� � � � � ��

��� �
��� 2 � � � �	� ��



 � 2 � �� 



 � �

� $
� � � � � � ��

��� ��

��



 � 2 � �� 



 � ����������

�� �	� �
� � 


��



 � 2 � �� 



 � �
��
��� ��


� 



 � 2 � �� 



 � � 2 ��������� 

where 
 is a function such that 
 ���9�	� 2 � � ��� � and � is a kernel defined as �	�����	��� 
 � ����� � � ,with � normalization constant. We can recognize in the first bracket the density at � estimated

with the kernel � :

����9����� � �
� � � ��

�	� ��

��



 � 2 � �� 



 � �

and the so-called mean shift vector in the second bracket:

 � 	 ! ����� �
��
��� �
� � 


��



 � 2 � �� 



 � �
�� ��� ��


� 



 � 2 � �� 



 � � 2 � 0 (44)

It follows that:  � 	 ! �������
�� � � ���������9����� 0
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The mean shift vector (44), which is the difference between the weighted mean evaluated with

the kernel � and the center of the kernel, can then be seen as a normalized estimate of the pdf

gradient. Because this mean shift vector gives at every point the direction of the maximum

increase of the density function, an iterative process naturally arises. It consists in moving

iteratively the kernel center � following  ! 	 � ����� until a stationary point (i.e. zero gradient) of

the underlying density is found. The process is convergent if the kernel
�

has a convex and

decreasing profile � (see [11]).

Kernel density estimate of the conditional distribution To apply the mean shift procedure

to the surface � � � � we first need to represent it as a kernel density estimate. Let � represent a

pixel coordinate in the image domain
�

. The value � � � � � � � can be computed for each � using

formula (42) where
� � � � � is given by (39) or (40). A non parametric estimate of the conditional

distribution may then be obtained, expressed as a weighted average of the observations that fall

within the window of
�

:

�� � � 
 ���� � � � � 	 � � ����� �
�
���


 � � � � � � � � � � 2 �� �
�
���


 � � � 2 �� � 0 (45)

Note here that the denominator does not depend on � , since the pixels 
 are disposed regularly

on the image and we assume that
�

is chosen independently from � . We can then see (45)

as a density estimate of the form (43), where each possible value � is weighted by � � � �6�� � 
�� � � ����
	�� � ��
�� �� � . This remark is important since it will allow us to apply a modified expression of

the mean shift procedure [12], as described in the next paragraph.

Application of the mean shift procedure These weights � � � � can be included in the expres-

sion of the mean shift vector (44) as follows:

 � 	 ! ����� �
�
���


 � � � � � 

��



 � 2 �� 



 � �

�
���



� � � � 


� 



 � 2 �� 



 � � 2 � 0 (46)

The iterative process to a stationary point of the underlying density estimate remains the same,

using this modified expression for the mean shift vector. Note that the convergence of the mean

18

H
A

L author m
anuscript    inserm

-00140892, version 1
H

A
L author m

anuscript    inserm
-00140892, version 1



shift process can also be demonstrated when such a positive weight is associated to each data

[12].

The last step before applying the mean shift procedure is the choice of the kernel
�

. We

choose the Epanechnikov kernel, given by
� ���9�!� ���� � � #$2 " �� & for + � + ��� � . It is known

to be optimal under some conditions, minimizing the asymptotic mean integrated square error

between the density and its estimate. Moreover, it is practical and interesting since the derivative


 of its profile is simply uniform (box function kernel) , which makes the evaluation of the mean

shift vector (46) simple and fast. Besides, the choice of the window size is crucial. Different

choices can be made. In this work, we have settled adaptive window sizes. They are fixed to the

distance of the nearest particle and will be adapted after all centers have moved. Such a choice

makes sense in our case. As a matter of fact, for distant particles only a rough and smooth

estimate of the pdf function is needed whereas for close particles an accurate estimate of the

density is at the opposite required to approximate at best the vorticity and divergence maps.

We finally apply the mean shift procedure to the � . 
 centers of the basis functions (vortex or

source particles) involved in our motion field modelization. Through this process, each particle’s

center 	
� � �� is shifted toward the nearest mode of the conditional estimated density

�� � � 
����� � � � � 	 � � .
5.5 Overall estimation scheme

For each level of the multiresolution image pyramid, the overall estimation scheme consists in

an alternate updating of the different unknowns. It is composed of the following two steps,

repeated in turn until convergence:

1. For a given set of particles at fixed locations 	 � � � 	 � � �� 
#0 0 0 
 	 ��� �� � , the strength coefficients

and the influence domains attached to the particles are estimated through the general-

ized conjugate gradient optimization described in section 5.3. It gives an estimate of the

incremental field �� � .
2. Using the information given by 	 � and �� � , the vortex and source particles locations are

shifted toward the nearest local mode of the conditional pdf (42). These shifts are realized

applying the mean shift procedure as described in section 5.4, and lead to a set of new

positions 	 ��� � � � 	 � � ���� � 
#0 0 0 
 	 ��� ���� � � .
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The whole process is stopped when the divergence and vorticity reach a certain stability. This

criterion is expressed as:�
� div �� ��� � 2 div �� � � �

� div �� � � � � � . �
� curl �� ��� � 2 curl �� � � �

� curl �� � � � � � 0
6 Experimental results

We have carried out some experiments on synthetic data and on real world images to demon-

strate the relevance of the proposed method .

6.1 Synthetic examples

Synthetic field created from vortex and source particles We first present a synthetic exam-

ple composed of a rotation, a divergent motion (source), and a combination of a vortex and a

sink. The synthetic field is presented in figure 3 with the corresponding vorticity and divergence

maps. The example has been created with 2 vortex particles and 2 source particles.

(a) (b) (c) (d)

Figure 3: Synthetic example with ground truth. (a) PIV image; (b) Parametric motion field;

(c) Vorticity map (mean absolute vorticity = # 0 � # � � � ); (d) Divergence map (mean absolute

divergence = # 0 � # � � � ).
In order to create a test sequence with ground truth the synthetic vector field has been ap-

plied to an image of a fluid flow seeded with particles. That kind of images is currently used

to estimate flow velocity in experimental fluid mechanics. The corresponding correlation based

motion estimation techniques are usually referred as PIV techniques (Particle Image Velocime-

try). We present results obtained on the pair of images composed of the original particle image

and the backward registered image according to the considered motion field. We first show on

figure 4 the result obtained when the true positions of the 4 particles are known. The strength of

each particle has been initialized to zero and the influence to the distance to the nearest particle.
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We can observe that the estimation method allows to estimate very accurately the actual motion

field and the vorticity and divergence carried by each particle. The mean absolute values of vor-

ticity and divergence (see the legend figure 4) can be compared to the true ones (see the legend

figure 3).

(a) (b) (c)

Figure 4: Result with known initial positions of the particles.(a) Estimated motion; (b) Esti-

mated vorticity (mean absolute value = # 0 � # � � � , mean absolute error = # 0 � # � � � � ; (c) Esti-

mated divergence (mean absolute value = # 0�� # � � � , mean absolute error =
$ 0�� # � � � ).

We show in figure 5 the estimation result when the algorithm is initialized with several

perturbed positions in the neighborhood of the true centers of the 4 synthetic particles. Even if 4

particles are necessary to represent the motion field, we wanted here to test also the robustness

to an over-particles representation (12 particles here). We can observe on figure 5 that the mean

shift procedure coupled with the estimation of the strength and influence parameters allows to

converge iteratively toward the actual positions. All the supplementary particles converge to the

same location. On figure 6 we picture the evolution of the divergence and vorticity maps during

the whole estimation process. In this case five successive alternate iterations have been needed to

reach convergence. This simple experiment demonstrates the robustness of the particles location

adaptation with respect to an over-representation and also to an inaccurate initialization, even if

the mean absolute errors for the estimation of the divergence and the vorticity are a bit higher

for this perturbed case (see the legend of figure 6).
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(a)

(b)

(d)

(c)

(e)

Figure 5: Result with perturbed initial positions of the particles. (a) Estimated motion field;

(b) The initial positions of the vortex particles are indicated in white, positions at the end

of the algorithm in black; (c) Estimated vorticity (mean absolute value = # 0 � # � � � , mean

absolute error = � 0 � # � � � ); (d) Initial and final positions of the source particles; (e) Estimated

divergence (mean absolute value = # 0�� # � � � , mean absolute error = � 0�� # � � � ).
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Evolution of divergence maps

Figure 6: Evolution of the estimation of the vorticity and divergence maps along the iterations

of the two steps scheme (estimation of the vorticity or divergence carried by each particle /

adjustment of the centers by the mean shift procedure).

Synthetic field created from a real fluid flow We present a second synthetic example created

from a complex motion field describing the 2D evolution of a turbulent wake behind a circular

cylinder. The field has been obtained by simulation of the Navier-Stokes equation with a DNS

method (Direct Numerical Simulation) [27]. A synthetic pair is created from one initial image

of particles (see figure 7(a)). The known displacement and the associated vorticity map are

represented figure 7(b,c). To compare the accuracy of the different results, we compute the

mean absolute vorticity over the image and the mean absolute error between the true scalar vor-

ticity and the estimated one. We first show in figure 8 the result obtained by a dense estimation

method dedicated to fluid flows [13]. The resulting motion field is presented in figure 8(a),

with the corresponding vorticity map figure 8(b). We can remark that the motion field provided

by the dense estimation method shows a profile which is very close to the ground truth, but local

estimation errors appear on the recovered vorticity map.
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(a)

(b) (c)

Figure 7: Synthetic example obtained by DNS ( Direct Numerical Simulation). (a) PIV image;

(b) Synthetic motion field obtained by simulation of the Navier-Stokes equation; (c)Vorticity

map (mean absolute vorticity = � 0 � # # � ).

(a) (b)

Figure 8: Result obtained by a dedicated dense method (see [13]) (a) Estimated vector field;

(b) Associated vorticity map (mean absolute vorticity = � 0 � # � $ , mean absolute error = � 0 � # $ ).
Figure 9 shows the result obtained by our parametric method with a initial uniform grid of

30*50 vortex particles. Note that the positions are kept fixed on the grid during the estimation

process, since the grid is dense and the vorticity regions are already recovered with particles. The

global transportation harmonic field has been first extracted (see figure 9(a)). This component

has been estimated with a standard dense motion estimator associated to a strong regularization
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coefficient and removed from the image sequence. The values of the mean absolute vorticity

and the mean absolute error (see the legend figure 9) can be compared to the dense method result

(see the legend figure 8). The dense method seems to be more noisy and subject to small local

errors, this can explain the fact that the corresponding mean absolute error is higher.

(a) (b)

(c) (d)

Figure 9: Result with a high number of vortex particles (a) Estimated transportation com-

ponent; (b) Estimated solenoidal vector field; (c) Complete estimated vector field, sum of

the transportation and solenoidal components; (d) Vorticity map (mean absolute vorticity =

� 0 � # ��� , mean absolute error = � 0 � # ��� ).

To illustrate the results that can be obtained considering a much lower number of particles,

we show an experiment carried out with a minimal number of vortex particles. Only 6 particles

have been used to estimate the motion field presented figure 10(b), with initial positions fixed

on a central line on the image. After adding the transportation component, the corresponding

motion field is shown figure10(c). The vorticity distribution associated to the 6 vortex particles

is represented figure 10(d). We can remark that even if the estimated vorticity map consists

in a crude representation of the real vorticity map (see figure 7(c)), the corresponding motion

field is close to the real one. The solution is less subject to local estimation errors, leading to a

smaller mean absolute error for the vorticity (see the legend of figure 10). This result highlights

the fact that a coherent motion field can be recovered by our method with only a very few number
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of particles. This low dimensional representation of the motion field enables a meaningful and

direct interpretation of the organization and location of vortices in the flow. It can also be pointed

out that such a low dimensional representation can be estimated with a computational cost much

lower than the dense method. This is no longer the case for a representation with a very large

number of particles, where the computational cost of the proposed method is higher.

(a) (b)

(c) (d)

Figure 10: Result with a minimal number of vortex particles (a) Estimated transportation com-

ponent; (b) Estimated solenoidal vector field; (c) Complete estimated vector field, sum of the

transportation and solenoidal components; (d) Vorticity map (mean absolute vorticity = � 0 � # # ,
mean absolute error = � 0 � ��� # ).
Synthetic images of a 2D turbulent flow This example deals with synthetic images of par-

ticles transported by a complex 2D turbulent flow with many interacting vortices. The true

displacement and the corresponding vorticity map are shown figure 11(a,b). This flow has

also been simulated through a DNS technique [27]. The motion is purely rotational and there

is here no transportation component. We show in figure 11(c,d) the result obtained by the

dense estimation method [13]. The solution is compared to our parametric estimation result,

with a grid of 20*20 particles (see figure 11(e,f)). A global quantitative comparison can be

done looking at the values of mean absolute vorticity and mean absolute error (see the legend of

figure 11). The mean absolute error is lower for the dense estimator, while our method provides
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a solution with a mean absolute vorticity closer to the truth. We have performed a finer compar-

ison, in order to highlight more precisely the differences between these two different estimators.

We plot on figure 12 the contour lines associated to a given value of absolute vorticity, for the

reference map and the two different estimation methods respectively. These contours stress the

fact that the dense method is more subject to small local errors, while our parametric estimator

allows us to recover large scale vorticity structures and tends to smooth the fine scale structures.

These small structures are present in the solution obtained from the dense estimator, neverthe-

less they are very difficult to separate from high frequencies generated by estimation errors (see

figure 12). If one aims at characterizing large and medium vortical structures of the flow, the

low dimensional estimator appears to be much more convenient to use. In order to confirm fur-

ther this assertion, we have plotted on figure 13 two vorticity profiles for two given lines in the

image. On the graphics shown in this figure we have superimposed the vorticity profile obtained

by the dense optical flow method and the parametric motion estimator to the actual vorticity

profile. We can see that the profiles corresponding to the dense estimation are very close to the

solution but present fine scale estimation errors, while the parametric solution profiles present

indeed a smoothed version of the solution. The parametric estimation does not allow to capture

all the details of small scales of vorticity, but enables to represent quite accurately the large

scale components of the flow. This is a precious property for analyzing or characterizing the

large eddies of the flow.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: 2D turbulent flow. (a) True motion field; (b) Vorticity map (mean absolute vortic-

ity = � 0 ��� ��� ); (c) Motion field estimated by a dedicated dense method [13]; (d) Associated

vorticity map (mean absolute vorticity = � 0 ����� � , mean absolute error = � 0 � $�� � ); (e) Motion

field estimated by the proposed technique; (f) Associated vorticity map (mean absolute vor-

ticity = � 0 ��� $ , mean absolute error = � 0 � ��� � ).
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(a) (b) (c)

Figure 12: Vorticity contours lines (for + curl � + � � 0 � � ). (a) Reference contours; (b) Dense

method contours; (c) Parametric estimation contours.
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Figure 13: Vorticity profiles along two lines (represented on the left images). The green, red and

blue curves show the vorticity profiles obtained respectively for the parametric estimator, the

dense estimator and the actual motion field.
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6.2 Real world sequences

The proposed estimator has been applied on real world images of different application domains.

We show in the following sections results on Meteosat meteorological images, experimental

fluid mechanics images, and on medical images.

6.2.1 Meteorological data

Infrared channel of Meteosat The first example is a sequence of the infrared channel which

shows a large depression over the Atlantic Ocean (figure 14). In this sequence we aimed at

estimating the large vortex in the left part of the image. To that end 15 vortex particles have

been placed manually in the vicinity of the depression. The result are presented in figure 15. The

Figure 14: Meteosat image, infrared channel.

estimated transportation component is represented in figure 15(b). The estimated solenoidal

component and the underlying estimated vorticity are plotted in figures 15(c) and 15(d). It

can be pointed out that the observed depression motion corresponds to an elongated vortex. This

situation is modelized as a tripolar vortex. Such a situation emerges from 2D turbulence.
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(a) (b)

(c) (d)

Figure 15: Result on a sequence of the infrared channel of Meteosat. (a) Image of the depres-

sion over North Atlantic; (b) Estimated transportation component; (c) Estimated solenoidal

component; (d) Corresponding vorticity map.

Water vapor channel of Meteosat The second example concerns the estimation of a diverg-

ing motion from a pair of images of the water vapor channel of Meteosat. The result obtained is

shown on figure 16. We can see that with only few source particles we have been able to recover

the diverging motion corresponding to the apparent motion of a convective cell. Figure 17(a)

presents the initial particles locations and their estimated final positions. This example shows

the efficiency of the mean shift process to estimate the optimal particles locations at the center

of the divergent motion. The evolution of the divergence map estimation with the successive

particles locations and their associated parameters (strength, influence) is illustrated in figure

17(b). The extracted transportation component and the resulting diverging motion field are

presented in figures 16(c) and 16(d).
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(a) (b)

(c) (d)

Figure 16: Result on images from the water vapor channel of Meteosat. (a)-(b)First and sec-

ond images; (c) Estimated harmonic transportation component; (d) Final estimated diverging

field.

(a)

�
=0

�
=1

�
=2

�
=3

(b)

Figure 17: Particles locations adjustment illustration. (a) The initial particle positions are

plotted on the image in white color, the final locations after convergence are plotted in black

color; (b) Evolution of the estimated divergence map (convergence after three iterations).

32

H
A

L author m
anuscript    inserm

-00140892, version 1
H

A
L author m

anuscript    inserm
-00140892, version 1



6.2.2 Experimental fluid mechanics images

The method has been experimented on images showing a big vortex launch at the tip of an

airplane wing. The flow is here seeded with smoke and illuminated by a pulse laser light sheet.

The figure 18 outlines the temporal consistency of the recovered solution. On this figure we

have represented the recovered vorticity maps superimposed on the original smoke images, and

the corresponding motion fields. As it can be observed on this figure, the method enables to

recover a coherent principal vortex and a secondary vortex turning around the main one. These

results have been obtained with a set of 15 vortex particles.

(a)

(b)

Figure 18: Vortex launch at the tip of an airplane wing (a) Vorticity maps estimated with a set

of 15 vortex particles, superimposed on successive frames; (b) Estimated motion fields.

6.2.3 Medical imaging

The last application domain investigated in this work corresponds to a non-rigid registration is-

sue of medical images. This is a very active field of research and numerous methods have been

proposed so far. We refer the reader for comprehensive surveys on this area [30, 32, 41, 46].

This process aims at estimating a non-linear geometric transformation that puts two images

into correspondence. Beyond rigid transformations, non-rigid registration is needed when de-

formable phenomena are observed. Application field of non-rigid registration are numerous:
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motion computation of beating organs (heart), estimation of inter-subject anatomical variabil-

ity (construction of anatomical atlases), monitoring of changes over time (evolving lesions in

multiple sclerosis disease), etc.

Non-rigid registration methods based on image luminance can usually be classified accord-

ing to the image similarity and the deformation field regularization. Most often, methods tend

to regularize deformation fields using a Gaussian regularization [40] (demon’s), a first-order

or second-order regularization [24] (penalization of the deformation discontinuities) or an in-

trinsically regularized deformation model [37] (B-splines deformation fields for instance). All

these methods tend more or less to penalize the vorticity and the divergence of the motion field.

This appears to be problematic when matter apparition or dissipation is observed. Such a sit-

uation undergoes a highly divergent field that has to be accurately recovered, for instance for

monitoring applications of anatomical changes over time.

For this application we rely on the standard brightness consistency equation � � �� � ��� � , as

the continuity equation is no longer valid in such a context. The equations of the estimation

problem remain similar, except that the divergence terms are now removed.

The method has been tested on magnetic resonance images (MRI) of a patient suffering from

multiple sclerosis (MS). The characterization of the lesion growth in MR images is important

to assess the evolution of the disease. Two ��� T2 were acquired within � months and rigidly

registered [31]. The MR volumes have been registered with a ��� rigid transformation and an

axial
$ � slice has been extracted. The lesion appears as a white stain in the left part of the brain

at � 	 . Its growth is visible at � 	 + � months on figure 19(d).

The source particles have been initialized manually in the vicinity of the lesion. As shown

on figure 20(a) the estimation process is not very sensitive to this initialization since the par-

ticle locations adjustment process allows to guide the particles toward the region of interest. A

diverging motion has been estimated, accounting for the lesion growth. The corresponding reg-

istered image is represented in figure 20(c). The difference image between the original and the

deformed image (figure 21(a)) can be compared with the difference image after registration

(figure 21(b)). The error due to the lesion has been removed by the estimation method.
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(a) (b) (c) (d)

Figure 19: Evolution of a multiple sclerosis lesion (a) T2-MR slice at time � 	 ; (b) T2-MR

corresponding slice at time � 	 + � months; (c)-(d) Zoom centered on the lesion.

(a) (b) (c)

Figure 20: (a) Automatic shifting of the source particles toward the region of interest. Black

points represents the initial locations of the source particles, white points the final optimal posi-

tions; (b) Zoom on the resulting divergent field, centered in the lesion; (c) Registered image

(image at time � 	 + � months registered toward image at time � 	 ).

(a) (b)

Figure 21: (a)Difference between the two images after rigid registration; (b)Difference after

non-rigid registration. The lesion growth has been captured by the non-rigid registration.

Remarks on computational complexity

Before concluding let us do some remarks about the computational cost of the method. The

most costly part of the estimation concerns the particles location adjustment. Considering a
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great number of particles leads to a computational cost that is higher than a dense motion es-

timation. Nevertheless, considering a dense fixed grid of particles leads to a reduction of the

computational cost (conjugated gradient applied on the system of particles). If only a small

number of particles is considered, then the estimator is quite efficient, and obviously faster than

a dense estimation. Accurate measures of performance are nevertheless difficult to settle since

the codes used are research codes which are not primary designed for an efficient computational

objective.

7 Conclusion

In this paper we have presented an optical flow estimator dedicated to image sequences depicting

fluid flows. The proposed estimator provides a low dimensional parametric representation of

fluid motion. This parameterization has been obtained through a peculiar discretization of the

divergence and the vorticity maps by means of adapted basis function centered at elements

named particles. To handle the associated estimation problem, we have proposed an efficient

strategy based on the coupling of a generalized conjugated gradient and a mean shift process. It

must be pointed out that this method requires only few parameters. It allows as well to recover

an accurate dense motion field with a great number of particles disposed over the whole image

domain, or to estimate a simplified motion representation of the flow, corresponding to its large

scale components. Motion estimation in targeted local areas is also authorized, which is not

possible in a dense estimation context. This method dedicated to fluid flows can also be applied

to deformable phenomena, in a medical context for instance. A natural extension of this work

consists in a temporal tracking of the fluid flow velocity fields along the image sequence, only

manageable from such a low dimensional representation of the dense motion field. The tracking

can then be done within a sequential Bayesian filtering framework, with a continuous evolution

law adapted to fluid flows and discrete error measurements provided by the image sequence

[17].
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