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Abstract

In functional magnetic resonance imaging (fMRI) data analysis, effective connec-
tivity investigates the influence that brain regions exert on one another. Structural
equation modeling (SEM) has been the main approach to examine effective con-
nectivity. In this paper, we propose a method that, given a set of regions, performs
partial correlation analysis. This method provides an approach to effective connec-
tivity that is data-driven, in the sense that it does not require any prior information
regarding the anatomical or functional connections. To demonstrate the practical
relevance of partial correlation analysis for effective connectivity investigation, we re-
analyzed data previously published [Bullmore, Horwitz, Honey, Brammer, Williams,
Sharma, 2000. How good is good enough in path analysis of fMRI data? NeuroIm-
age 11, 289–301]. Specifically, we show that partial correlation analysis can serve
several purposes. In a pre-processing step, it can hint at which effective connections
are structuring the interactions and which have little influence on the pattern of
connectivity. As a post-processing step, it can be used both as a simple and visual
way to check the validity of SEM optimization algorithms and to show which as-
sumptions made by the model are valid, and which ones should be further modified
to better fit the data.
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1 Introduction

Numerous studies have shown that the analysis of blood oxygen level depen-
dent (BOLD) signals obtained through functional magnetic resonance imaging
(fMRI) provides accurate maps of where functional processes may be instanti-
ated in the brain (Frackowiak et al., 2004; Huettel et al., 2004). More recently,
some researchers have also suggested that fMRI data contain evidence of how

the brain orchestrates the interactions between regions to implement cognitive
functions. A new field has consequently emerged in fMRI data analysis, whose
goal is to investigate effective connectivity, i.e., the influence that regions exert
on one another (Horwitz, 1994; Friston, 1994; Horwitz et al., 1999).

To date, structural equation modeling (SEM) has been the main approach to
examine effective connectivity (McIntosh and Gonzalez-Lima, 1994; McIntosh
et al., 1994; Büchel et al., 1999; Bullmore et al., 2000). Starting from a set of
D regions, a structural model is determined a priori between these regions,
based on existing anatomical and functional information regarding the network
under investigation. The model defines the time course zi(t) of each region i,
i = 1, . . . , D, as a linear function of other regions’ time courses,

zi(t) =
∑

j 6=i

λijzj(t) + εi(t).

In this expression, each path coefficient λij quantifies the strength that region
j exerts on region i. Some coefficients are constrained to zero, while others
remain free to vary. Setting a structural model is equivalent to defining a
directed graph, i.e., (i) identifying nodes, each of which stands for a brain
region, (ii) setting arrows between these nodes, where an arrow j → i is
present if the corresponding coefficient λij is not constrained to zero, and (iii)
determining the intensity λij of each arrow j → i. Arrows of a graph are
usually thought to represent anatomical connections that may be functionally
expressed during the task under consideration. In this setting, there is thus
an anatomical connection underlying each functional interaction.

Most SEM techniques require prior completion of Steps (i) and (ii) described
above. They then estimate all unconstrained path coefficients from the data.
The present study focuses on Step (ii), which remains a real challenge. A
common rule is to resort to known anatomical information: consideration of
existing structural pathways makes it possible sometimes to narrow the set
of potential connections between regions. However, this procedure does not
usually suffice to provide a fully specified structural model; the available in-
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formation must then be completed with further assumptions. Such hypotheses
usually originate from functional considerations, but no rule exists as to how
they should be incorporated into the modeling or their bearing on the ac-
curacy and robustness of the method. Indeed, most studies assume that the
model resulting from Steps (i) and (ii) proposed for SEM analysis is true and
exclusively focus on estimating the path coefficients. Very few methods con-
fer any kind of feedback relative to the validity of the various assumptions
introduced into the structural model during Step (ii). The researcher is hence
left with little clue with respect to which of his or her structural/functional
hypotheses are supported by the data and the influence of these hypotheses
on the conclusiveness of the answers provided to his or her questions by the
data.

Recent developments have attempted to devise methods to select the most
appropriate structural model within a set of models (Bullmore et al., 2000).
Such approaches must deal with very complex issues. Most importantly, the
complexity of effective connectivity roughly increases exponentially with the
number of regions. Working with D regions in SEM can bring a huge number
of graphs—potentially up to 4D(D−1)/2. For a network of merely D = 5 regions,
this amounts to searching a space of 410 ≈ 106 potential graphs. Consequently,
algorithms that perform model comparison have to resort to deterministic,
local, and stepwise procedures to search the space of models. In contrast, di-
rected graphs are very complex structures with global constraints that cannot
be determined locally. For instance, whether a graph is acyclic cannot be de-
termined by observation of one arrow at a time but requires consideration of
the whole graph. Whether an “optimized” structural model obtained through
SEM is indeed optimal (and not merely a local extremum) remains an open
issue. So is the question of how probable other potential graphs are. Given a
structural assumption (e.g., stating that region a has an effect onto region b),
it would be of interest to be able to determine how much evidence from the
data supports it regardless of the rest of the model. Bullmore et al. (2000)
proposed a method to provide a structural model that “best fits” the data
(according to some criterion) as the result of a blind search, as well as assess-
ing whether a given structural model, selected on anatomical and functional
considerations prior to data analysis, could be discarded as being significantly
different from this “best fit” model. The algorithm calculated a global mea-
sure of discrepancy between the best fit model and the theoretically proposed
graph, providing some kind of feedback with regard to the relevance of the
set of assumptions used to construct the theoretically preferred model. How-
ever, the validity of local structural patterns of effective connectivity cannot
be assessed separately. Providing such a local assessment would prove to be a
convenient tool to improve a theoretical model in the face of the actual data:
Which connections of the proposed structural model should be kept? Which
ones should be removed? To our knowledge, no approach yet allows for such
a detailed feedback.
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Here, we propose a method for solving this SEM problem by using partial cor-
relation. Examining a network of D regions, partial correlation is considered
as the conditional correlation between any two regions with respect to the set
of D − 2 remaining regions. We propose to apply partial correlation analysis
to remove mutual dependencies or common influences from other brain areas.
Partial correlation has already been used in fMRI data analysis to investigate
functional connectivity (Salvador et al., 2005a,b; Marrelec et al., 2006). Such
a measure provides a convenient summary of conditional independences and
has striking graphical properties (Whittaker, 1990) that make it relatively
easy to compare to structural models. Also, in Marrelec et al. (2005a), theo-
retical considerations led us to hypothesize that partial correlation might be
a relevant measure of effective connectivity. In this paper, we go one step fur-
ther in this direction and provide a direct comparison of partial correlation
and SEM analyses. Specifically, we advocate that partial correlation analysis
can be used for two purposes: (i) to make educated guesses regarding potential
functional connections that should be included into, or could be removed from,
a structural model prior to an SEM analysis; and (ii) once an SEM model has
been selected, to provide convincing feedback concerning the validity of the
local hypotheses used to construct the model, as well as the robustness of the
SEM algorithm. In order to illustrate the main features of partial correlation
analysis, we resort to a dataset on which SEM analysis has already been per-
formed and published (Bullmore et al., 2000). This dataset, which investigates
semantic decision and subvocal rehearsal, was examined with regard to effec-
tive connectivity and is thought to be a good benchmark on which to assess
the validity of the method proposed here.

The outline of this paper is as follows: In the next section, we introduce the
dataset and the structural model used. Section 3 demonstrates that it is possi-
ble to infer the partial correlation matrix from the data and shows the bearing
of this matrix on setting the structural model. Finally, Section 4 shows that
partial correlation analysis can also be applied as a post-processing analysis
to check the robustness of SEM algorithms, and to make local comparisons
between the information incorporated into the structural model and the struc-
ture actually contained in the data. Further issues are raised in the discussion.

2 Study presentation

2.1 General background

The starting point for the present study originate from Bullmore et al. (2000)’s
study in which group fMRI data of a task requiring semantic decision and
subvocal rehearsal were analyzed using classical activation detection methods.
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Here, we only introduce details that are relevant for our purpose. Further
topics, including issues raised by the group analysis, are developed in the
discussion.

Based on the activation maps generated and previous anatomical knowledge,
the following D = 5 left hemispheric cortical regions of interest were selected:
the ventral extrastriate cortex (VEC), the prefrontal cortex (PFC), the supple-
mentary motor area (SMA), the inferior frontal gyrus (IFG), and the inferior
parietal lobule (IPL). Thus, the anatomical network considered is the follow-
ing:

R = {VEC, PFC, SMA, IFG, IPL} .

Each region was then associated to a time course for a total of five time courses
of length T = 96 time samples. The sample correlation matrix corresponding
to these time courses, given in Bullmore et al. (2000), is reported in Table 1.
The time courses were a groupe average over the subjects and the correlation
matrix corresponds to the correlations of the averaged time series.

(1) (2) (3) (4) (5)

VEC PFC SMA IFG IPL

(1) VEC 1

(2) PFC 0.661 1

(3) SMA 0.525 0.660 1

(4) IFG 0.486 0.507 0.437 1

(5) IPL 0.731 0.630 0.558 0.517 1

Table 1
Sample correlation matrix of the real data set examined in Bullmore et al. (2000).

2.2 SEM analysis

Bullmore et al. (2000) first proposed a plausible structural model based on
anatomical and functional considerations; the only structural connection for
which they could find no evidence in the literature was the VEC–SMA con-
nection. Because removing only two arrows (VEC→SMA and SMA→VEC)
induced a number of path coefficients that was too high and prevented SEM
analysis, further hypotheses were introduced. All the subsequent decisions to
remove or keep other links were based on purely functional assumptions. The
resulting model, henceforth referred to as the “theoretically preferred model”
(or “tp”), is represented in Figure 1, left. Using SEM, the six path coeffi-
cients of this model (λ15, λ21, λ32, λ43, λ51, and λ54) were then estimated (see
Table 2).

5



λ̂ (1) (2) (3) (4) (5)

VEC PFC SMA IFG IPL

(1) VEC 0 0 0 0 0.80

(2) PFC 0.59 0 0 0 0

(3) SMA 0 0.60 0 0 0

(4) IFG 0 0 0.31 0 0

(5) IPL -0.16 0 0 0.52 0

µ̂ (1) (2) (3) (4) (5)

VEC PFC SMA IFG IPL

(1) VEC 0 0 0 0 0.61

(2) PFC 0.50 0 0 0 0

(3) SMA 0 0.58 0 0 0

(4) IFG 0 0.43 0 0 0

(5) IPL 0 0 0.27 0.58 0

Table 2
Estimated path coefficients for the theoretically preferred (top) and the best fit
models (bottom) (from Bullmore et al., 2000).

A procedure implemented in the LISREL proprietary software package 1 was
then run. Using the sole correlation matrix given in Table 1, it calculated a
“best fit” model from the data, henceforth referred to as such (or “bf”). The
algorithm both proposed a structural model and fitted its path coefficients.
The resulting model, schematized in Figure 1, right, shared some structural
similarities with the theoretically preferred model, such as the VEC→PFC,
PFC→SMA, and IFG→IPL pathways. By contrast, other features also dif-
fered. Some connections that were present in the theoretically preferred model
were not selected in the best fit model, such as VEC→IPL and SMA→IFG,
while connections that were absent in the theoretically preferred model ap-
peared in the best fit model, such as PFC→IFG and SMA→IPL. Accordingly,
the best fit model also had six path parameters: µ15, µ21, µ32, µ42, µ53, and
µ54. The estimated values of these coefficients are given in Table 2.

The theoretically preferred and the best fit models differed both structurally
(different set of arrows) and numerically (different path coefficients for arrows
that are common to both models). While the former was based on, and incor-

1 http://www.ssicentral.com/lisrel/
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porated, cognitive evidence, the latter was purely data-driven. Consequently,
its relation with, as well as its interpretation in the light of, existing cogni-
tive knowledge were not so obvious. As a result, a method was proposed to
assess whether the theoretically preferred model really differed from the best
fit model. Despite the fact that both models were different, Bullmore et al.
(2000) eventually concluded that the data did not contain enough evidence to
enable one to discard the theoretically preferred model as being significantly
different from the best fit model.

3 Pre-SEM analysis

To demonstrate how partial correlation analysis can provide cogent informa-
tion for structural equation modeling, we now return to one step before SEM
analysis is performed. Specifically, we assume that only Step (i) of the anal-
ysis, i.e., region selection, has successfully been completed, leading to the set
of D = 5 aforementioned regions. We propose a data-driven pre-processing
step, based on partial correlations, that extracts cogent evidence regarding
the structure underlying the data based upon the correlation matrix of Ta-
ble 1.

3.1 Partial correlation

Let z = (zt)t=1,...,T be the BOLD fMRI time courses of the five regions in R,
with each zt further assumed to be a realization of a 5-dimensional Gaussian
variable y = (yi)i=1,...,D of (population) mean µ and covariance matrix Σ.
Partial correlation between two regions i and j, denoted by Πij, is here defined
as the correlation between these two regions conditioned on the set R \ {i, j}
of remaining regions, i.e., (Whittaker, 1990)

Πij = Corr[yi, yj|yR\{i,j}], (1)

The D(D − 1)/2 partial correlation coefficients form the D-by-D partial cor-
relation matrix Π = (Πij), which can readily be calculated from the concen-
tration, or precision, matrix Σ−1 = Υ = (Υij) as (Whittaker, 1990)

Πij = −
Υij√

Υii · Υjj

(2)

for two distinct regions i and j, and Πii = 1.

Estimating Π from the data can readily be performed using a numeric sam-
pling scheme (Appendix A; see also Marrelec et al., 2005b or Marrelec et al.,
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2006). The sample obtained can then be used to approximate estimates of
the partial correlation coefficients. The values of these coefficients can also be
tested against the null hypothesis (H0) that Πij = 0, the sampling scheme then
giving approximations of the coefficient significance levels (see Appendix A).
Classically defining the marginal correlation matrix as Ω = (Ωij) with

Ωij =
Σij√

Σii · Σjj

,

the posterior distribution of this matrix, Pr(Ω|z), can incidentally also be
approximated with the same procedure.

Note that the sampling scheme proposed in Appendix A requires the sample
covariance matrix, whereas Bullmore et al. (2000) only refer to the sample
correlation matrix (reproduced here in Table 1). However, this fact has no
effect on our analysis, since we are not so much interested in the covariance
matrix as in the marginal and partial correlation matrices, i.e., matrices that
are normalized. On this account, working with the sample covariance matrix
or with the sample correlation matrix leads to the same result.

3.2 Results

We used the sampling scheme of Appendix A to compare each marginal and
partial correlation coefficient to zero and to test whether they significantly
differed from 0. More specifically, we tested each coefficient Ωij of Ω against
the null hypothesis (H0) Ωij = 0, and similarly with Πij. The significance
levels for the marginal correlation coefficients were all smaller than 0.001; the
significance levels corresponding to the partial correlation coefficients, denoted
αij, are shown in Table 3. In Figure 2, we represented the corresponding log-
significance levels, − log(αij), in the form of a graph.

(1) (2) (3) (4)

VEC PFC SMA IFG

(1) VEC

(2) PFC 0.002

(3) SMA 0.409 <0.001

(4) IFG 0.188 0.055 0.192

(5) IPL <0.001 0.100 0.045 0.033

Table 3
Inference. Significance levels αij associated with the partial correlation matrix Π

given the data z.
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Examination of the results clearly illustrates the inadequacy of marginal cor-
relation as a way to quantify effective connectivity: all marginal correlations
significantly differ from zero. This is in part due to the transitive property
of correlation; a correlation between two variables can be induced, e.g., by a
common input. This is confirmed by our example. A fully connected model
does not make much sense for the data considered. Any relevant measure of ef-
fective connectivity should therefore have at least one or several values that do
not significantly differ from zero. For instance, since no evidence of an anatom-
ical connection between VEC and SMA was found, no effective connectivity is
expected between the two regions. In contrast, all marginal correlation coeffi-
cients (Figure 2, left) significantly differ from zero (p = 0.001). In particular,
the data still exhibit a marginal correlation between VEC and SMA, Ω13, that
is significant.

By contrast, the graph of partial correlation log-significances is much more
informative (see Table 3). Three links significantly differ from zero at a signif-
icance level of p = 0.01: VEC–IPL, PFC–SMA, and VEC–PFC. Two links are
under or around the p = 0.05 threshold limit: IFG–IPL, SMA–IPL, and PFC–
IFG. Finally, four partial correlation coefficients are above the limit: PFC–IPL,
VEC–IFG, SMA–IFG, and VEC–SMA. Interestingly, the partial correlation
associated with the only absent anatomical connection that was previously re-
ported, VEC–SMA, Π13 does not significantly differ from 0 (p < 0.05). Indeed,
it is the coefficient with the lowest significance level.

Second, the structure of significant and non-significant partial correlations can
be compared to the information introduced into the theoretically preferred
model. The three most significant partial correlation coefficients, VEC–IPL,
VEC–PFC, and PFC–SMA, are represented in the form of directed paths
(VEC�IPL, VEC→ PFC, and PFC→SMA, respectively). Among the signif-
icant links (p ≈ 0.05), one is represented in the structural model (IFG→IPL),
two are not (PFC–IFG and SMA–IPL). The VEC–SMA, VEC–IFG, and PFC–
IPL connections, that have low partial correlations (Π13, Π13, and Π25, respec-
tively) have, consistently, not been kept in the structural model. One non-
significant link has been represented in the structural model (SMA→IFG).
Both resemblances and dissimilarities will be further interpreted later.

4 Post-SEM analysis

In this section, we assume that all SEM analyses described in Bullmore et al.
(2000) and summarized in Section 2 have been conducted. Partial correlation
analysis can now serve two goals. The results previously found can be further
interpreted in the light of the new structural models. These models can also
be used to generate surrogate data where the expected partial correlation
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structure can be compared to the real dataset to test for the validity of the
estimated models.

4.1 Partial correlation vs. SEM inference

The results of the pre-processing step, detailed in Section 3.2, can also be com-
pared a posteriori to the results of the SEM analysis. Indeed, there exists a
striking resemblance between the graphs of partial correlation log-significance
and the SEM analyses as presented in Bullmore et al. (2000). When both
the theoretically preferred and the best fit models agreed, good agreement
was found with partial correlations as well: a lack of connection VEC–SMA,
strong connections IPL–VEC, VEC–PFC, and PFC–SMA. On the other hand,
when both structural models disagreed (e.g., regarding how information flows
from PFC to IPL), partial correlation analysis showed that both models in-
troduced different structural connections (e.g., SMA→IFG for the theoreti-
cally preferred model; PFC→IFG and SMA→IPL for the best fit model) that
were associated with rather low partial correlation values and, hence, did not
strongly structure the data.

The inadequacy of using marginal correlation can be further exemplified as
follows. The correlation between PFC and IPL was quite high (0.630±0.063).
Yet, in both the theoretically preferred and the best fit structural models,
this functional connection can be explained by indirect effective connections:
through PFC→SMA→IFG→IPL in the theoretically preferred model; through
PFC→SMA→IPL and PFC→IFG→IPL in the best fit model. Consistently,
the corresponding partial correlation was lower (0.100±0.135) and not signifi-
cantly different from zero (p = 0.05), confirming the unlikeliness of an effective
PFC–IPL connection.

4.2 Surrogate data

Once an SEM analysis has been completed, an important objective is to assess
the validity of the resulting effective connectivities. Indeed, since most algo-
rithms used are deterministic, local, and stepwise procedures, many potential
factors might have biased the analysis. It would consequently be of interest
to provide a simple method that could test whether the SEM obtained after
a complex processing procedure is indeed relevant to the data under investi-
gation. To this end, we propose the following procedure. Since SEM analysis
has been fully completed, the structural models have been fully determined
and it is possible to calculate the corresponding covariance matrices, Σtp and
Σbf in our case. Given a structural model and its coefficients, the distribution
of a sample covariance matrix can hence easily be calculated and simulated
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using a sampling scheme similar to that used for the inference process (see
Appendix B). The distribution of the sample marginal and partial correla-
tion matrices, R and P , respectively, can also be approximated. For both
the theoretically preferred and the best fit models, the significances of the
partial correlations are given in Table 4 (all marginal correlation coefficients
are significantly different from 0). The log-significance graphs have also been
represented in Figure 3 for both R and P .

tp (1) (2) (3) (4)

VEC PFC SMA IFG

(1) VEC

(2) PFC <0.001

(3) SMA 0.497 <0.001

(4) IFG 0.270 0.492 0.0056

(5) IPL <0.001 0.498 0.497 <0.001

bf (1) (2) (3) (4)

VEC PFC SMA IFG

(1) VEC

(2) PFC <0.001

(3) SMA 0.499 <0.001

(4) IFG 0.498 <0.001 0.249

(5) IPL <0.001 0.499 0.0151 0.0119

Table 4
Surrogate data. Levels of significance αij associated to the sample partial correlation
matrix for the theoretically preferred (top) and best fit (bottom) models.

As in Section 3, the significance of the sample marginal correlation coefficients
does not convey much information, as they all significantly differ from zero.
The structure of partial correlation log-significances, on the other hand, strik-
ingly resembles that of the structural model that was used to generate them. As
a matter of fact, each partial correlation structure, as represented in Figure 3,
matches the skeleton of the corresponding structural model, obtained by trans-
forming the arrows into unoriented edges: VEC–PFC, VEC–IPL, PFC–SMA,
SMA–IFG, and IFG–IPL for the theoretically preferred model; VEC–PFC,
VEC–IPL, PFC–SMA, SMA–IPL, PFC–IFG, and IFG–IPL for the best fit
model. This remarkable feature, that was hinted at in Marrelec et al. (2005a)
from a theoretical perspective, is here demonstrated on real data. Note that
the significance of effective connections taken into account in each of the two
graphs (e.g., PFC→SMA for the theoretically preferred model) largely differ
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from the significance of effective connections that were not modeled (e.g., be-
tween PFC and IFG in the theoretically preferred model). For each simulation
setting (i.e., each structural graph), a p = 0.05 significance threshold unam-
biguously retrieved the skeleton of the structural graph. Varying the threshold
from 0.25 to about 0.015 did not change the results.

5 Discussion and perspectives

In this paper, we proposed a method that, given a set of regions, performs a
partial correlation analysis. This method provides a way to approach effective
connectivity that is data-driven, in the sense that it does not require any prior
information regarding the anatomical or functional connections. The results
reveal that partial correlation analysis can serve several purposes. In a pre-
processing step for a subsequent SEM analysis, inferring the partial correlation
structure from the data can give insight into the effective connections that
are structuring the interactions (these can consequently be incorporated into
the structural equation modeling), and those that have little influence onto
the pattern of connectivity (allowing us to remove them and gain degrees
of freedom). As a post-processing step, generation of synthetic data using
the path coefficient estimates obtained by any SEM optimization algorithm
provides a simple visual way to check the validity of the algorithm used; it
also shows which assumptions made by the SEM model are valid and those
that should be modified to better fit the data.

The relationships between structural equation modeling and conditional cor-
relation have been the topic of much research and involve graph theoretic con-
cepts like morality and d-separation (Whittaker, 1990; Lauritzen, 1996; Pearl,
2001). Theoretical considerations led us to hypothesize that partial and, more
generally, conditional, correlation coefficients could extract the (undirected)
structure of effective connectivity from the data (Marrelec et al., 2005a). The
analysis developed in this paper strongly supports this assumption. Indeed,
while we demonstrated that a lack of partial correlation between two regions
can potentially be related to a lack of underlying anatomical connection, the
example used suggests that a strong and significant partial correlation can be
interpreted as the presence of an effective connection. Whether this behavior is
a general property of fMRI data or only incidental remains to be investigated.
Nonetheless, we believe that partial correlation will prove essential to effective
connectivity investigation, for it can compensate for some of the most impor-
tant drawbacks from which SEM analysis suffers (i.e., difficulty to provide a
structural model a priori and lack of control over the SEM algorithms and
results).

Partial correlation analysis, as introduced in this paper, has a very strong bear-
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ing on both the analysis and the consistency of structural equation modeling.
In this perspective, it stands as an efficient way to provide feedback regarding
the relevance of a model given a set of data. A good way to perform joint
SEM and partial correlation analysis would be as follows: A blind partial cor-
relation analysis could be performed from the data, based on the data-driven
inferential process detailed in this paper. The resulting structure could then
be compared to previous knowledge from the literature and checked for any
discrepancies. If no discrepancies are observed, a first structural model could
then be proposed, integrating both prior information from the literature and
paths with significant partial correlations. Orientation of the connections (i.e.,
transformation of the unoriented links into arrows) should still rely solely on
prior knowledge. A classical SEM analysis could then be conducted with the
model obtained. After estimation of the corresponding path coefficients, simu-
lations could be run to compare the partial correlation structure expected from
such a structural model to the partial correlation structure actually observed
in the data. This comparison would exhibit both connections on which there
is a good agreement (i.e., well modeled) and connections for which there exists
a discrepancy between the simulated expected value and the value observed
in the data. Such a comparison could give some insight regarding potential
improvements that could be made to allow for a better fit. In case of a dis-
crepancy between the extracted pattern of partial correlation and previous
knowledge, further research must be conducted in order to provide rules to
properly constrain the partial correlation matrix with existing information.

At this stage, how SEM and partial correlation deal with group analysis de-
serves a comment. SEM softwares by and large only accept a single correla-
tion matrix as input, thereby not explicitely considering any potential group
variability—only the “average” subject can be examined. To compensate for
this flaw, various pre-processing schemes try to artificially incorporate some
variability induced by the group. For instance, Bullmore et al. (2000) first cal-
culated one spatially averaged timeseries for each of the five regions and each
of the twenty subjects. For each of the five regions, they then performed PCA
of the twenty corresponding subject time-series and kept the first eigenseries
as representative of an average pattern of response to the experimental design
over all subjects in each region. This step led to a total of five times series (one
for each region), from which they calculated a correlation matrix (Table 1). It
is this correlation matrix that was subsequently used for path analysis in Bull-
more et al. (2000) and for partial correlation investigation in this manuscript.
While it is fairly easy to model some group variability in the method that
we expounded here (see, e.g., Marrelec et al., 2006), how such results can be
compared to an SEM analysis remains to be investigated.

The relevance of partial correlation to investigate SEM comes up as a cogent
demonstration that this technique provides a pertinent first step to bridge the
gap that has endured between functional and effective connectivity. Marginal
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correlation is often used in functional connectivity analyses (e.g., Biswal et al.,
1995, 1997; Cordes et al., 2000; Greicius et al., 2003; Dodel et al., 2005; Bellec
et al., 2006). However, it has been suspected of being a rather poor measure of
effective connectivity, based on the prediction that two regions that were indi-
rectly connected or driven by a same stimulus could still exhibit a significant
marginal correlation (e.g., Marrelec et al., 2005a,b). Our results, both from
Marrelec et al. (2006) and this article, tend to experimentally confirm this
theoretical assumption. By contrast, the same research tends to demonstrate
that partial correlation, while also being data-driven, sheds some light on the
effective connectivity structure of a brain network.

A final key issue that needs mentioning is that partial correlation is unable to
recover connection directionality from the data. Note first that inferring direct
interactions and directionality are two separate issues. The best proof of this
assertion is that, while some data-driven methods, mainly based on Granger
causality, try to cope with directionality (e.g., Goebel et al., 2003; Roebroeck
et al., 2005), none has been able to differentiate between direct and mediated
interactions. Directionality represents an information that is complementary
to interaction mediation and still has to be assumed a priori. Nonetheless, our
method still allows one to drastically limit the number of potential graphs by
putting strong constraints onto the skeleton of any potential structural model.
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A Inferring the marginal and partial correlation matrices

Using standard Bayesian theory, it can be shown that the covariance matrix
Σ given the data z follows an inverse Wishart distribution with T − 1 degrees
of freedom and scale matrix U = S−1, where

S =
T∑

t=1

(zt − zt)(zt − zt)
t

is proportional to the sample covariance matrix, and zt is the temporal mean
(Gelman et al., 1998). Calculation of the posterior probability density func-
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tion (pdf) of partial correlation cannot be performed in close form from this
distribution. To approximate the distribution of the marginal and partial cor-
relation matrices, we can nevertheless resort to the following sampling scheme
(Marrelec et al., 2005b and Marrelec et al., 2006). For sample l,

(1) sample Σ[l] according to its inverse Wishart distribution (Gelman et al.,
1998, Appendix A);

(2) calculate Υ[l] =
(
Σ[l]

)−1
, and Π[l] from Υ[l] according to Equation (2);

Ω[l] as

Ω
[l]
ij =

Σ
[l]
ij√

Σ
[l]
ii · Σ

[l]
jj

.

Once a large number L (10,000 in this article) of samples has been drawn
following this process, the marginal pdf of a given quantity can be approx-
imated by the frequency histogram obtained from the sample. Likewise, all
statistics and estimators can be approximated by their sample counterparts.
For instance,

E[Πij |Σ]≈Mij =
1

L

L∑

l=1

Π
[l]
ij , (A.1)

Var[Πij|Σ]≈Xij =
1

L

L∑

l=1

(
Π

[l]
ij − Mij

)2
. (A.2)

Significance tests can also be approximated in the same way. For instance,
testing against the null hypothesis (H0) Πij = Πij,0 can be associated with
the following significances: Pr(Πij > Πij,0) if Mij > Πij,0 or Pr(Πij < Πij,0) if
Mij < Πij,0. These quantities can, in turn, be approximated from the sample
by

1 − αij = Pr(Πij > Πij,0) ≈
1

L
#

{
Π

[l]
ij > Πij,0

}

and

1 − αij = Pr(Πij < Πij,0) ≈
1

L
#

{
Π

[l]
ij < Πij,0

}
,

respectively, where #S stands for the cardinal of set S. For instance, setting
Πij,0 to 0 makes it possible to test the null hypothesis Πij = 0.

B Generation of surrogate data

A structural model can be defined in matrix form as

y = Ky + e, (B.1)
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K = (Kij) contains the path coefficients. Both the theoretically preferred
and the best fit models have different matrices, denoted by Ktp and Kbf

respectively, that are functions of the path coefficients. We also assume that
the noise e is composed of spatially and temporally independent Gaussian
variables with diagonal covariance matrix:

Var[e] = V =




V 2
1 0

. . .

0 V 2
D




.

The first equation can be rewritten as y = (I − K)−1
e, where I stands for

the D-dimensional unit matrix, it is straightforward to show that y is also
Gaussian distributed with covariance matrix (Anderson, 1958)

Σm = (I − Km)−1V
[
(I − Km)−1

]
t

. (B.2)

Since Km is a function of the path coefficients, so is Σm. The likelihood of
the data given Σm then reads:

Pr(z|Σ = Σm) =
T∏

t=1

N (µ,Σm; zt) .

In this expression, N (µ,Σ; zt) stands for the multivariate normal distribution
with mean µ and covariance matrix Σ. The value of the sample covariance
matrix S is then given by (Anderson, 1958)

S|Σ = Σm ∼ Wishart
(
T − 1,

1

T − 1
Σm

)
.

To approximate the distribution of the sample marginal and partial correlation
matrices R and P , we resorted to a sampling scheme similar to that used for
the inference process and detailed in Appendix A.
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Fig. 1. Theoretically preferred (left) and best fit (right) models (from Bullmore et al., 2000).
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Ω Π

Fig. 2. Inference. Significance graphs associated with the marginal (left) and partial (right) correlation matrices. The scale is logarithmic,
e.g., α = 0.01 = 10−2 is associated to a log-significance of 2. Maximum (red) is 3 and above; minimum is − log10(0.5) ≈ 0.301.
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Fig. 3. Graphs representing the sample marginal, R, and partial, P , correlation coefficients for the theoretically preferred (top) and the
best fit (bottom) models.
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